
IAS Series 
Volume 25
ISBN 978-3-89336-979-9

M
em

be
r 

of
  t

he
 H

el
m

ho
ltz

 A
ss

oc
ia

tio
n

Numerical simulation of gas-induced orbital decay  
of binary systems in young clusters

Christina Korntreff

Most stars are not single but part of a binary or multiple system. These binary systems form from 
the gas and dust in molecular clouds usually building clusters that are initially embedded in the 
star-forming gas. Hence, the question arises whether the properties and frequency of binary stars 
change during this gas-embedded phase.

Until today, the interaction between binary systems and surrounding gas has been neglected. In 
this interaction, the binary system potential torques the nearby gas, producing an outgoing acous-
tic wave. This wave transports angular momentum from the binary system to the gas, resulting in 
a decay of the binary orbit.

In my thesis I investigated how a binary population in a typical young cluster is affected by this 
gas-induced orbital decay.  When observing a forming star cluster, the developed method can be 
used to deduce the impact of the gas-induced orbital decay on its binary population.

This publication was written at the Jülich Supercomputing Centre (JSC) which is an integral part 
of the Institute for Advanced Simulation (IAS). The IAS combines the Jülich simulation sciences 
and the supercomputer facility in one organizational unit. It includes those parts of the scientific 
institutes at Forschungszentrum Jülich which use simulation on supercomputers as their main 
research methodology.
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Zusammenfassung

Die meisten Sterne entstehen als Doppel- oder Mehrfachsternsysteme in Sternhaufen von hun-

derten bis zu hunderttausenden von Sternen. Diese jungen Sternhaufen sind immer noch in

das Gas der Molekülwolke eingebettet, aus der sie entstanden sind und aus der auch weiterhin

Sterne entstehen können. Das Gas bleibt ungefähr 1-2 Myr im Sternhaufen, bevor es durch den

Strahlungsdruck der Sterne und andere Prozesse den Sternhaufen verlässt. Es stellt sich die Frage,

ob sich die Eigenschaften und der relative Anteil an Doppelsternen in dieser Gas-Phase ändert.

Die Wechselwirkung zwischen den Sternen in einem Sternhaufen zerstört Doppelsterne mit lan-

gen Perioden (>105 Tage). Neben der Wechselwirkung zwischen einem Doppelstern und anderen

Sternen ergeben sich auch Wechselwirkungen mit dem Gas in welches er eingebettet ist. Der Dop-

pelstern erzeugt eine spiralförmige akustische Dichtewelle in dem umliegenden Gas, die sich vom

Doppelstern weg ausbreitet. Dies führt zu einem Drehimpulstransport vom Doppelstern zum Gas

aus dem eine Verringerung des Doppelsternorbits resultiert, welche in der vorgelegten Dissertation

untersucht wird.

Stahler (2010) entwickelte eine analytische Näherung zur gasinduzierten Orbitverringerung von

Doppelsternsystemen, welche hier auf eine Doppelsternpopulation angewandt wurde. Als Resul-

tat zeigt sich, dass die gasinduzierte Orbitverringerung die Periodenverteilung nur für kurze Pe-

rioden (<105 Tage) signifikant ändert. Vergleicht man die resultierende Periodenverteilung mit

Beobachtungen ergibt sich nur für Sterne mit ≈ 1 M⊙ eine gut Übereinstimmung. Für diesen er-

sten Ansatz wurden einige Vereinfachungen angenommen. So wurde in der analytische Näherung

die Entstehung der Dichtewellen nur indirekt berechnet und der Orbit eines Doppelsternsystems

als zirkular angenommen. Beobachtungen hingegen zeigen, dass die meisten Doppelsterne einen

exzentrischen Orbit mit e > 0.2 haben. Um auch exzentrische Doppelsternorbits zu untersuchen,

wurde eine 3D hydrodynamische Simulation entwickelt. Diese berechnet die gravitative Wechsel-

wirkung zwischen einem Doppelstern und dem Gas, die entstehende Dichtewelle und die resul-

tierende Orbitverringerung. Es wurde eine Parameterstudie durchgeführt, die ein breites Spektrum

an Gas- und Doppelsterneigenschaften abdeckt.

Der Vergleich der Ergebnisse aus der Simulation mit den Ergebnissen der analytische Näherung

sind ähnlich für die Abhängigkeiten der Orbitverringerung von der Gasdichte, der Zeit, die der

Doppelstern eingebettet ist und dem Massenverhältnis des Doppelsterns. Im Gegensatz dazu un-

terscheiden sich die Abhängigkeiten stark für Parameter, die mit der Generierung der Dichtewelle



im Gas zusammenhängen. Bei der Simulation von Doppelsterne mit exzentrischen Orbits erfahren

diese eine viel schnellere Orbitverringerung als ihre zirkularen Gegenstücke. Schlussendlich wur-

den die numerischen Ergebnisse in einer Fitformel zusammengefasst, die es erlaubt, die Auswirkun-

gen der gasinduzierten Orbitverringerung in einer Doppelsternpopulation kompakt darzustellen.

In der analytischen Näherung verschmelzen Doppelsterne mit kurze Perioden (<105 Tage) umso

schneller je schwerer der Doppelstern ist. Doch gerade für massive Doppelsterne werden viele

Doppelsterne mit kurze Perioden beobachtet. Die Simulation zeigt hier eine bessere Massenab-

hängigkeit, aber auch die durch die Fitformel berechnete Periodenverteilung kann die beobachteten

Periodenverteilungen nicht reproduzieren. Dabei ist zu berücksichtigen, dass für diesen Vergleich

nur ein Sternhaufentyp betrachtet wurde und zur Reproduktion aber alle möglichen Sternhaufen-

typen berücksichtigt werden müssten. Da die Entstehung und Entwicklung eines Sternhaufens

noch immer Bestand aktueller Forschung ist, können Fortschritte auf diesem Gebiet zu einer

umfassenderen Darstellung der Doppelsternpopulation beitragen. Mit diesem Wissen kann die

hier entwickelte Methode genutzt werden, um die gasinduzierte Orbitverringerung einer gesamten

Doppelsternpopulation zu berechnen.



Abstract

A large fraction of stars (≈ 50% of the field population) are not single but part of a binary or

multiple system. These binary systems form from the gas and dust in molecular clouds largely

building clusters that are initially still embedded in the star-forming gas. Here the question arises

whether the properties and frequency of binaries change during this gas-embedded phase.

It is known that the gravitational interactions between stars in a cluster environment can destroy

long-period binaries (> 105 days). However, not only can the interaction between the stars them-

selves change the binary properties but also those between binary systems and the surrounding

gas. There, the binary potential torques the nearby gas, producing an outgoing acoustic wave.

This wave transports angular momentum from the binary to the gas, resulting in a decay of the

binary orbit. This effect is the central focus of the thesis presented here.

First, an analytic approximation for the gas-induces orbital decay by Stahler (2010) was applied

to a binary population and the results compared to observations. It was found that the process

of orbital decay significantly changes the properties of short period binaries (< 105 days). The

resulting period distribution resembles the one observed for solar-mass stars, but fails to do so for

other mass ranges.

The analytic approximation treats only the effect on binary systems with circular orbits and the

wave generation is not calculated explicitly. Since, most binary systems have eccentric orbits, a

3D hydrodynamic simulation was developed to avoid these restrictions. It calculates the gravita-

tional binary - gas interaction, the wave generation, and the resulting orbital decay. An extensive

parameter study was performed to investigate the dependency of the orbital decay on the binary

and gas properties. It was found that the gas density, embedded time span and mass-ratio show a

similar scaling as predicted by the analytic approximation. By contrast, all binary and gas prop-

erties which influence the wave generation show different dependencies. In particular, it is shown

that eccentric orbits lead to a faster orbital decay than their circular counterparts. Eventually, all

these effects were combined in a fit formula.

Applying this fit-formula to a binary population, the resulting period distribution shows a bet-

ter matching mass dependency, but still does not resemble the observed period distributions. The

cluster model chosen here is only one example and it is still unknown which cluster types con-

tribute to the field population. Furthermore, future observations of young binary systems and their

environment could restrict the parameter space presented here. Having detailed knowledge of the

binary’s environment, the method developed in this thesis can be used to deduce what impact the

gas-induced orbital decay has on a binary population.
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1 Introduction

As observational methods improve, many stars, which were once thought to be single, like

Θ1 Orionis C, are discovered to be in reality binaries (Weigelt et al., 1999) or even triple (Lehmann

et al., 2010) systems. Today, various observational methods are used to study binary systems

(Sec. 1.1). Not only do the different methods yield different binary properties, but each of these

observational techniques is also associated with a different period range for which it can actu-

ally be used to detect binaries. Therefore, the comparison of results using different observational

methods is error-prone.

The biggest observed sample so far is the field binary population (Sec. 1.2), which represents

all stars of the Milky Way which are close enough to Earth so that binaries can be resolved within

the limits of the various techniques. As such the field population consists of stars of very different

ages up to several billion years (Gyr). In the field, the binary fraction rises with the primary mass

m1 of the binary system, from 20% for brown dwarfs (m1 ≤ 0.1 M⊙, Duchêne & Kraus, 2013) to

≥ 80% for O-stars (m1 ≥ 16 M⊙, Sana et al., 2012). The period distribution of the field binary

population seems also to correlate with the primary mass. For primary masses up to 1.5 M⊙, the

period distribution is observed to be log-normal (Duquennoy & Mayor, 1991; Fischer & Marcy,

1992), with different maxima and widths for different mass ranges. However, the observations of

binary systems with primaries 1.5 M⊙ < m1 < 5 M⊙ and m1 ≥ 16 M⊙ show in contrast to the log-

normal distribution an overabundance of short period binary systems (Carquillat & Prieur, 2007;

Sana et al., 2012). Thus, it seems questionable to generalise the log-normal period distribution

for these primary masses. The question arises whether these binary properties are already fixed at

birth or altered as the cluster develops.

To answer this question one would ideally compare the properties of the star formation out-

come to those of the older field binaries. Initially most stars reside in clusters (Lada & Lada,

2003) and only become part of the field population after these clusters dissolve (Goodwin, 2010).

Although nowadays, observations at infrared wavelength allow to observe stars at an early stage,

their formation process as such is not directly visible. The reason is that the forming stars are

deeply embedded in gas (Leisawitz et al., 1989) and the early development is rapid, resulting in

only a few stars being observable at the different early stages. Several theoretical concepts for the

formation of stars, binaries, and cluster exist (see Sec. 1.3). Nevertheless, the initial conditions of

a cluster and its primordial binary properties cannot be derived from these theoretical concepts,
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since neither observational nor theoretical initial conditions are well determined.

As a substitute for an initial binary population, young sparse cluster populations are used. Such

young clusters have the advantage of all stars being more or less of the same age and therefore be-

ing representative for a certain step in the development of the binary population (Sec. 1.4). In such

clusters a log-uniform binary period distribution is found (Kouwenhoven et al., 2007; Connelley

et al., 2008a,b), which differs from the observations in the field. This leads to the conclusion that

some processes must alter the binary properties with age. Various processes have been considered

so far as possible culprits for the temporal change of the binary properties (Sec. 1.5).

In the following, the above described current understanding of the first few million years (Myr)

of binary evolution in the context of their environment is detailed and the structure of this thesis

(see Sec. 1.6) is outlined.

1.1 Binary detection methods

Before looking at observational methods for the detection of binary system, the properties of a

binary system are summarised. Theoretically, a binary system is defined by its orbital parameters

and the resulting internal energy of two stars. Binary systems consist of two stars which are grav-

itationally bound and as a result orbit around each other. This means, that their internal/binding

energy is negative:

Eint =
1

2

(

m1v2
1 +m2v2

2

)

−
Gm1m2

|r12|
< 0, (1.1)

where m1,m2 and v1,v2 are the masses and velocities of the two stars, r12 = r2−r1 their separation

vector, and G is the gravitational constant. The orbits of the two stars follow Kepler ellipses with

the eccentricity

e =

√

1−

(

|r12 ×v12|2

G ·Msys ·a

)

< 1, (1.2)

where v12 = v2 −v1 is their relative velocity vector, r12 ×v12 =: h is the specific angular momen-

tum and Msys = m1 +m2 the system mass. The semi-major axis of the orbit is given by

a =

(

2

|r12|
−

|v12|
2

G ·Msys

)−1

. (1.3)

Often not the semi-major axis, but the period T of the binary orbit is observed. If the binary

systems mass is given, the period can be calculated from the semi-major axis using Kepler’s third

law

T 2 =
4 ·π2

G ·Msys

a3 (1.4)
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From this follows, that for a given system mass the period and semi-major axis is often used

interchangeably. Using the semi-major axis and eccentricity, the specific angular momentum h

and the specific orbital energy k can be calculated as

h =
√

a ·G ·Msys|1− e2|, (1.5)

k =
G ·Msys

2a
. (1.6)

After a transformation into the coordinate system of one star, with r = |r12| and φ being polar

coordinates, the distance between the two stars is given by

r =
a|1− e2|

1+ ecosφ
. (1.7)

This leads to the periastron rp and apastron distance ra (minimum/maximum separation between

the two stars) and their corresponding velocities vp and va

periastron: rp = a(1− e), vp =

√

G ·Msys

a · |1− e2|
, (1.8)

apastron: ra = a(1+ e), va =

√

G ·Msys · |1− e2|

a
. (1.9)

Thus, the four parameters that characterise a binary system are the masses of its components m1

and m2, the semi-major axis, a, and the eccentricity, e, of the orbit. The stellar masses of the binary

system define a mass-ratio q = m2/m1 ≤ 1, with m1 being the primary (more massive) and m2 the

secondary (less massive) star.

Observations often do not reveal all of these binary parameters simultaneously. In this case

different observational methods are necessary to determine all parameters. Additionally, these

methods also differ in the semi-major axis and therefore period ranges which can be observed.

