000155593 001__ 155593
000155593 005__ 20210129214116.0
000155593 0247_ $$2Handle$$a2128/7914
000155593 037__ $$aFZJ-2014-04661
000155593 082__ $$a610
000155593 1001_ $$0P:(DE-HGF)0$$aMathys, C.$$b0$$eCorresponding Author
000155593 245__ $$aAn age-related shift of resting-state functional connectivty of the subthalamic nucleus: a potential mechanism for compensating motor performance decline in older adults
000155593 260__ $$aLausanne$$bFrontiers Research Foundation$$c2014
000155593 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s155593
000155593 3367_ $$2DataCite$$aOutput Types/Journal article
000155593 3367_ $$00$$2EndNote$$aJournal Article
000155593 3367_ $$2BibTeX$$aARTICLE
000155593 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000155593 3367_ $$2DRIVER$$aarticle
000155593 520__ $$aHealthy aging is associated with decline in basic motor functioning and higher motor control. Here, we investigated age-related differences in the brain-wide functional connectivity (FC) pattern of the subthalamic nucleus (STN), which plays an important role in motor response control. As earlier studies revealed functional coupling between STN and basal ganglia, which both are known to influence the conservativeness of motor responses on a superordinate level, we tested the hypothesis that STN FC with the striatum becomes dysbalanced with age. To this end, we performed a seed-based resting-state analysis of fMRI data from 361 healthy adults (mean age: 41.8, age range: 18–85) using bilateral STN as the seed region of interest. Age was included as a covariate to identify regions showing age-related changes of FC with the STN seed. The analysis revealed positive FC of the STN with several previously described subcortical and cortical regions like the anterior cingulate and sensorimotor cortex, as well as not-yet reported regions including central and posterior insula. With increasing age, we observed reduced positive FC with caudate nucleus, thalamus, and insula as well as increased positive FC with sensorimotor cortex and putamen. Furthermore, an age-related reduction of negative FC was found with precuneus and posterior cingulate cortex. We suggest that this reduced de-coupling of brain areas involved in self-relevant but motor-unrelated cognitive processing (i.e. precuneus and posterior cingulate cortex) from the STN motor network may represent a potential mechanism behind the age-dependent decline in motor performance. At the same time, older adults appear to compensate for this decline by releasing superordinate motor control areas, in particular caudate nucleus and insula, from STN interference while increasing STN-mediated response control over lower level motor areas like sensorimotor cortex and putamen.
000155593 536__ $$0G:(DE-HGF)POF2-333$$a333 - Pathophysiological Mechanisms of Neurological and Psychiatric Diseases (POF2-333)$$cPOF2-333$$fPOF II$$x0
000155593 536__ $$0G:(DE-HGF)POF2-89571$$a89571 - Connectivity and Activity (POF2-89571)$$cPOF2-89571$$fPOF II T$$x1
000155593 7001_ $$0P:(DE-Juel1)131684$$aHoffstaedter, Felix$$b1$$ufzj
000155593 7001_ $$0P:(DE-Juel1)144344$$aCaspers, Julian$$b2$$ufzj
000155593 7001_ $$0P:(DE-HGF)0$$aSüdmeyer, M.$$b3
000155593 7001_ $$0P:(DE-Juel1)161406$$aGrefkes, Christian$$b4$$ufzj
000155593 7001_ $$0P:(DE-Juel1)131678$$aEickhoff, Simon$$b5$$ufzj
000155593 7001_ $$0P:(DE-Juel1)131693$$aLangner, Robert$$b6$$ufzj
000155593 773__ $$0PERI:(DE-600)2558898-9$$p178$$tFrontiers in aging neuroscience$$v6$$x1663-4365$$y2014
000155593 8564_ $$uhttps://juser.fz-juelich.de/record/155593/files/FZJ-2014-04661.pdf$$yOpenAccess
000155593 8564_ $$uhttps://juser.fz-juelich.de/record/155593/files/FZJ-2014-04661.jpg?subformat=icon-144$$xicon-144$$yOpenAccess
000155593 8564_ $$uhttps://juser.fz-juelich.de/record/155593/files/FZJ-2014-04661.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000155593 8564_ $$uhttps://juser.fz-juelich.de/record/155593/files/FZJ-2014-04661.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000155593 909CO $$ooai:juser.fz-juelich.de:155593$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000155593 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131684$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000155593 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144344$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000155593 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161406$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000155593 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131678$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000155593 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131693$$aForschungszentrum Jülich GmbH$$b6$$kFZJ
000155593 9132_ $$0G:(DE-HGF)POF3-571$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vConnectivity and Activity$$x0
000155593 9131_ $$0G:(DE-HGF)POF2-333$$1G:(DE-HGF)POF2-330$$2G:(DE-HGF)POF2-300$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lFunktion und Dysfunktion des Nervensystems$$vPathophysiological Mechanisms of Neurological and Psychiatric Diseases$$x0
000155593 9131_ $$0G:(DE-HGF)POF2-89571$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vConnectivity and Activity$$x1
000155593 9141_ $$y2014
000155593 915__ $$0StatID:(DE-HGF)0040$$2StatID$$aPeer Review unknown
000155593 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000155593 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000155593 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000155593 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000155593 9201_ $$0I:(DE-Juel1)INM-1-20090406$$kINM-1$$lStrukturelle und funktionelle Organisation des Gehirns$$x0
000155593 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x1
000155593 980__ $$ajournal
000155593 980__ $$aVDB
000155593 980__ $$aUNRESTRICTED
000155593 980__ $$aFullTexts
000155593 980__ $$aI:(DE-Juel1)INM-1-20090406
000155593 980__ $$aI:(DE-Juel1)INM-3-20090406
000155593 9801_ $$aFullTexts
000155593 981__ $$aI:(DE-Juel1)INM-3-20090406