First, if the angular separation between the two stars is on the one hand large enough to per-

mit them to be observed as a double star in a telescope but on the other hand small relative to

the average separation of stars in the neighbourhood, the system is called visual binary. As a

result, the maximum period which can be detected visually depends on the stellar density in which

the binary system is embedded, including possible foreground and background stars. Without

velocity measurements, these are only candidates for binary systems since chance alignment is

possible. This classification strongly depends on the resolution of the telescope, on the distance

of the binary, the separation of the two stars, and their relative brightness. As a result, Jorissen

& Frankowski (2008) estimated the minimum observable period of visual binaries to be one year

(see first row of Tab. 1.1 ). This minimum period decreases with the development of new high

resolution telescopes. A famous example for the discovery of binary systems in objects which
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Figure 1.1: Light curve of an eclipsing binary with inclination of 90◦. The times indicated on the light curve
correspond to the positions of the smaller star relative to its larger companion. In this example
the smaller star is hotter than the larger one (Taken from Carroll & Ostlie (2006)).

were thought to be a single star is Θ1 Orionis C. In 1999, Weigelt et al. discovered Θ1 Orionis C

to be a binary system. By combining different observational methods, in 2010 evidence has been

found that Θ1 Orionis C might be a triple system (Lehmann et al., 2010),

Indirect evidence for binaries is obtained by spectroscopy. As two stars orbit around the com-

mon centre of mass, the Doppler effect leads to a variation of the colour of their emitted light. If

the plane of the orbit is not perpendicular to the line of sight, of the observer and the observed

radial velocity of the system will vary periodically. Such binaries are called spectroscopic bina-

ries. They have usually a much smaller separation than visual binaries at the same distance to the

sun. Due to the necessary geometry, the inclination cannot be determined with this method (see

column 3 in Tab. 1.1).

Binary systems with an orbit oriented approximately along the line of sight of the observer, can

also be detected from variations in the luminosity of their light curve during mutual eclipses of

their components (see Fig. 1.1). These periodic variations happen, when one star passes in front

of the other and the light coming from the rear star is obstructed from view for the observer. This

detection method for eclipsing binary systems provides the inclination, semi-major axis, and mass

of the systems depending on the radius of the eclipsed star (see Tab. 1.1 column 5). For systems

with periods greater than one day, it might be possible to observe them also spectroscopically and

combine both methods to derive also the absolute masses and semi-major axis independent of other

parameters. The observational method for eclipsing binaries is not applicable if the brightness of

one member of the binary is significantly brighter than the other, since in this case it might not be

possible to observe the fainter member directly. This limits the observations to nearly equal binary

components, because the mass is related to the luminosity. For young binary systems this method

can be used seldom, since at this stage the luminosity of the stars is highly variable.
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Figure 1.2: Astrometric binary. The unseen component is implied by the oscillatory motion of the observed
element of the system (taken from Carroll & Ostlie (2006)).

Binaries Visual Spectroscopic Eclipsing Astrometric

Pmin 1 yr 1 d 1 h 1 yr

Pmax - 30 yr ∼ 1 yr 100 yr

i yes no yes yes

Table 1.1: Properties that might be derived from the different binary detection methods (Jorissen &
Frankowski, 2008): P denotes the period and i the inclination.

For some binary systems only one star can be seen to wobble around a point in space (see

Fig. 1.2), with no visible companion. For these astrometric binaries, the companion could be

very faint, masked by the glare of its primary, or it could be an object that emits little or no

electromagnetic radiation. Only the inclination and the semi-major axis of the whole system can

be determined with this method (see Tab. 1.1 column 5).

Summarising, each method to detect a binary system has its restrictions in the availability of the

different parameters. In addition, often not available or error-prone parameters like the distance

from the sun to the system are necessary to derive certain values. Therefore, the results of different

observational methods cannot be easily compared to each other.

1.2 Binaries in the field

To investigate a whole population of binary systems the binary frequency distribution and the

distribution of the binary parameters is necessary. As we saw in Sec. 1.1, especial care has to be

taken to compare or combine surveys. Furthermore, depending on the observed region and used

methods, the conclusions of observations cannot be generalised.

Most binary population observations consider the field population, which consists of stars born

in the field, ejected from a stellar cluster or resulting from the dissolution of different stellar
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Figure 1.3: Multiplicity of population I main-sequence stars and field brown dwarfs for different primary
masses The values were taken from Duchêne & Kraus (2013), who combined and updated
several binary surveys, resulting in differences to the multiplicities given for a single survey in
the text.

clusters (Goodwin, 2010). In the here investigated context, the field population is restricted due to

observations and thus consists of all stars in the Milky Way close enough to be resolved as binary

systems (see Sec. 1.1). The binary properties of this field population, and the main-sequence stars

there, have been observed in several surveys targeting different primary mass ranges, which will

be reviewed in the following. Eccentricity and mass-ratio distributions are seldom observed and

the existing observations lead to an inconclusive results. Thus, only the multiplicity and period

distribution depending on the primary mass are presented here.

In theses surveys, often the multiplicity, rather than the binary fraction, is used to compare

different populations. The multiplicity can be defined using the number of systems (single - S,

binary - B, triple - T, quadruple - Q, ...) in a population:

multiplicity =
B+T +Q+ ...

S+B+T +Q+ ...
(1.10)

and is an upper limit for the binarity of a stellar population.

Fischer & Marcy (1992) examined the field population of M-dwarfs (0.1 M⊙ < m1 < 0.5 M⊙)

in a vicinity of 20 pc around the sun and found that 42±9% of their sample are part of a multiple

system. Reid & Gizis (1997) performed a study for M-dwarfs within a distance of only up to 8pc

from the sun and determined a slightly lower multiplicity rate of 35%.

However, the multiplicity seems to depend strongly on the mass of the stars. Duquennoy &

Mayor (1991) observed more massive solar-type stars (G-dwarfs 0.7 M⊙ < m1 < 1.3 M⊙) in the

solar neighbourhood (r ≤ 22 pc) with CORAVEL radial velocity measurements and obtained a

multiplicity of ∼ 60%. Thy restricted their sample to systems with m2/m1 > 0.1, where m1 is the



1.2 Binaries in the field 7

primary (brighter / more massive) and m2 the secondary (less bright / massive) star. More recent

observations of Raghavan et al. (2010) considered a larger sample (454 stars within r ≤ 25 pc),

using different observational methods and various catalogues and radial-velocity monitoring pro-

grams. They determined the binary properties of solar-type stars (∼ F6−K3) and found the frac-

tion of binary stars to be 58%. For the very massive O-stars (> 16 M⊙), the multiplicity seems

to be even higher than for solar-type stars. Sana et al. (2012) observed O-stars and found a multi-

plicity of ≥ 80%. Figure 1.3 illustrates this increasing multiplicity with increasing primary mass,

with typically 22% for brown dwarfs to at least 80% for high-mass stars. This means that for all

primary masses, binary and higher order systems might have a huge impact on a stellar population.

Therefore, the effect of binaries cannot be neglected when investigating stellar dynamics.

Also the period distributions differ for binary systems with different primary masses. The ob-

servations of binaries with solar-mass primaries of Duquennoy & Mayor (1991) and Raghavan

et al. (2010) can be fitted with a Gaussian function of the form

f (logP) ∝ exp

{

−(logP− logP)2

2σ2
log p

}

, (1.11)

(see Fig. 1.4a). Duquennoy & Mayor (1991) found a maximum of logP = 4.8 and a variance of

σlog p = 2.3, with the period P in days. This values were corrected by Raghavan et al. (2010) to

logP = 5.03 and σlogP = 2.28. The peak of the Gaussian fit of the period distribution of M-dwarfs

by Fischer & Marcy (1992) is comparable to the results of G-dwarfs, but has a higher uncertainty

(see Fig. 1.4b).

Figure 1.4c shows the period distribution of binary systems with A-type primary stars in the

mass range 1.5 M⊙ < m1 < 5 M⊙. Carquillat & Prieur (2007) found an overabundance of short

periods in spectroscopic binaries (pink in Fig. 1.4c). This confirms the finding of Abt & Levy

(1985) (light blue in Fig. 1.4c), who studied 60 binary systems in the same mass range with

spectroscopic and visual observation methods. It is important to notice that the observational

methods limit the binary period to < 104 days and binaries only observable with other techniques

are missing.

Figure 1.4d shows the cumulative period distribution for O-stars observed by Sana et al. (2012),

which can be fitted using a power-law exponent of −0.55±0.22. This period distribution signifi-

cantly deviates from the period distribution resulting from Eq. 1.11 and shows a high percentage

of close binary systems, which is equivalent to a lowering of the gradient towards higher periods

in the cumulative plot (Fig. 1.4d). Again only binaries with periods < 104 days were observed in

this survey and it remains unclear if larger periods are missing due to observational challenges or

non existence.



8 1 Introduction

(a) (b)

(c) (d)

Figure 1.4: Period distribution of binary systems in different primary mass ranges and stellar types:
(a) F6-K3-dwarf primaries: A Gaussian fit to the data is plotted with logP = 5.03 and
σlogP = 2.28. Image taken from Raghavan et al. (2010).
(b) M-dwarf primaries: The solid line shows the results for G-dwarfs of Duquennoy & Mayor
(1991). Image taken from Fischer & Marcy (1992).
(c) A-star primaries: From spectroscopic and visual observations of binaries with < 104 days.
Image taken from Carquillat & Prieur (2007)).
(d) O-star primaries: Cumulative distribution of binaries with < 104 days. Image taken from
Sana et al. (2012).

Duchêne & Kraus (2013) reviewed recently the properties of main-sequence stars and brown

dwarfs from the surveys mentioned above combined with data from Chini et al. (2012), Kraus

et al. (2011), De Rosa et al. (2011), Kouwenhoven et al. (2005), and Abt et al. (1990). Figure 1.5

shows Gaussian fits to the observed period distributions of brown dwarfs (< 0.1 M⊙, red line),

low-mass stars (0.1−0.5 M⊙, dark blue line) and solar-mass stars (0.7−1.3 M⊙, magenta line).

The maxima and widths of the distributions depend again on the primary mass. In the mass range

1.5− 5 M⊙ the available data is sparse and two peaks are combined from different observations,

suggesting a bi-modal fit (green line). For high-mass stars (> 16 M⊙, light blue line) the Gaussian
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Figure 1.5: Combination of fits to period distributions in Fig. 1.4 of binary systems in different primary
mass ranges and stellar types. The coloured mass ranges correspond to the colours in Fig. 1.3
(values taken from Duchêne & Kraus (2013) and references therein).

changes into a power law.

Thus, binary systems with different primary masses have distinct properties, suggesting that

they form different or are processed in a different way or to a different degree during their evolu-

tion. Most likely the properties of binaries are changed during their early phase, where they are

part of a star cluster. The formation of binary systems in such clusters is reviewed in the next

section.

1.3 Formation on different scales

Stellar clusters are groups of stars, that form together within a small area. It is a point of discussion

whether they are gravitationally bound at least in their formation phase. The cluster environment

might be crucial for the development of stars and binary systems, since most, if not all stars form

in such clusters (Lada & Lada, 2003). Star clusters form out of giant molecular clouds (GMCs),

which are gravitationally bound entities of gas and dust with highly supersonic and turbulent

velocity fields. The largest are cloud complexes with sizes of 20−80 pc, temperatures of 15-20 K,

velocities of 6-15 km/s−1 and particle densities of only 100-300 cm−3 (Padmanabhan, 2001).

Within these complexes major fragments and single clouds with higher density and temperature

exist. The smallest entity within a cloud are the clumps/cores with sizes of 0.05-1 pc from which

stars form. There, temperatures up to 500 K, velocities of 1-10 km/s−1 and particle densities

of > 5 ·109cm−3 have been observed (Indriolo et al., 2013). Observations of many GMCs show

dense gas and at the same time signs of star formation. This suggests that the stars form rapidly

after the cloud has formed from the diffuse interstellar medium (Clark et al., 2005; Elmegreen,
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2007). This opaque environment prohibits direct observation of the star formation process as

much as the formation of binary systems.

1.3.1 Formation of single stars

Before looking at binary systems, here the formation process of single stars is summarised. The

existing theory of star formation is well determined for low-mass stars (< 8 M⊙), whereas the

formation of high-mass stars (> 8 M⊙) is still subject to current investigations. In the first stage

of low-mass star formation, a so-called dark cloud core (Fig. 1.6a) forms from the molecular

cloud. These cores collapse from an initial state determined approximately by the Jeans criterion

(Fig. 1.6b). The minimum mass to fulfil this criterion is the Jeans mass MJ (e.g. Unsöld & Baschek,

2002), which decreases with decreasing temperature T and increasing density ρ:

MJ =

√

3

4πρ

(

5kT

Gµ

)3/2

(1.12)

where k is the Boltzmann constant and µ the mass of one gas atom.

The density at the centre of these cores increases until it reaches a value of the order of 1011 cm−3,

where the central dense core of the cloud becomes opaque to the thermal infrared radiation from

the dust grains. The thermal energy generated by the collapse being then no longer freely radiated

away rises the temperature. The resulting thermal pressure might eventually halt the collapse.

The so called hydrostatic core forms with a mass of about 5 · 10−3 M⊙, a radius of about 4 AU.

However, the outer parts of the cloud continue to fall inwards and the hydrostatic core grows in

mass by accreting more and more material. The density and temperature increase until, at a value

of 2000 K, the hydrogen molecules begin to dissociate. This causes a second phase of dynamical

collapse to begin at the centre of the core until the hydrogen at the centre is nearly all in atomic

form.

The second hydrostatic core forms, which keeps growing in mass as material from the first

core and cloud continues to fall in (Larson, 1973). This protostar (Fig. 1.6c), with a mass of

∼ 10−3 M⊙, a radius of about 1 R⊙ and a temperature of 2000 K is possibly surrounded by a disc,

due to momentum conservation. During this stage the envelope material (first core and cloud)

accretes onto the protostar or is swept away by characteristical bipolar outflows (Bachiller, 1996),

which correlate with the onset of nuclear fusion. Then, the disc evolves around the now so-called

T-Tauri star (Fig. 1.6d).

The disc accretion stops as soon as the star becomes a pre-main sequence star (Fig. 1.6e), where

nuclear fusion and self-gravity become the only sources of energy. Now the star contracts, due

to the loss of heat (Andre et al., 2000). According to the virial theorem, this energy is equally

partitioned to increase the thermal energy and compensate the loss through radiation. Hence the
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Figure 1.6: Star formation (image taken from Hogerheijde (1998) after Shu et al. (1987))

cooling of a star results in a rise of the internal temperature and negative heat capacity, on its way to

becoming a main sequence star (Fig. 1.6f). Simultaneously the material in the disc might coagulate

to form a single planet or even a planetary system (Shu et al., 1987). The above described process

of star formation is believed to be valid for low-mass single stars.

The formation of high-mass stars, with masses higher than ∼ 8M⊙, is less well understood.

Different formation models exist to overcome the pressure of the emitted radiation from the star,

which pushes against the in-falling material.

For the so-called core accretion scenario, the radiation pressure has to be overcome, allowing

the star to continue accretion. Theoretical work has shown that the production of a jet and outflow

clears a cavity through which much of the radiation from a massive protostar can escape without

hindering accretion from the disc onto the protostar (Banerjee & Pudritz, 2007; McKee & Tan,

2002). Thus, massive stars may be able to form using a mechanism similar to that of low-mass

stars, because the spherical symmetry is broken.

When investigating the formation of massive stars, two differences to low-mass star formation

have to be considered: (i) The star continues to accrete material while on the main-sequence

(Kahn, 1974). (ii) The cores in which massive stars form are large enough that thermal motions are

dominated by internal turbulence (Myers & Fuller, 1992; Caselli & Myers, 1995). The resulting

’turbulent core model’ by McKee & Tan (2002, 2003) was able to overcome radiation pressure

from a ∼ 100 M⊙ protostar.

Additional processes are necessary to prevent the core from fragmenting and having enough

material around from which they can accrete. In simulations, the fragmentation can be prevented
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by surrounding lower-mass protostars (Krumholz & McKee, 2008) or magnetic field (Kunz &

Mouschovias, 2009; Tan et al., 2013).

The necessary surrounding material could be provided by a disc (e.g. Kuiper et al., 2010, 2011).

So far only a few observations are linked to discs around massive stars (e.g. Chini et al., 2004;

Preibisch et al., 2011; Kraus et al., 2010; de Wit et al., 2011). This results from the discs diameters,

which are typically ≤ 1000 AU Zhang et al. (2013) resulting in ≤ 0.5” at 2 kpc. Here instruments

with high angular resolution like ALMA might provide more observations in the future.

Massive stars are usually found in a cluster environment. The theory of competitive accretion

suggests that at birth all stars are much smaller than the typical stellar mass (≈ 0.5M⊙), and

that final stellar masses are achieved by the subsequent accretion of unbound gas. Stars with

different stellar masses form when they are in a common gravitational potential and accrete from

a distributed gaseous component. Hence, stars located near the center of the potential benefit from

the gravitational attraction of the potential and accrete at much higher rates than isolated stars

(Bonnell et al., 1997; Bonnell & Bate, 2006).

A third, mostly neglected massive star formation scenario is coalescence of two or more stars

of lower mass. Bally & Zinnecker (2005) require for stellar merging by chance collisions a cluster

density of the order of 108 stars pc−3 for the common formation of massive stars in less than

106 years. This density is 103 times higher than generally found in the cores of young stellar

clusters. However, they predict a very short-lived and transient phase during which this high

density is reached through contraction of the cluster’s core. A second coalescence model which

requires only a stellar densities of the order of 106 stars pc−3 was developed by Bonnell & Bate

(2005). They predict a competitive accretion phase, in which a solar-mass binary system with

separation of the order of 100 AU evolves to a binary system with separations of the order of 1 AU

or less and masses of 10− 30M⊙. These binaries typically have very eccentric orbits such that

their periastron separation can be comparable to, or less than, the stellar radii, which might result

in the merging of the binary system. Summarising, the common coalescence theories need very

high stellar densities or a subsequent competitive accretion phase.

The evolution of stellar systems also influences the stellar radius. To visualise the radius evo-

lution, Klassen et al. (2012) applied the stellar evolution model of Offner et al. (2009) to a star

with a final mass of 100 M⊙. Figure 1.7 shows the stellar evolution stages and their influence on

the stellar radius. At stage 1 the object has collapsed to stellar densities and a radius of ∼ 3 R⊙

but the burning has not set in yet. Thus the radiation comes purely from gravitational contraction.

The deuterium burning starts at stage 2 with ∼ 106 K and in stage 3 the temperature rises again

continuing the deuterium burning. The rising core temperature reduces the opacity and eventually

the convection in the stellar core shuts down. At stage 4 the deuterium burns in a shell around the

core and the radius contracts down from ∼ 50 R⊙ to a zero-age-main-sequence (ZAMS) radius
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Figure 1.7: Radius evolution using the stellar evolution model of Offner et al. (2009). Image taken from

Klassen et al. (2012).

of ∼ 4 R�. At the beginning of stage 5 the star has contracted enough to reach ∼ 107 K. The

hydrogen ignites and the star stabilises onto the main-sequence with a radius of ∼ 20 R�. These

drastic variations in the stellar radius have to be taken into consideration when investigating stars

which have not reached the main-sequence.

1.3.2 Formation of binary systems

Most of the stars are observed to be in multiple systems. Since a capture scenarios might be

rare for sparse clusters or field stars, the formation of a binary system could also coincide with

the star formation. Binary observation methods can only seldom observe binary systems during

the formation (see Sec. 1.1). Thus, the formation of binary systems remains an open question.

There are three possible formation scenarios that are considered to date for binary and multiple

systems: (i) the fragmentation of a collapsing core, (ii) star formation inside a protostellar disc

and (iii) dynamical formation in form of a capture process.

During the collapse of dense gas further core fragmentation can occur, which may lead to the

formation of a binary system. Already Hoyle (1953) concluded, that a core will fragment further,

as long as the gas remains optically thin and is able to cool efficiently. More recently, Inutsuka

& Miyama (1992) and Tsuribe & Inutsuka (1999) showed, that the fragmentation of a collapsing,

bound gas clump depends also on the ratio of thermal to gravitational energy α = 5c2
s r/(GM) and

the ratio of rotational to gravitational energy β = Ω2R3/(3GM), where cs is the sound speed, R

is the core radius, M the core mass, and Ω the orbital frequency of the core. For αβ < 0.12 and

β < 0.5 cores are unstable. This restricts the possibilities of core fragmentation further, since only

at a defined range in this parameter space fragmentation is possible. Turbulence is assumed to

be an effective mechanism to produce situations which fulfil these restrictions. It induces over-

densities or filamentary structures inside a core, which result in several collapses. Therefore,
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Offner et al. (2009) and Offner et al. (2010) conclude that the turbulent fragmentation is the dom-

inant mode of low-mass binary formation.

Alternatively, binaries could form due to disc fragmentation. As observations improve, more

and more massive discs around young stars are observed at early epochs of star formation (An-

drews & Williams, 2007; Andrews et al., 2009). In contrast to a disc which forms planets, these

recent observed more massive discs, are able to form another star. The main discriminating fea-

ture between these low- and high-mass discs is the ratio between disc and stellar mass. While in

pre-main sequence low-mass stars this ratio is < 0.1, for massive Young Steller Objects (YSO) the

disc mass becomes comparable to or even greater than that of the star. Kratter et al. (2008, 2010)

showed, that in such massive discs, the gas envelope of the star can feed the disc and induce insta-

bilities which can trigger star formation. Fragmentation of the disc could lead to the formation of

planets or even other stars. A disc fragments if the Toomre parameter falls below a critical value

(Toomre, 1964):

Qcrit =
csκ

πΣG
≪ 1 (1.13)

where Σ is the surface density and κ is the epicyclic frequency, which is for Keplerian rotation

equal to the rotation rate Ω. Additional to the small Toomre parameter, the cooling mechanism

has to be fast. Gammie (2001) found tcoolΩ ≤ 3 as necessary condition, whereas other authors

found that the critical cooling time depends on the equation of state of the gas, the thermal history

of the gas, the distance from the central star, the local surface density or the stellar mass (Rice

et al., 2005; Clarke et al., 2007; Meru & Bate, 2011).

The third scenario is the capture of one star by another in dense stellar environments. This can

occur during the star formation process, where the surrounding disc assists the capture. Moeckel

& Bally (2007) investigated discs which are representative for high-mass stars, within an environ-

ment of stellar density and velocity parameters like the Trapezium core, the central region of the

Orion Nebular Cluster (ONC). They found that the capture rate after 1 Myr in this environment,

could account for 50% of the massive stars having a companion. However, the binaries that form

in their simulations have large semi-major axis and are perhaps easily disrupted. Even without

discs, a transient binary system might form. In clusters like the Orion Nebular Cluster massive

stars are most likely to form a binary star, whereas lower mass stars rarely do form binary or

multiple systems (Pfalzner & Olczak, 2007).

It is still unclear which of these scenarios is the dominant one for binary system formation. In

observations it is nearly impossible to observe the direct outcome of the star formation process.

Hydro-dynamical simulations of star cluster formation by Bate (2009) produce no object that

forms with a semi-major axis smaller than 10 AU, but after the complete cluster is formed many

binary and triple systems with separations < 10 AU exist. Thus the processes during the early

stages of stellar evolution seem to be important.
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Figure 1.8: Cluster formation within a turbulent molecular cloud core (Image taken from Klessen (2011)).

1.3.3 Formation of stellar clusters

Since most stars and binary systems form in clusters, the question arises how such dense stellar en-

vironments form within the giant molecular clouds (GMCs). The turbulent dissipation timescales

for GMCs are thought to be shorter than the cloud lifetime. This indicates that on global scales

the clouds are stabilised against collapse by magnetic fields or internal turbulent pressure (Arons

& Max, 1975; Myers & Goodman, 1988; Blitz, 1993). Physically, a collapse of dense gas occurs

when the gravitational force exceeds the force of the gaseous pressure (Jeans criterion Eq. 1.12).

Cluster-forming cores experience significant fragmentation and gravitational instability, which

leads to the formation of protostars. Numerical simulations (Klessen et al., 2000) suggest, that

under typical molecular cloud conditions, a global GMC collapse can be prevented, but regions

of enhanced density caused by strong shocks nevertheless can become gravitationally unstable

and collapse. This results into the formation of dense cores which can decouple from the overall

turbulent flow. Potential sites of cluster formation are the largest and most massive of these frag-

ments. This process is depicted in Fig. 1.8, where the evolution of the cluster is followed until
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the gas is removed. After the formation of the first stars (Fig. 1.8.1-3), the clumps created in the

turbulent medium merge (Fig. 1.8.4) and accretion from a shared gas reservoir might increase the

ability to accrete mass (competitive mass growth - Fig. 1.8.5). The interactions between the stars

eject low-mass objects (Fig. 1.8.6-7) and the accretion stops. In the pictures 4-7 possible star-gas

interactions are neglected and only the feedback which removes the gas (Fig. 1.8.8) and terminates

star formation is included.

Observed cluster densities cover a wide range of possible values from 0.01 M⊙pc−3 up to

106 M⊙pc−3 at any cluster age (e.g. clusters in Wolff et al., 2006; Figer, 2008; Borissova et al.,

2008). The same applies for the cluster size, which can vary from less than 0.1 pc up to more than

ten pc. Pfalzner (2009) showed for observations of star clusters in the Milky Way, that the variety

of observed cluster densities does not originate from an initial spread in the cluster densities but

arises from two different cluster types. Her work reveals two distinct evolutionary tracks, which

massive star clusters follow during their evolution. At the first evolutionary track, clusters start at

very high densities of about 106 M⊙pc−3 and radii of about 0.1 pc and evolve to smaller densities

of about 102 M⊙pc−3 and radii of a few pc and are called compact clusters. The evolution of

clusters on the other track starts at densities below 102 M⊙pc−3 and radii of several pc and devel-

ops to densities well below 1 M⊙pc−3 and radii of several ten pc. These clusters are called loose

clusters or OB associations. The evolution of both cluster types is characterised by an expansion

of the cluster size and a resulting decrease of the cluster density over at least 20 Myr.

1.4 Binaries in young cluster environments

As shown in Sec. 1.2, multiplicities and period distributions are derived from main-sequence stars

with most of them being part of the field distribution. To determine whether these properties

of field stars are primordial or have developed from an initially different binary population, it is

necessary to investigate the properties of young cluster binary populations. Since most of the

stars and thus binary systems form in clusters (Lada & Lada, 2003), one ideally would like to use

the observed initial properties of binaries in very young embedded clusters (< 0.1 Myr), because

at such a young age the binary population is close to its primordial state. As we have seen in

Sec. 1.1, the possibilities to observe binary properties are highly restricted for every observational

method. Additionally, observations of binaries in such young dense embedded clusters face a

number of observational difficulties such as absorption and scattering of the stellar radiation by

dust and gas (extinction), crowding, and too low spatial resolution, which makes such observations

nearly impossible. To simulate the influence of interactions between the stars including the gas,

the populations of low density clusters are used to determine the initial conditions. It is assumed,

that they are relatively unaffected by the influences of the stellar environment and therefore close

to their primordial state. This neglects the possibility that different types of binaries might form
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in less dense systems compared to dense systems. Caused by the low stellar density, wide binary

systems might be more common, whereas close binary systems might be seldom.

Clusters show a typical distribution of masses of stars - the so-called stellar initial mass func-

tion (IMF). It describes the initial stellar population in a young cluster and represents the outcome

of the star formation process. Understanding the origin of the IMF means understanding the star

formation process itself. Salpeter (1955) first quantified the IMF and suggested a power law of the

form fm(m) ∝ m−2.35. More recent investigations suggest a shallower dependence in the low-mass

regime (Kroupa, 2001; Chabrier, 2001, 2002; Maschberger, 2013). This can be described with a

multi-part power law

fm(m) = k































(

m
0.08

)−0.3±0.7
, 0.01 M⊙ ≤ m < 0.08 M⊙,

(

m
0.08

)−1.3±0.5
, 0.08 M⊙ ≤ m < 0.50 M⊙,

(

m
0.08

)−2.3±0.7
, 0.50 M⊙ ≤ m < 150 M⊙,

(1.14)

where k contains the desired scaling to describe the IMF over the entire range from the brown

dwarf regime to high-mass stars (Kroupa, 2001). In the context of binaries it should be noted that

the observational problem of unresolved binaries increases the inaccuracy of the IMF, leading to

an overestimation of stellar masses.

One often used numerical way to produce a mass-ratio distribution of binaries is to randomly

associate masses from the IMF (Kroupa, 1998). This means, that the stellar population is generated

to fulfil the chosen IMF and two stellar masses from this population are randomly associated as

a binary system until the chosen binary frequency is reached. By contrast, Kouwenhoven et al.

(2007) characterised the binary population in the young and nearby OB association Scorpius OB2

using available observations of visual, spectroscopic, and astrometric binaries with intermediate-

mass primaries. They found a mass-ratio distribution of the form

fq(q) ∝ q−0.4. (1.15)

Kouwenhoven et al. (2009) showed that this mass-ratio distribution reproduces the observations

better than a random distribution. Since Scorpius OB2 is a young (5-20 Myr) association with a

low stellar density (≤ 0.1 M⊙pc−3), its current population is expected to be similar to the primor-

dial population.

For the eccentricity distribution the information is more spares. Ambartsumian (1937) ana-

lytically calculated a thermal distribution with f (e) = 2e. Kouwenhoven et al. (2007) considered

both the thermal distribution and a flat distribution f (e) = 1 for their observations, but concludes,

that further radial velocity and astrometric surveys are necessary to characterise the underlying
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(a) (b)

Figure 1.9: Observational and theoretical possible initial period distributions.

(a) The observations of young star-forming regions suggest a log-uniform initial period distri-

bution. Image taken from Reipurth et al. (2014).

(b) Depending on the starting point of a simulation, the initial period distribution is chosen to be

log-normal (thick grey line), rising (thick dashed line) or log-uniform (solid line). Image taken

from Korntreff et al. (2012).

eccentricity distribution of Scorpius OB2.

Kouwenhoven et al. (2007) derived from the young association Scorpius OB2 also a semi-

major axis distribution of the form:

fa(a) ∝ a−1. (1.16)

This distribution is limited to a ∈ [0.02AU,105 AU]. The limits represent the maximum separation

at which binaries are (quasi-) stable in the galactic tidal field and a minimum separation, at which

binary systems do not merge (for further information on binary merging see Sec. 1.5).

For a given stellar mass, this log-uniform semi-major axis distribution translates in a log-

uniform period distribution using the Kepler equation (Eq. 1.4). Connelley et al. (2008a,b) confirm

this finding in very young populations in Taurus, Ophiuchus, and Orion star-forming regions (see

Fig. 1.9a). With the denser Orion Nebula Cluster excluded, these are all young populations in

sparse regions. However, even in denser regions, an originally log-uniform period distribution is

likely. For example, the HST observations by Reipurth et al. (2007) of binaries in the Orion Neb-

ula Cluster (ONC) demonstrate that the semi-major axis distribution deviates from the log-normal

distribution of the field period distribution (see Sec. 1.2) and is closer to a log-uniform distribution.

Another example for an initial binary population, which is often use is a rising period distribution

(dotted line in Fig. 1.9b) developed by Kroupa (1995a). For this distribution a pre-main sequence

eigenevolution is assumed which is a primarily phenomenological model and not developed on the
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basis of pre-main sequence observation data. Overall, no obvious mass dependency of the initial

period distribution exist, which might be caused by the difficulties to observe still embedded stars.

In contrast to that the period distribution in the field has a rather different shape and depends on

the mass of the binary system. For example, the period distribution of solar-mass primaries has

a Gaussian shape in the field (grey line in Fig. 1.9b), but a log-uniform shape in young clusters.

Thus, the detected period distributions in the field have to be a result of processes affecting binary

systems during their evolution. Choosing an initial period distribution for a simulation depends

on the evolutionary point at which the simulation stars. If gas is excluded from the simulation,

the rising period distribution (dotted line in Fig. 1.9b) seems to be a reasonable choice, and for

simulations of the field, the observations by Raghavan et al. (2010) can be chosen (grey line in

Fig. 1.9b). However, for an initial period distribution which has not been processed by gas jet,

the log-uniform distribution (solid line in Fig. 1.9b) matches best with observations of protostars

(Fig. 1.9a).

1.5 Evolution of binary systems in a cluster environment

The environment influences a binary system considerably during its development. For the first

1− 5Myr, stellar clusters are still embedded in their natal gas (Leisawitz et al., 1989). This is

caused by the rather ineffective star formation process, because even within the dense clumps, in

which clusters form, the star formation efficiency (SFE) does not reach 100% . Since the SFE is the

fraction of stellar mass in a cluster divided by the total mass of stars and gas in the cluster, not all

of the initial gas is used to form stars. The remaining gas is expelled from the cluster due to stellar

feedback (e.g. Whitworth, 1979; Pelupessy & Portegies Zwart, 2012; Dale et al., 2012), low-mass

star outflows (Matzner & McKee, 2000), and if massive stars exist, their photo-ionisation and

supernova feedback (Zwicky, 1953; Eggleton, 2006). The resulting exposed clusters have initially

still high stellar densities but expand rapidly until they find a new equilibrium state (Pfalzner,

2009).

The processes affecting binary systems can be divided in three types of interactions: The binary

system interacts (i) with other stars, (ii) with the gas in the early embedded phase and (iii) with

itself through mass transport between the two stars during the late stages of stellar evolution.

The latter type of interactions is mainly Roche lobe overflow (Paczynski, 1971), which is the

mass transfer from one binary component to the other if its radius exceeds the Roche lobe. This

is the point, where the gravitational pull of the stellar companion becomes dominant and mass

is transferred either to the companion star itself or to the companion circumstellar disc. The

mass transfers through the apex of the Roche lobe, which is the first Lagrangian point (for more

details see Ivanova et al. (2013) and references therein). This mainly happens at late stages of

stellar evolution (> 5 Myr) or during a binary merger. In this thesis only the early stages of
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stellar evolution are considered and thus only the two other interaction types are discussed in the

following sections.

1.5.1 Dynamical evolution in a cluster environment

It is long known that binaries can be dynamically disrupted by three- and four-body interactions.

These disruptions affect mostly wide binary systems (Heggie, 1975). The general effect of three-

body interactions onto a binary can be described by looking at the energy of the star which interacts

with the binary system. If after the interaction the star is slower than before, the internal energy

of the binary increases due to energy conservation. This results in a wider binary system. On

the other hand, in case of hardening a binary system the internal energy has to be reduced, which

results in a higher velocity for the interacting star. From this, two types of binaries can be defined:

soft binaries which become wider following three-body interactions and hard binaries which

reduce their orbit following three-body scattering.

Three-body and even higher order interactions occur very often in star clusters during their life-

times (Heggie, 1975). Therefor, it is not possible to calculate the changes of the binary population

in the clusters analytically but numerical simulations have to be performed (e.g. Aarseth, 1971;

Kroupa, 1995b; Kroupa & Burkert, 2001; Kroupa & Bouvier, 2003; Pfalzner & Olczak, 2007;

Parker et al., 2009; Kouwenhoven et al., 2010; Marks et al., 2011). With simulations developed in

the early 1960’s, only the evolution of clusters with a very limited number of stars (e.g. Aarseth,

1963, with 25-100 stars) was possible. Due to improvements of the numerical techniques and of

the computing hardware, simulations of up to several 100 stars for several 105 Myr (e.g. Banerjee

et al., 2012) or several 105 stars for several 100 Myr can be performed nowadays.

Performing N-body simulations, Kroupa (1995a,b) showed that to reproduce the observed log-

normal distribution of the field population, the initial number of wide binaries has to be signifi-

cantly higher than observed, if all binaries are subject to dynamical evolution in a star cluster.

1.5.2 Binaries embedded in gas

Stars and thus binary systems do not only interact with each other, but also with their surrounding

gas. Only recently Stahler (2010) suggest that the oscillating gravitational potential of a binary

system would lead to a decrease in the binary orbit. The reason for this orbital decay is, that the

binary potential torques the nearby gas, producing an outgoing acoustic wave and thus transports

angular momentum from the binary to the gas. Figure 1.10 shows a sketch of a binary system with

an outgoing acoustic wave. Each star launches an acoustic wave resulting in a spiral density wave

with a wavelength of λ = 2πcs/ω , where ω is the angular rotation rate of the binary system and

cs the sound speed of the surrounding gas. As shown in the sketch, the outgoing acoustic wave is

evaluated in the far field. However, the amplitude of this wave is calculated with a starting point
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Figure 1.10: Binary system with two outgoing acoustic waves (solid and dashed lines), resulting in a wave-
length of λ = 2πcs/ω . Image taken from Stahler (2010).

at the location of each star of the binary system, neglecting all processes which might dominate in

this region (see Sec. 1.5.3).

Therefore, his analytic approach requires a number of approximations: (i) the wave generation

itself is neglected and only the far-field considered, (ii) the binary orbit is assumed to be circular,

(iii) the gas to be uniformly distributed, and (iv) the orbital velocity of the stars in the binary

system to be higher than the sound speed of the gas.

The binary system is evaluated as a source of acoustic waves using circular orbits with radii a1

and a2 about the mutual centre. Starting with a given system mass, mass-ratio, semi-major axis

and gas density of ρ0, Stahler uses the linear approximation of the momentum conservation valid

for small disturbances

∂ ~u1

∂ t
=−

c2
s

ρ0
∇ρ1 −∇Φbinary, (1.17)

where ~u1 is the small induced velocity with corresponding density perturbation ρ1 due to the binary

potential Φbinary. Furthermore, he uses the linearised equation of mass continuity

∂ρ1

∂ t
+ρ0∇~u1 = 0. (1.18)

The ∇Φbinary-term in the momentum equation is relatively small, but cannot be discarded, as it

describes the stellar gravity that is responsible for the excited waves. After calculating the resulting

velocities of the gas and the reduced angular momentum of the binary system, Stahler obtains a
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linear time dependence for the semi-major axis of the form

atot = a0

(

1−
t

tc

)

, (1.19)

where a0 is the initial binary separation, t the time and tc is the so-called coalescence time, which

is given by

tc =
15

32π

(1+q)2

q

c5
s

ρ0

a0

G3M2
sys

(1.20)

with q = m1/m2 ≤ 1.

In extreme cases the orbit does not only decrease, but an actual merger of the two stars can

happen. For example, for an equal mass binary system with the total mass of 1 M⊙ and a semi-

major axis of 100 AU, surrounded by a gas with a sound speed of 2 km/s and a density of 107 cm−3,

Stahler’s approximation predicts a merger within 1 Myr due to gas-induced orbital decay. In this

context the stellar mass of each component is modelled as a point mass. Thus, a binary system

is assumed to have merged, when the distance between the two stars is zero. This neglects, the

highly variable radius of protostars (see Fig. 1.7) and processes like the Roche lobe overflow.

1.5.3 Disc formation, binary-disc interaction and accretion

Observations show that binary systems can be surrounded by a gaseous circumbinary disc. These

discs were detected in low-mass systems (e.g. Garcia et al., 2013) as well as in high-mass systems

(e.g. Sánchez-Monge et al., 2013). Even planets can form in such circumbinary discs (Doyle et al.,

2011; Orosz et al., 2012a,b; Welsh et al., 2012).

Bate & Bonnell (1997) simulated the circumbinary disc formation for a binary system in a

non-self-gravitating gas. In their simulation, the formation of such a circumbinary disc starts, if

the specific angular momentum of the in-falling gas is high enough to stabilise a circular orbit

outside of that of the secondary star, around the centre of mass. Including a magnetic field and a

much higher ratio of rotational to gravitational energy, Zhao et al. (2013) and Zhao & Li (2013)

showed, that rather a collapsing pseudo-disc is formed, whose rotation is strongly braked. For

example, for an initial binary separation of 240 AU, the binary separation decays strongly in

their simulation, resulting in a binary separation of 20− 40 AU after 0.8 Myr depending on the

angle between the rotation axis and the magnetic field lines. Therefore they concluded, that the

formation of the circumbinary disc and the semi-major axis evolution depends strongly on the

ratio of rotational to gravitational energy.

The interaction of binary stars with the surrounding disc or molecular cloud includes many

different physical processes and can be divided in several regions (see Fig. 1.11): A common
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Figure 1.11: Diagram of a gravitationally bound binary system on a circular orbit surrounded by a circumbi-
nary disc in Keplerian rotation. The gravitational interaction creates a central cavity (gap) at the
tidal truncation radius. Local circumstellar discs form around each star from material from the
circumbinary disc through the Lagrangian points L2 and L3. Image taken from de Val-Borro
et al. (2011).

envelope around the binary system, bow shocks in front of the stars, a region of reduced density in

the central part of the system (gap), the discs of the components, and a stationary shock between

them having the form of a bridge. The spiral bow shocks form as a result of the supersonic motion

of the circumstellar discs in the inter-component envelope. The presence of shocks leads to a

redistribution of angular momentum in the common envelope, and the formation of the gap in the

central part of the circumbinary disc. (de Val-Borro et al. (2011), Sytov et al. (2011) and references

therein).

The radius where this gap ends and the circumbinary disc starts has been observed in only a few

binary systems. This inner gas radius lies between two and four semi-major axis in binary systems

with semi-major axis smaller than 1.1AU (Jensen & Mathieu, 1997; Najita et al., 2003; Jensen

et al., 2007; Boden et al., 2009). Additionally, this inner radius of the circumbinary disc has been

determined by hydrodynamic (HD) simulations to have a radius between 1.8 and 4 semi-major axis

from the centre of mass of the binary system, depending on the binary geometry (Artymowicz &

Lubow, 1994; Fateeva et al., 2011; Bisikalo et al., 2012). This is consistent with more recent

three-dimensional magneto-hydrodynamic (MHD) simulations of circumbinary discs (Shi et al.,

2012), where a gap with a radius of two semi-major axis of the binary system was found. Some

simulations suggest, that this inner radius depends also on the mass-ratio and eccentricity of the
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binary system, but so far only a few cases were simulated and no general dependency was found.

In all of these simulations usually only the mass transfer (accretion) from the discs onto the

binary system is considered. Being computational expensive, these simulations keep the semi-

mayor axis constant, simulating only the gas close to the stars, and/or consider only a few rotations

of the binary system, corresponding to a time span of less than 0.1 Myr.

In contrast simulations with a changing semi-major axis were performed by Artymowicz et al.

(1991). Their smoothed particle hydrodynamic (SPH) simulations show an angular momentum

loss of the binary due to the strong torque of the binary. As a result the separation is reduced and

additionally they found an increased eccentricity. These simulations are computationally expen-

sive and only few special cases have been considered. In MHD simulations of Shi et al. (2012), it

was shown, that for circular binary systems the angular momentum gained through accretion and

the angular momentum loss due to the torques is nearly balanced. It is important to notice, that

these simulations only consider a few examples of binary systems (mostly system masses ≤ 1 M⊙)

and no complete parameter study has been carried out so far.

In close binary systems, in addition to accretion and angular momentum transfer, tidal interac-

tions become important. Zahn & Bouchet (1989) calculated that for pre-main sequence binaries

with masses ranging from 0.5 M⊙ to 1.25 M⊙, circularisation takes place for periods . 8 days.

Their theory is based on radiative damping of dynamic tides in the outer, non-adiabatic layers of

the envelope of stars in close binary systems and seems to agree well with observations (Khaliullin

& Khaliullina, 2010).

If the stellar radius even extends beyond its Roche lobe, mass is transferred between the two

stars via their first Lagrangian point. A theoretical study of long-term behaviour of circular and

eccentric systems, including stellar radiation, shows that the mass donor becomes small and under-

luminous, while the converse is the case for the accretor (Davis et al., 2013).
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1.6 Thesis structure

In the above described context the here presented work addresses the following topics:

To investigate the evolution of a binary population, solar-mass star were investigated first, since

here recent surveys exists. The dynamical stellar evolution in a cluster environment (Sec. 1.5.1)

and the gas-induced orbital decay (Sec. 1.5.2) were combined in Chap. 2. It was found that for

solar-mass stars, this could reshape the initial binary period distribution found in young clusters

(Sec. 1.4) to the older distribution observed in the field (Sec. 1.2). In contrast, it is shown that the

observations of other mass ranges cannot be reproduced with this analytic approximation.

As mentioned in Sec. 1.5.2 many approximations are necessary to calculate the orbital decay

analytically. In a next step it is investigated how these approximations influence the result. This

is done by means of hydro dynamical simulations of the dynamics of a single binary surrounded

by gas. The development of such a hydro dynamical simulation code and simple physical test

problems are described (see Chap. 3).

In Chap. 4 the results of these simulations are compared to the analytic approximation by

Stahler. It is found, that the orbit decays much slower in the simulation than predicted by the

analytic model. The main reason is that the wave generation mechanism and the changing binary

parameters were included directly. Apart from requiring fewer approximations, the simulations

have the advantage that the method can be extended to binary systems with eccentric orbits. It is

shown, that eccentric orbits result in a faster decay than circular orbits. Chapter 5 discusses the

implications of these results for the evolution of a cluster binary population. There, only one ex-

ample is given, since the huge parameter space of binary and gas properties needs to be restricted

by future observations.
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2 Binary evolution in an ONC-like star cluster

In a first approach to understand the evolution of binary populations, I focus on solar-type stars.

Even if most of all stars have masses around 0.5 M⊙, observations of solar-mass stars in the

vicinity of 25 pc are more complete. This is caused by their higher luminosity compared to stars

with masses around 0.5 M⊙, resulting in less problems with extinction. On the other hand, solar-

mass stars remain in the main-sequence phase for up to 106 Myr, contrary to more massive stars

with masses > 16 M⊙ which have a main-sequence lifetime of a few Myr. This results in more

stars around 0.5 M⊙ being observable at a certain time and thus a better statistic.

Duquennoy & Mayor (1991) were the first to observe a log-normal period distribution of solar-

mass main-sequence stars in the field. In a recent more complete study Raghavan et al. (2010)

confirmed the log-normal period distribution. They observed 454 main-sequence stars of the spec-

tral types F6-K3 and their lower mass companions, which roughly correspond to binary systems

with primary masses in the range of 0.5 M⊙ ≤ m1 ≤ 1.5 M⊙.

This observed log-normal period distribution in the field is in contrast to binaries in young

star clusters where observations indicate that the period distribution is log-uniform (see Sec. 1.4).

Processes like dynamical binary destruction caused by three-body interactions (Sec. 1.5.1), gas-

induced orbital decay (Sec. 1.5.2) or binary-disc interactions (Sec. 1.5.3) are thought to be respon-

sible for the change of the period distribution with time. In collaboration with T. Kaczmarek, I

investigated the relative importance and affected regime of binary periods due to the former two

processes.

T. Kaczmarek studied the influence of stellar interactions on binary systems in such dense

cluster environments (here after called ’dynamical’). He did this by performing simulations of star

cluster dynamics using N-body methods. In Sec. 2.2 the results of these simulations are presented.

Complementary, I considered how the natal gas environment could alter the binary distribution.

The method for this investigation, which was also used in my diploma thesis "Gas-induced orbital

decay of binary systems in young embedded clusters" is summarised in Sec. 2.3. Combining the

results of Sec. 2.2 and Sec. 2.3, we determined the total effect of the dynamical interactions and

the influence of the gas on the binary properties in Sec. 2.4. In Sec. 2.5, the effect of orbital decay

is evaluated for M-dwarfs, B- and O-stars and compared to observations. The limitations and

shortcomings of this method are discussed in Sec. 2.6.
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2.1 Cluster model

To allow a comparison of dynamical interactions and gas-induced orbital decay, the Orion Nebula

Cluster (ONC) was chosen as a common model star cluster. It is one of the best-studied high-

density clusters due to its vicinity of 414 pc to the sun (Menten et al., 2007). The ONC consists of

about 4000 systems in the mass range 0.08M⊙ ≤ Mstar ≤ 50M⊙, of which 30 are O- and B-stars

(Hillenbrand, 1997). Studies on the stellar mass distribution (e.g. Hillenbrand & Carpenter, 2000)

reveal it to be close to the canonical stellar IMF given by Eq. 1.14. Observational studies found

for massive stars on average 2.5 companions (e.g. Grellmann et al., 2013) and a varying binary

frequency from ≈ 50% for solar mass stars to ≈ 75% for massive stars (Preibisch et al., 1999;

Köhler et al., 2006).

Many young dense clusters, including the ONC, are observed to be mass-segregated (Hillen-

brand & Hartmann, 1998), meaning, that the most massive stars are found preferentially close to

the cluster centre. Bonnell & Davies (1998) found that the observed mass segregation of the ONC

is unlikely the result of the dynamical evolution of the cluster but primordial.

The ONC has also been investigated theoretically by means of simulations. Olczak et al. (2010)

showed that the initial three-dimensional stellar density distribution

ρstar(r) ∝































(r/Rcore)
−2.3, 0 < r ≤ Rcore

(r/Rcore)
−2.0, Rcore < r ≤ R

0, R < r ≤ ∞,

(2.1)

with a cluster core radius of Rcore = 0.2 pc and a cluster size of R = 2.5 pc, evolves into the current

density distribution of the ONC after a simulation time of 1 Myr. They assumed that the cluster is

initially in virial equilibrium and neglected primordial binary systems. The adopted model starts

from a situation where all stars have already been formed. Figure 2.1 shows this initial density

distribution (blue line) and the resulting distribution after 1 Myr (red line), which is a good fit to

the observations (circles and dots).

Following these observations and simulations, the initial state of the here used model cluster

can be described using mass segregation within the stellar density distribution specified above.

To reproduce the observed mass segregation in the cluster simulations and to calculate the gas

influence in Sec. 2.3, the most massive binary system is initially placed at the cluster centre.

Additionally, the three next most massive systems are placed at random positions within a sphere

of radius R = 0.6Rhm around the cluster centre, where Rhm is the cluster half-mass radius of the

cluster.
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Figure 2.1: Projected density profiles from simulations compared to observational data (image taken from
Olczak et al. (2010)). The initial profile (blue line) and the profile at a simulation time of 1
Myr (red line) are shown. The observational data are from a compilation of McCaughrean et al.
(2002) and include also the values given by Hillenbrand (1997).

As suggested by the observations of Hillenbrand & Carpenter (2000), the system masses are

sampled from the stellar IMF given by Eq. 1.14. They are limited to [0.08M⊙,50M⊙], where the

upper mass limit corresponds to the mass of the most massive binary system in the ONC. The

lower limit is the hydrogen burning limit, thus the margin between sub-stellar and stellar objects.

In contrast to the simulations by Olczak et al. (2010), the primordial binary frequency was as-

sumed to be 100%, since the binary evolution is the prime focus here. This initial binary frequency

is higher than observed, since the observed binary frequency results from a binary population

probably already processed by dynamical interactions and gas-induced orbital decay. A binary

frequency of 100% means that each star is initially part of a binary system. Thus, every system

mass, sampled from the IMF, was split into the two binary components Msys = m1 +m2.

For the initial binary semi-major axis and mass-ratio distribution, the properties of Scorpius

OB2 were used (see Sec. 1.4). This OB association has an age of 5−20 Myr, but such binary pop-

ulations are assumed to remain mostly unevolved (Kroupa & Bouvier, 2003). It remains unclear

if this is the case, since recent theories of cluster evolution contradict this. Pfalzner (2011) shows,

that denser clusters expand after gas-expulsion leading to the associations observed today.

In the absence of observations of younger binary populations, the above mentioned Scorpius

OB2 observations are used. Thus, the initial binary properties are a primordial mass-ratio dis-

tribution of fq(q) ∝ q0.4 with q = m2/m1 ∈ [0,1] and a log-uniform primordial semi-major axis

distribution fa(a) ∝ dN/da ∝ a−1 where a ∈ [0.02AU,10000AU]. Besides the observations in
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OB associations, the log-uniform distribution was used here to test, whether the here investigated

effects of cluster dynamics (Sec. 2.2) and gas-induced orbital decay (Sec. 2.3) can lead to the log-

normal distribution observed in the field, when assuming this extreme initial period distribution

This cluster setup is now used to study the past and future evolution of the ONC.

2.2 Dynamical evolution

Kaczmarek (2012) investigated the dynamical evolution of a binary population during the first

3 Myr. In this simulations the natal gas, in which the cluster is still embedded during ≈ 1Myr,

is neglected. He used an ONC-like cluster, which is a cluster having the properties of the ONC

described in Sec 2.1. In contrast to other simulation which used a initially rising period distribu-

tion (see Sec. 1.5.1) to investigated the evolution of primordial binary populations, he used a log-

uniform initial period distribution, as suggested by observations of sparse clusters

(Sec. 1.4 and 2.1).

The dynamical evolution of such a cluster was simulated, using the NBODY6 code by Aarseth

(2003). This parallel, high-precision, direct N-body code follows the gravitational interactions

of the stars constituting the model cluster. Beside the mass segregation, the initial positions and

velocities of the stars are randomly distributed with respect to the chosen density and velocity

distribution. It is possible that these random distribution results in over-densities in the cluster,

which then dominate the cluster evolution. Thus, to improve statistics and ensure that the results

are independent from this initial positions and velocities, 50 realisations of the same cluster were

simulated and the results averaged. For a more detailed description of the simulation method see

Kaczmarek et al. (2011).

The simulation results of Kaczmarek (2012) show a destruction of wide binary systems due to

dynamical interactions with other cluster members. Figure 2.2 shows the normalised number of

binary systems Nb as a function of the binary period with

Nb(t) =
Nb(t)

Nb(0)
, (2.2)

where Nb(0) denotes the initial and Nb(t) the number of binary systems within the cluster at time t.

The dotted line in Fig. 2.2 shows the Gaussian fit to the observations of Raghavan et al. (2010).

The thin solid line indicates the initial period distribution of binary systems with solar-mass pri-

maries. For periods larger than 107 days, this distribution is not entirely log-uniform, which is

caused by the random setup of the binary systems. During the setup, the random distribution of

binary systems independent of their semi-major axis results in some cases where the local mean

separation is smaller than the semi-major axis. Stars of wide binary systems tend to have a star

closer than their binary companion, leading to fewer large-separation binaries than expected. This
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Figure 2.2: Chosen initial period distribution (thin solid line) and period distribution after 1 Myr (blue line)
resulting from the NBODY6 simulations by Kaczmarek et al. (2011) compared with a Gaussian
fit (dotted line) to the observations by (Raghavan et al., 2010). Due to shortcomings in the
simulation setup, the initial distributions is not totally log-uniform (see text for a more detailed
explanation). Image taken from Korntreff et al. (2012).

results in both stars being part of no higher order system.

After 3 Myr of dynamical development (blue in Fig. 2.2), the number of binaries with periods

longer than 1.1 · 105 days, which roughly corresponds for systems with solar-mass primaries to

binaries with separations exceeding 40 AU, is reduced whereas the number of binaries with smaller

separations is basically unchanged.

The reason is that these wide binary systems have a lower binding energy than short period

binary systems. Thus, wide binary systems can easily be disassociated due to three- and four-

body encounters, where a perturber transfers some of its kinetic energy to the system. During this

interaction, the binding energy of the binary may even become positive, leading to a destruction of

the binary system (Heggie, 1975). In contrast to binaries with periods around 108 days, for binary

systems with periods around 106 days these interactions might only widen the separation between

the two stars, making the destruction after repeated encounters more likely.

Kaczmarek (2012) found that the solar-mass binary frequency is reduced by 19 ± 7% after

3 Myr, due to the destruction of the wide binary systems. However, short periods (< 105 days)

are not affected by the dynamical destruction. Thus other mechanisms have to convert the short

period side from a log-uniform to a log-normal period distribution.
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Figure 2.3: Chosen initial period distribution (thin black line) and period distribution after 1 Myr (red line)
for binaries embedded in an r−2 gas density distribution with ρmax = 105 cm−3 and a sound
speed of 0.49 km/s, compared to a Gaussian fit (dotted line) to the observations by (Raghavan
et al., 2010). Image taken from Korntreff et al. (2012).

2.3 Gas-induced orbital decay of solar-mass stars

Above simulations neglect the gas in which stars are still embedded during the first Myr. I inves-

tigated the effect of this gas on the binary population, namely the orbital decay induced by the

interaction of the binaries with the surrounding natal gas. More specifically, this interaction leads

to the excitation of waves in the surrounding gas, which reduces the angular momentum of the

binary. The result is a smaller distance between the two stars.

To include this effect in the above described simulations of ONC-like clusters, the analytic

approximation by Stahler (2010) (see Sec. 1.5.2: Eq. 1.19 and 1.20) was applied to a binary

population as described in Sec. 2.2 and evaluated for solar-mass stars. This approximation is

based on the assumptions, that

(i) the wave generation itself is neglected (far-field approximation),

(ii) the binary orbit is circular,

(iii) the gas is uniformly distributed, and

(iv) the orbital velocity of the stars in the binary system is higher than the sound speed of the gas.

This approach extends the work of my diploma thesis, where only the overall effect onto the binary

population independent of their primary mass was investigated.
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For gas-induced decay, the gas density distribution in the cluster is of vital importance. Gas

densities of up to 107cm−3 were observed in star forming infrared dark clouds (Padmanabhan,

2001) and around high-mass protostars Indriolo et al. (2013) observed densities > 5 · 109 cm−3.

The different mean densities in these observations result from the different dimensions. Since

infrared dark clouds (≈ 2pc) contain several clumps which might form stars and an in-between

zone with much lower density. Therefore, the mean density of this observation has to be much

smaller than the gas density surrounding high-mass protostars (≈ 0.1pc).

Additionally, the density of the gas depends also on the position of the star inside the cluster.

The densest regions are assumed to be at the cluster centre, but the there formed massive stars

might remove the gas very quickly. This leads to a shorter embedded time span, but within a high

density gas. In contrast, the density at the cluster outskirts is assumed to be lower, but caused

by the lack of massive stars it might be removed last, resulting in a longer interaction time of a

low density gas and the binary system. Since it is not known how exactly the density of the star

forming gas relates to the mass of the formed binary system and its position inside the cluster, an

isothermal gas density which follows the stellar density distribution was assumed. To prevent the

distribution from diverging at the centre, the density is kept constant at a value ρmax inside the

cluster core radius Rcore = 0.2 pc. Outside this region, the density decreases isothermally. Thus,

the gas density distribution can be described by the equation

ρgas(r) = ρmax















1, r < Rcore

(Rcore/r)2, Rcore < r < Rcluster.

(2.3)

Using this gas density distribution, core densities ρmax in the range from 103 − 109cm−3 were

investigated. A core density of ρmax = 105cm−3 fits best, when comparing the resulting final period

distribution of solar-mass binary systems to observations. For the core density of an isothermal

density distribution a sound speed of cs =
√

2π Gρmax r2
core = 0.49 km s−1 can be approximated

(e.g. Binney & Tremaine, 1987, Eq. 4.123). This might underestimate the sound speed, since

velocity dispersions of up to 2.5 km s−1 have been observed in infrared dark clouds (Sridharan

et al., 2005), which are commonly used to represent the sound speed (Huff & Stahler, 2007).

The orbital decay was investigated for 1 Myr, since then the gas is expelled (Leisawitz et al.,

1989) and the binary - gas interaction stops. It was found that the overall effect of the gas-induced

orbital decay on the binary population in the cluster is to reshape the period distribution by pushing

binaries to tighter orbits leading also to mergers.

Figure 2.3 shows the initial period distribution of binaries with solar-mass primaries as thin

solid line and the final period distribution as red line. Since the orbital decay is more rapid for

tighter binaries (see. Eq. 1.20), close binary systems are the first to be altered. As time proceeds,
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Figure 2.4: Comparison of the period distributions resulting from the orbital decay of embedded binaries
(red line for < 105 days) and the dynamical destruction (blue line for > 105 days), with the ob-
servations of Raghavan et al. (2010) (dashed line). Additionally, the log-normal fit by Raghavan
et al. (2010) is shown as dotted line. Image taken from Korntreff et al. (2012).

binaries with even larger orbits are affected until the orbital decay process stops when the gas is

expelled from the cluster. In extreme cases orbital decay can even lead to the merging of a binary.

The process of orbital decay reduces the number of short period binaries. Within 1 Myr, 12%

of all solar-mass binary systems have merged and for periods shorter than 5.5 · 104 days a shift

towards even shorter periods occurs.

2.4 Combination of orbital decay and cluster influences

In contrast to the orbital decay, the stellar interactions in the cluster continue after the gas ex-

pulsion and therefore are simulated for 3 Myr. Overall, the orbital decay only influences periods

shorter than Porb = 5.5 · 104 days, whereas dynamical interactions influence periods longer than

Pdyn = 1.1 ·105 days. Thus, the period range 5.5 ·104 −1.1 ·105 days is neither effected (less than

3% change in comparison to the initial conditions) by orbital decay nor dynamical destruction.

Additionally, it was found that only in ≪ 1% of all cases binaries that exchange partners and

become more strongly bound (binary hardening) transfer to the regime where orbital decay takes

place. This means that both processes can be combined in an additive way, to get an idea of the

evolution of an entire binary population in a cluster.

In a next step the combined simulation results are compared to the observations of Raghavan

et al. (2010). The combined effect of both processes on the period distribution is shown in Fig. 2.4,
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for the same mass range as the observation, namely 0.5 M⊙ ≤ m1 ≤ 1.5 M⊙. The dashed line

shows the observations of Raghavan et al. (2010) and their log-normal fit is shown as dotted line.

The simulated distribution (solid line) matches the observed distribution in six of eleven period

bins well with a maximum error of 2%. For four bins, the maximum error is 10 % and one bin has

an error of ≈ 20 %. Overall, the simulated distribution matches the log-normal distribution fitted

to the observations.

Thus, as a result of these two processes, the log-uniform period distribution of binaries born

in dense, embedded clusters is transformed to the log-normal period distribution found for older

systems in the field. As long as the cluster is embedded in its natal gas (about 1 Myr), the orbital

decay of the embedded binaries depopulates the left-hand side of the period distribution. This

process ends with the expulsion of the gas. At the same time the dynamical evolution of the

cluster destroys wide binaries, depopulating the right-hand side of the period distribution. This

process can in principle still take place when the gas has left the cluster, but will do so less as gas

expulsion causes cluster expansion and decreasing cluster density (Pfalzner & Kaczmarek, 2013).

The combined effect of these processes is that the final period distribution of the binary population

in the star cluster has become log-normal, although it was initially log-uniform.

2.5 Gas-induced orbital decay for other stellar masses

Although the period distribution of solar-mass stars in the field is reproduced very well with this

approach, it has to be analysed how the period distribution is processed for other stellar masses.

In this section only the gas-induced orbital decay is investigated. Therefore, only binaries with

periods ≤ 105 days are shown in the following, since binaries with periods > 105 days are mostly

influenced by dynamical destruction (see Sec. 2.2).

The cluster model described in Sec. 2.1 was used and the resulting period distribution calculated

via the gas-induced orbital decay Eq. 1.19 was evaluated for binary systems with

• M-dwarf primaries: 0.1 M⊙ < m1 < 0.5 M⊙,

• B-star primaries: 1.5 M⊙ < m1 < 5.0 M⊙, and

• O-star primaries: 16 M⊙ < m1.

Finally, the resulting period distribution of each mass-range was compared to observations of

main-sequence binary populations.
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Figure 2.5: Observed field period distribution (red line) by Fischer & Marcy (1992) and effect of the orbital
decay (blue line) on a initially log-uniform distribution (green line) for the primary mass range
0.1 M⊙ < m1 < 0.5 M⊙.

2.5.1 Binary systems with M-dwarf primaries

First the period distribution of binary systems with a primary mass range of 0.1 M⊙<m1 < 0.5 M⊙

is evaluated. The initially log-uniform period distribution (green line, Fig. 2.5) is processed by the

orbital decay for 1 Myr resulting in a similar period distribution (blue line, Fig. 2.5) as calculated

for solar-mass primaries. The red line indicates a fit to the data of Fischer & Marcy (1992), who

observed binary systems with M-dwarf primaries within the vicinity of 20 pc. Since here only the

short period side is shown, it is not possible to normalise these distributions.

Even though the period distribution resulting from the simulations (blue line) shows a similar

trend as the observations (red line), in most of the short period bins more binary systems exist

than were observed. This results in a different slope which does not reproduce the observed peak.

There are a variety of possible explanations for this discrepancy. First, the observations show a

huge error (see Fig. 1.4b), which results especially in an unreliable slope. Thus, the overabundance

of short period binaries from the simulations could still fit the data if the slope of the observation

fit was flatter. Second, by applying the analytic formula by Stahler (2010) to a whole binary

population, all approximations made in his derivation are included. The detailed limitations and

approximations which follow from this will be discussed in Sec. 2.6. Additionally, the initial

gas properties were chosen to match the observations of solar-mass binaries best, neglecting that

the surrounding gas density might depend on the star which is formed. For this no scaling law

has been established so far, but the observations of a gas density of 107 cm−3 in infrared dark

clouds (Padmanabhan, 2001) suggests, that the chosen value of 5 · 105 cm−3 might be to low for

solar-mass stars and even M-dwarfs.
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Figure 2.6: As in Fig. 2.5, but for a the primary mass range of 1.5 M⊙ < m1 < 5.0 M⊙.

2.5.2 Binary systems with B-star primaries

In the observations of the primary mass ranges 1.5 M⊙ < m1 < 5.0 M⊙ a short period peak at

≈ 10 days was found for spectoscopic binaries (Carquillat & Prieur, 2007) and Duchêne & Kraus

(2013) report a long period (≈ 5 · 106 days) peak for visual binaries. These findings have to be

reviewed with caution, since the first follows from the observations of only spectroscopic binary

systems (see Fig. 1.4c) and the latter from a private communication, where no data has been pub-

lished so far. Thus, the simulation data is only compared to the peaks of the observations and not

the slopes of the fitted curve (see red line in Fig. 2.6) due to their high uncertainty. Therefore,

the apparent reproduction of the slope for periods ≥ 5 ·103 days is not relevant. Further observa-

tions of this mass range are necessary to compare the observed period distributions to theoretical

investigations. Additionally, the observed peak for short periods cannot be reproduced by the cal-

culations (blue line), since most of these binaries already merged. In contrast to the mass range

0.1 M⊙ < m1 < 0.5 M⊙, one would expect a higher gas density around these binaries, than around

solar-mass stars. Since this would lead to an even higher merger rate, the analytic approach might

overestimate the orbital decay for binaries with primary masses > 1.5 M⊙.
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Figure 2.7: As in Fig. 2.5, but for a primary mass of m1 > 16 M⊙.

2.5.3 Binary systems with O-star primaries

For binary systems with m1 > 16 M⊙ (Fig. 2.7) nearly all short period binaries merge in the

calculation (blue line) and the observed period distribution (red line) cannot be reproduced. Here,

the largest homogeneous sample to date was observed by Sana et al. (2013), who studied 360

O-type stars (see Fig. 1.4d). Their distribution favours short period binary systems. This strongly

contradicts the analytic approximation, since there binary systems with small periods and high

masses are affected first by the gas-induced orbital decay. Thus, the dependency of the orbital

decay approximation on the initial semi-major axis ∝ 1/a0 and system mass ∝ M2
sys (see Eq. 1.20)

should be questioned in further investigations.

Furthermore, the environment of high-mass stars is difficult to constrain, since their formation

process is still not entirely clear (see Sec 1.3.1). From observations it is known that binary systems

with primaries m1 > 16 M⊙ are preferentially formed in very massive star clusters. The radiation

pressure of high-mass stars removes the gas faster than low-mass stars, resulting in these binaries

being exposed shorter (< 1 Myr) to the effect of orbital decay than in sparse clusters or the outskirts

of dense clusters. However, the surrounding gas might be even denser (≥ 5 · 109 Indriolo et al.,

2013) for this short time span, increasing the effect of orbital decay. Thus, it cannot be said if these

two effects result in a larger or smaller semi-major axis reduction for this mass range. Additionally,

high-mass stars evolve faster than low-mass stars and only a few high-mass binary systems with

circumbinary discs were observed so far (e.g. Sánchez-Monge et al., 2013). Therefore, it remains

unknown if the lack of discs is due to the fast evolution of massive binary systems or due to their

high radiation pressure, which might lead to a fast destruction of a disc and expulsion of other

circumbinary gas.
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2.6 Limitations and approximations

To associate these results with the context of binary evolution, the limitations and approximations

for using the analytic approach itself have to be taken into account. In above described model,

using Stahlers far-field approximation for the orbital decay required to assume all binaries to be

on circular orbits and to neglect the wave generation process within the gas. This is a gross over-

simplification as most binaries are on eccentric orbits with ≈ 96 % having eccentricities > 0.2 (see

Sec. 1.4). On the other hand, the consequences of the wave generation mechanism is unknown.

The here used approximation of Stahler (2010) converts the stellar masses into density perturba-

tions, which induce the outgoing acoustic wave. This is an idealisation and might overestimate

the effect of orbital decay or result in false dependencies on the binary and gas properties. Binary

systems with a circumbinary disc are observed to have a region of lower density surrounding the

binary, which extends to approximately two semi-major axis (see Sec. 1.5.3). Thus, the coupling

mechanism between binary system and gas has to be represented by a gravitational binary potential

which acts at a distance larger than the semi-major axis onto the surrounding gas.

Also the cluster setup limits the calculation to only one cluster case. This neglects that the low-

mass field population results from different cluster types. The field population is clearly a mixture

of binaries originating from different star formation environments. They might have formed in

isolation, sparse (e.g. Taurus), dense (e.g. ONC), or very dense (e.g. Arches) clusters. This means

that the here calculated results need to be combined with the results from other cluster types to

give a complete picture of the field binary period distribution. Associations such as the Taurus

clusters probably never had a gas density above 104cm−3 and the current stellar density is below

10 stars pc−3 (Luhman et al., 2009). This low mean gas density suggests that the resulting density

surrounding the binary system is lower in such a sparse system than in the centre of a massive

cluster. This would lead to less binaries which merge and thus lead to an even higher difference

between the observations and calculations.

On the basis of actual observations, one can only speculate how many stars are born in these

different density regions. While Bressert et al. (2010) stated that the minority of all stars in the

solar neighbourhood formed in high density regions, it is unclear whether this is also true for

all of the galaxy. Dukes & Krumholz (2012) concluded that 1/2 - 2/3 of all stars are formed in

clusters consisting of more than 1000 stars. As such massive clusters initially had much higher

stellar densities (Pfalzner, 2009), which indicates that environmental effects are important for these

clusters.

In addition to the ONC-like model clusters studied here, further investigations should include a

variety of initial conditions: different stellar and gas density distributions (Kroupa, 1995b; Parker

et al., 2011), a range of cluster densities (Olczak et al., 2010; Marks et al., 2011), and different

virial states of the cluster (Allison 2009).
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For the initial conditions of the binary system, the property distributions of sparse associations

were used. Therefore, to verify the initial conditions, observations of very young (< 0.1 Myr)

binary populations have to be performed. This would exclude that other processes have already

altered the population, but these observations hold other difficulties. Any conclusions about such

a young binary distribution would be biased due to small number statistics. In this evolutionary

stage, most stars are deeply embedded in gas resulting in high extinction. Thus, only ten to hundred

stars are usually observable, even for clusters with a few thousand stars. The effect, that not all

stars are formed at the same time adds to the observational bias.

The initial conditions of the surrounding gas are also idealised. To match the observed solar-

mass distribution a isothermal density distribution with a density of 105 cm−3 at the cluster centre

is used. This is a good approximation for the mean gas density of a cluster, but it neglects that stars

form in a filamentary structure. As a consequence, the gas surrounding a binary system is probably

much denser. Especially for high-mass protostars surrounding gas densities > 5 · 109 cm−3 were

observed (Indriolo et al., 2013).

Additionally, the here investigated gas-induced orbital decay might not be the only mechanism

processing the short period range. For example, through accretion events the binary system could

also gain angular momentum (Shi et al., 2012), leading to a slower orbital decay. In the here

performed calculations, accretion of gas onto the binary components has been neglected, since

this is vital for Stahler’s far-field approximation.

Summarising, further theoretical investigations are necessary to test if the calculated binary pop-

ulation development differs if one reduces the approximations. The two strongest approximations

are the use of only circular orbits and to neglect the wave generation. In the next chapter a self-

consistent hydrodynamic simulation is developed, including the wave generation and allowing to

treat binaries on eccentric orbits. With such a simulation, the effect of a direct wave generation is

investigated and the parameter range is extended to eccentric orbits.

Before understanding the simulated orbital decay of a whole cluster population, it is important

to understand the effect of the newly introduced mechanisms. Thus, in the following chapter, the

simulation only covers the evolution of one single binary system. To investigate the evolution of

such a gas-embedded binary system in different environments, a parameter study is carried out to

cover probable binary and gas properties.
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Here the self-consistent hydrodynamic code developed to study the feedback of the gas onto an

embedded binary systems is described. Section 3.1 identifies the physical properties necessary to

describe the evolution of the binary system and its gas environment and specifies the differences

to the analytic approximation. The mathematical descriptions, which can be used to calculate the

physical properties of the here used setup are introduced in Sec. 3.2. Since the equations describing

the physical properties need to be solved numerically, they are discretised and the used numerical

methods are presented in Sec. 3.3. A set of physical test problems were studied in Sec. 3.4 and the

convergence and accuracy of the numerical calculations were determined.

3.1 Physical processes

As mentioned in Sec. 1.5, the interaction of binary stars with the surrounding gas includes many

different physical processes. Here the early evolution, where the binary system has just formed,

is investigated. The environment of such a binary system depends on the formation mechanism

(see Sec. 1.3). In the case of disc fragmentation or disc-assisted capture, the binary system ends

up embedded in a circumbinary disc, which has been observed for a variety of systems masses

(see Sec. 1.5.3). For high-mass stars no simulations have been performed so far, but for solar-mass

stars simulations (Artymowicz & Lubow, 1994; de Val-Borro et al., 2011; Fateeva et al., 2011)

show three distinct zones of interaction for systems with circumbinary discs: (i) the accretion

discs around the individual stars, (ii) the circumbinary disc and envelop surrounding the entire

binary system, and (iii) an in-between zone (see Fig. 1.11). The latter describes the region where

the density drops by several orders of magnitude producing a ’gap’. To reduce the effects which

need to be considered in the simulation, only the circumbinary gas was included and the processes

of the circumstellar accretion discs were neglected.

In contrast to the circumstellar disc in the disc fragmentation or disc-assisted capture case, the

binary system might be fully embedded in gas when it forms via core fragmentation. Due to

the surrounding gas from all sides, the observational information is sparse. One would expect

that the gas properties surrounding a binary formed via core fragmentation is quite similar to the

ones for binaries formed via disc fragmentation or disc-assisted capture. However, simulations

suggest, that the gas could be even closer to the binary system (Machida et al., 2008) if the former
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Figure 3.1: Intensity decline with radius for a density (r−1 - red) and a quadrupole moment (r−4 - green)

formation scenario took place. In their simulations the newly formed binary system is surrounded

by a density of ≈ 1010 cm−3.

The here simulated binaries are surrounded by a spherical symmetric gas cloud. This

surrounding gas starts at the inner radius rin, which corresponds to the outer edge of the low-

density zone. Within the low-density zone, only the binary system itself is simulated. This means,

that the low-density gas in this zone and the circumstellar accretion discs are neglected. Simu-

lations with different inner radii were performed covering the observed and simulated binary-gas

distances for all three formation scenarios.

This is the mayor difference between the analytic approximation by Stahler (see Sec. 1.5.2) and

the here developed numerical simulation, since the wave generation itself was neglected in the

approximation. In the here developed simulations, the outgoing wave in the circumbinary gas is

generated at the inner radius.

Stahler’s analytic approach converts the quadrupole moment of each star into a density pertur-

bation, since all static terms (and thus the monopole moment) are neglected. This perturbation

induces the acoustic wave, which travels outwards. For a circular, equal mass binary system with

a semi-major axis of 100 AU, the acoustic wave start at 50 AU from the centre of mass (origin

of the system), which is the directly at the orbit of the binary system. In a 3D sphere this density

decreases with r−1 (red line in Fig. 3.1). In the numerical simulation, the quadrupole moment of

the binary system generates a wave at the inner radius of rin = 2a = 200AU. Thus the intensity of

the force which acts onto the gas declines with r−4 (green line in Fig. 3.1) and is then converted

into a density perturbation.

This two curves in Fig. 3.1 cannot be compared directly, since the red line shows a declining

density perturbation, whereas the green line shows a declining force. Therefor, it needs to be

taken into account how the force acts at the inner radius on the surrounding gas and the resulting
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Figure 3.2: Schematic picture of the effect of the binary system onto the surrounding gas. The arrows

represent the quadrupole moment of the oscillating gravitational potential of the rotating binary

system and the spiral arms are the outgoing acoustic waves.

amplitude needs to be compared to the amplitude of the analytic approximation at this inner radius.

Thus the results are expected to show major differences, depending on the inner radius and the

efficiency of wave generation, but is presumably lower than the approximation by Stahler. These

effects will be investigated in Sec. 4.2. The outer radius of the surrounding gas is chosen to be

lower than the Jeans radius (= radius of a gas cloud which contains the Jeans mass), since otherwise

the gravitation of the gas would be dominant (see Sec. 1.3.1).

Typically, gas expulsion in young clusters occurs at a cluster age of 1-3 Myr. Since this can

be assumed to be the time where most young stellar systems are still embedded in their natal gas

(Leisawitz et al., 1989), here the binary development over the first Myr was studied. This is a

good timescale for the embedded phase, because not every star is born at the same time and those

first born stars are likely to be located at the centre of a cluster where the most massive stars are

preferentially born and thus the gas starts vanishing first.

A schematic picture of the simulated process is given by Fig. 3.2, which shows a binary system

embedded in its circumbinary gas. The two stars (yellow circles) orbit each other. The quadrupole

moment of the oscillating gravitational potential of the binary system, here represented by arrows,

is the part of the potential responsible for the here investigated effect. This potential produces

outgoing acoustic waves, which are depicted as two outgoing spiral density wave fronts. With

them, angular momentum is transferred from the binary system to the gas and transported outward.

As a result of this angular momentum loss the binary looses kinetic energy, which in turn leads to

a smaller distance between the two stars.
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The binary system is defined through its semi-major axis, eccentricity, mass-ratio and system

mass. The effect of orbital decay depends on the properties of the binary itself but as well on those

of the gas. The relevant gas properties are its density, sound-speed and the inner radius rin where

the surrounding gas starts.

3.2 Mathematical description

Mathematically this situation can be described in the following way: The gas is modelled using

the Navier-Stokes equation for an isothermal, compressible fluid without viscosity (e.g. Eq. 1.7

Thompson, 2006) - also called Euler equation:

ρ

(

∂v

∂ t
+ v ·∇v

)

=−∇p+ f (3.1)

and the continuity equation

∂ρ

∂ t
+∇ · (ρv) = 0, (3.2)

with the density ρ , velocity v and pressure p of the gas and the external force f = −∇Φ. Here,

Φ=Φbinary is the potential of the binary system. If one neglects self-gravity and uses the definition

of the sound speed cs =
∂ p
∂ρ , the pressure can be calculated via the density as,

∇p = (∇p) ·
∂ρ

∂ρ
=

∂ p

∂ρ
∇(ρ) = c2

s ∇ρ.

Modelling the binary system as two point masses, the potential of the binary is given as,

Φbinary = Φ1 +Φ2 =−G

(

m1

r1
+

m2

r2

)

,

where Φ1,2, m1,2 and r1,2 are the potential, mass and distance from the origin to star 1 and star 2

of the binary system, respectively.

The equation of motion for the binary system includes the force of the gas onto the binary

system. For star 1 it is given by

a1 =
Gm1r1−2

|r1−2|
3

−
∫

dV
Gρr1−gas

|r1−gas|
3
. (3.3)

where r1−2 is the distance vector between the two stars and r1−gas the vector between star 1 and

the gas volume element.
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(a) (b)

Figure 3.3: (a) Only the circumbinary gas is simulated with the boundary conditions at rb and the innermost

gas cell at rin = 2a.

(b) Staggered grid. The density ρ is evaluated at the grid points (orange) and the velocities are

evaluated between two grid points.

3.3 Numerical implementation

Here finite differences (Larsson & Thomee, 2003) are used to find a numerical solution of Eq. 3.1.

The simulation is performed in spherical coordinates (r,φ ,θ) and the area of the gas is restricted to

(r,φ ,θ) ∈ ([rin,rout],[0,2π],[0,π]). The innermost gas cell is located at an inner radius of rin from

the centre of mass of the binary, since only the circumbinary gas is investigated (see Fig. 3.3a).

This corresponds to the outer edge of the gap observed in circumbinary discs of solar-type stars

(see Sec. 3.1).

In order to discretise the area where the gas is simulated, a staggered grid was used, meaning

that the density ρ is evaluated at the grid points and the velocity v between two grid points (see

Fig. 3.3b). Using a staggered grid reduces the distances for the derivation calculation effectively.

To calculate for example the first derivation of the velocity at the grid point of the density, the

distance between the necessary velocities is reduced from two to only one cell.

Our boundary condition for the innermost grid point assures, that no mass is transported inward

or outward. With rin being the inner radius of the first gas cell inside the simulation area and

rb = rin −dr is the radius of the inner gas boundary (see Fig. 3.3a), the density and velocity at rb

are set to

ρ(rb) = ρ(rin), vφ (rb) = vφ (rin)∗ rb/rin,

vr(rb) = vr(rin), vθ (rb) = vθ (rin)∗ rb/rin,
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Figure 3.4: Radial cut through the gas cloud surrounding the binary system for different φ -directions. A
damping zone at the outer boundary r > rstart damping reduces the radial velocity and thus the
amplitude of the waves.

where v = (vr,vφ ,vθ ) is the velocity in spherical coordinates.

Since the origin r = 0 corresponds to the binary’s centre of mass, and the gas always starts

outside the gap with rin > 0, the singularity at r = 0 is excluded from all simulations. In φ - and

θ - direction periodic boundary conditions were implemented. An additional advantage of the

staggered grid is, that only the velocity in θ -direction has to be known at the poles θ = 0 and

θ = π . Here for every radius r the mean value of all values at θ = dθ and θ = π − dθ was

calculated: vθ (r,φ ,θ = 0) = ∑φ vθ (r,φ ,θ = dθ)

A damping zone surrounds the simulation area at the outer boundary to mimic open boundary

conditions and thus avoid reflections. This was implemented by reducing the velocity in r-direction

slowly in the damping zone

vr(ri) = vr(ri)− vr(ri) ·

(

1+ tanh

(

10
ri +dr− rstart damping

rout − rstart damping
−8

))

/2.

Figure 3.4 shows the resulting smooth damping zone with rstart damping = 1001 AU for 4 φ -angles

in the orbital plane. Within the first 500 AU of the damping area (r=1000 - 1500 AU) no damping

is visible to the eye. This very slow first damping phase prevents reflections of the acoustic waves,

which enter this region. Within the next 500 AU the damping increases until finally the amplitude

is zero.

The relative motion between the binary star and the gas and all accretion processes were ne-

glected and only the circumbinary gas was simulated. To realise this, the initial conditions of the

gas were set to v(t = 0,r) = 0 and ρ(t = 0,r) = ρ0. For the binary system the initial conditions

were calculated at its periastron using rp = a(1−e) and vp =
√

G·Msys

a·|1−e2|
. In a first relaxation phase

of the simulation the calculated binary potential is increased slowly to avoid shocks in the gas
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medium. This shocks would be artificial, since they were caused by the abrupt appearance of a

binary system in a otherwise quiescent gas. Only after the correct binary potential is reached, the

effect of the gas mass onto the binary is calculated (second term of Eq. 3.3) to simulate the angular

momentum loss and the resulting change of their orbit.

The static terms of the binary system would lead to gravitational attraction of the gas onto the

stars, leading to the accretion of gas. Usually this mechanism is counteracted by the rotation

of the surrounding gas. Since the initial velocity is set zero, also the static terms (Φstatic) of

the potential up to the quadrupole order were subtracted, to counterbalance the initial density

and velocity settings. Additionally, the gas inside the gap, which is the main resource of these

accretion mechanisms, is neglected a priori. The subtraction of the static term was also used in the

approximation by Stahler. There the gravitational potential is expressed as a sum over multipoles

(see Eq. 4.2 Jackson 1962 for the electrostatic expansion)

Φ(x) =−4πG
∞

∑
l=0

l

∑
m=0

qlm

2l +1

Ylm(θ ,φ)

rl+1

qlm =
∫

Y ∗
lm(θ

′,φ ′)(r′)lρ(x)d3x′.

Ylm are the spherical harmonics, with the primed coordinates referring to the source points and the

unprimed coordinates to the points in the field. Static means that the terms have to be independent

of the source coordinate φ ′, since the binary φ ′-coordinate varies with time and the variation of

r′ with time can be neglected. This is the case for all terms with m=0. Since the term for l = 1

is zero, only the terms for l = 0 and l = 2 have to be subtracted from Φbinary = Φ1 +Φ2 −Φstatic

resulting in

Φstatic =−
G(Msys)

r
+

G(r2
1m1 + r2

2m2)

4r3
·3(cos(θ)2 −1).

Given computational limitations, special considerations have to be made in the numerical setup,

to implement these physical effects correctly :

• An artificial numerical viscosity was added into the numerical solution to improve the sta-

bility and accuracy of the numerical method.

• The stellar radii are only used to compare them to the semi-major axis in order to test for

possible merging. Here it is assumed that the two stars merge if the semi-major axis is lower

than the sum of their radii. This is a simplification, since effects like Roche-lobe overflow

are neglected (see Sec. 1.5).

• As the binary system shrinks, the gas boundary moves inward. To accommodate this sit-

uation new grid points are added to the inner gas boundary. This is done if the distance
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Figure 3.5: Radial cut through the gas showing the density perturbation for a binary system with semi-major
axis of 100 AU (green). At a later time-step, the separation of the binary system is reduced to
86 AU, due to orbital decay, and the radial distance from the cluster centre is reduced too (red).

between the centre of mass and the first grid point exceeds the inner radius rin = x ∗a with

a being the semi-major axis of the star and x the selected constant for the inner radius (see

Tab. 4.1). Figure 3.5 shows a radial cut through the gas for two different time-steps. Initially

the binary system has a semi-major axis of 100 AU and thus the innermost gas cell starts at

200 AU (green). During the simulation, the semi-major axis shrinks continuously to 86 AU

due to orbital decay. As the gas also moves further inwards, now the innermost gas cell

starts at 172 AU (red). The decay of the semi-major axis means that the period of the binary

system becomes shorter, too. As a result, the binary system induces an acoustic wave with a

shorter wavelength (red) than initially (green). Normally one would expect the amplitude of

the red wave to be higher than the green one, but here the evolution of the semi-major axis

has to be considered. In Sec. 4.2 it will be shown, that the lower amplitude of the shorter

wavelength results from the shorter interaction time with the binary system, since the orbital

velocity increases for a decreasing semi-major axis.
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Figure 3.6: (a) Radial cut through the gas is shown. An artificial perturbation travels through the gas - green
line for perturbation at t = 0. For t > 0 only the maximum (red crosses) is shown and fitted with
r−1 (blue).
(b) Angular momentum transport in r-direction as a function of the radial distance from the
binary system.

3.4 Tests of the numerical scheme

A series of tests are performed to investigate if the numerical implementation represents the phys-

ical setup correctly. First the implementation of the Navier-Stokes equation, the amplitude decay

and the angular momentum transport, and then determine the convergence and accuracy of the

numerical code is tested.

3.4.1 Physical conditions

A density perturbation in an idealised gas should travel with the speed of sound cs. In the here

presented simulation the sound speed is given and thus measuring the distance which a sound

wave travels in a certain time provides a basic test, if the equations were implemented correctly.

For this test, an artificial perturbation which travels from the inner gas radius to the beginning

of the damping zone was simulated. For different points in time, the distance covered by the

perturbation was measured and the sound speed calculated. Comparing this measured value cm
s to

the input value ci
s = 0.4 AU/yr leads to cm

s − ci
s = ± 10−12, which means that the sound speed is

well preserved.

Due to energy conservation, in a spherical volume the amplitude of the density should decline

with r−1. In a spherical wave of radius r, the energy of the wave front is spread out over the

spherical surface area 4πr2. Therefore, the energy per unit area of an expanding spherical wave

decreases as r−2. Since energy is proportional to amplitude squared, an inverse square law for

energy translates to a decay law for the amplitude A ∝ r−1. Figure 3.6a shows such a radial cut

through such a spherical wave (green at t=0). The measured decay of the wave maximum with
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time is marked with red crosses and an r−1 fit (blue) agrees well with this decay, with a deviation

error of only 0.01%.

In the process of orbital decay, angular momentum is transported outwards. The angular

momentum transported in r-direction (Γ) can be calculated starting from the total angular momen-

tum L. With ρ being density, p the pressure, v the velocity of the gas, and (r,φ ,θ) the spherical

coordinates, the angular momentum vector is given by

L =~r×~p = r







0
pθ

pφ






. (3.4)

Due to the geometry of the binary system, only the z-component of the angular momentum is

non-zero

r× p|z = cos(θ)[r× p]|r − sin(θ)[r× p]|θ =−sin(θ)rpφ .

From this the angular momentum flux j can be calculated

div j =−sin(θ)r∂t pφ = sin(θ)r(div[ρ(v× v)+ c2
s ∗ρ1])φ ,

because

∂t pφ = ∂t(ρv) =−∇[ρ(v× v)+ c2
s ∗ρ1].

This leads to the angular momentum flux in r-direction

j|r = sin(θ)r[ρ(v× v)+ c2
s ∗ρ1]rφ

= sin(θ)rρvφ vr

and finally the angular momentum transported in r-direction

Γ = ∑
φ ,θ

r2 sin(θ)dφdθ jr (3.5)

= ∑
φ ,θ

r3 sin2(θ)dφdθρvφ vr. (3.6)

Figure 3.6b shows this angular momentum transport in r-direction for every grid-point. Apart

from a periodic fluctuation, there is a net outward transport of angular momentum, as predicted

by the far-field approximation. The fluctuation results from a small fluctuation in vr, which gets

amplified in the calculation.
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Grid LA1 LA2 LA3 standard simulation HA1 HA2

dr [AU] 2.8 2.8 4.2 2.8 1.9 1.4

dφ [π] 0.2 0.33 0.2 0.2 0.1 0.067

dθ [π] 0.2 0.2 0.2 0.2 0.1 0.067

dt(t=0) [days] 664 578 578 578 269 143

Table 3.1: Grid parameters for the standard simulations and simulations with higher and lower accuracy.

3.4.2 Accuracy

The gas and stellar motion is integrated using the Cash-Karp integration method. This is a 4th

order Runge-Kutter integrator with a adaptive time step criterion (Cash & Karp, 1990). Thus,

each step the time step dt is adjusted depending on the error between the 4th order and 5th order

Runge-Kutter calculation for this time step.

Since two stars are rotating and producing two waves, the resulting wavelength of the density

perturbation in the gas, which surrounds the binary system, is given by λgas = cs ·Tbinary/2 with

Tbinary being the binary period. The radial grid points of the gas were chosen to have 75 grid points

per induced wave at the beginning of the simulation. Thus for the standard wave-length of 200 AU

the wave is still represented with 7.5 grid points even if the wavelength is reduced to 20 AU. Due

to the symmetry of the problem for circular orbits only a few grid points in θ− and φ− direction

are required, leading to dφ = dθ = π/5. The first time step is chosen with a Courant-Friedrichs-

Lewy (CFL) Number of cfl = 0.5. The CFL-condition is a necessary condition for the stability

of finite difference schemes (Courant et al., 1928). For an explicit scheme as used here the CFL-

condition is fulfilled for 1 > cfl = vmax + cs ·dt/dx. Using this equation the appropriate time step

can be calculated. Adding terms for the numerical viscosity, this equation translates for spherical

coordinates into

dt = cfl

(

vmax
r + cs

dr
+

vmax
φ + cs

r sin(θ)dφ
+

vmax
θ + cs

rdθ
+

µ

dr2
+

µ

(r ∗dθ)2
+

µ

(r sin(θ)dφ)2

)

. (3.7)

During the simulation, it is checked if the time step adjusted by the Cash-Karp method still fulfils

this criterion.

To determine whether the choice of parameters is reasonable, the convergence of the simulation

is tested by performing simulations with lower (LA1-3) and higher (HA1-2) accuracy than in

the standard simulation. Table 3.1 shows the step size of each of these simulation for the three

spatial directions and the time. Figure 3.7 shows the relative error of the differences between the

semi-major axis of the most accurate simulation (HA2) and all other simulations. Although all

simulations lead to a reduction in the binary separation, the relative error shows, that in contrast to
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Figure 3.7: Comparison between the standard simulation (green) and a simulation with higher (red) and
lower (dark blue, purple, light blue) accuracy (see Tab. 3.1). For all simulations only the relative
error of the differences between the simulated semi-major axis of the most accurate simulation
(HA2) and their simulated semi-major is shown.

simulations with lower accuracy, the standard simulation deviates only minimal from simulations

with higher accuracy. Thus, the code does treat the physical equations accordingly and can be used

to calculate the gas density perturbation induced by the binary system and the resulting orbital

decay of the binary in the next step.



4 Results of hydrodynamical simulations

In this chapter, the dependency of the orbital decay on the binary and gas properties is investi-

gated. This includes a comparison between the numerical results and the analytic approximation

by Stahler (2010). The main difference is that the numerical simulation calculates the wave gen-

eration and gravitational interaction between the binary system and the surrounding gas directly

(see Sec. 3.1), whereas Stahler’s approach uses a far-field approximation (see Sec. 1.5.1).

In Sec. 4.1, a qualitative analysis of the outgoing density wave is presented. It is studied, how the

density distribution of these waves in the circumbinary gas depends on the initial binary properties.

Here, three different cases are considered: a binary system with circular orbit and equal masses,

one with unequal masses, and a binary system with equal masses and an eccentric orbit.

The parameter study of different binary and gas properties is presented in Sec. 4.2. The nu-

merical results are compared to those of the analytic approximation by Stahler (2010). Then the

numerical results are approximated by a fit formula covering all gas and binary parameters studied

in this investigation (Sec. 4.3). Furthermore, the accuracy of this fit is determined.

The analytic approach can only treat circular orbits. In contrast, the numerical simulations make

it possible to investigate eccentric orbits as well. The dependency on the degree of eccentricity is

analysed in Sec. 4.4.

4.1 Basics of the density perturbation

The initial parameters of the binary system and the surrounding gas determine the evolution of the

binary system orbit. First, the shape of the outgoing density waves is considered qualitatively in

three exemplary cases. It is investigated how the binary properties influence the resulting density

perturbation of the circumbinary gas. This is important, since the resulting density perturbation

determines the orbital evolution of the binary system.

Figure 4.1 shows the simplest case - that of an equal-mass binary on a circular orbit. Three

different perspectives within a non-rotating reference frame are shown. On the left hand side, the

plot indicates the orbit of the two binary stars in yellow and red. The actual positions of the stars

are marked with crosses. This plot shows only the inner simulation area, where the gas is not

treated explicitly (see Sec 3.3). Zooming out, a 2D cut (r,φ ,θ = 90◦) through the surrounding

3-dimensional gas sphere in the plane of the binary orbit is visible in the middle panel. Here the
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Figure 4.1: Simulation results for a circular binary system with equal masses. The left hand panel shows the
orbit of the two binary stars. This is the region where the gas is neglected. In the middle panel
the density perturbation of surrounding gas lying in the orbital plane is visible. Cuts through this
plane are shown in the right hand panel. The black and blue lines in the first two plots indicate
this cuts at φ = 0◦ (black line) and φ = 90◦ (blue line),

density perturbation is shown in colours from white to orange. White is equivalent to the lowest

gas densities, and thus a negative density perturbation amplitude, and orange is equivalent to the

highest gas densities, and thus a positive density perturbation amplitude. In the circular orbit, equal

mass case, the gravitational potential of the two stars produces an outgoing spiral wave with two

symmetric arms. With these outgoing waves, angular momentum is transferred from the binary

system to the gas. This angular momentum loss ultimately leads to a shrinkage of the binary orbit.

The symmetry of the problem is also visible in the 1D plot of the density perturbation. On the

right hand side of Fig. 4.1 a 1D cut through the gas lying in the orbital plane is presented. This

plot shows the density perturbation at φ = 0◦ (black line) and φ = 90◦ (blue line). The position

of these cuts is also indicated in the two other plots by black and blue lines, respectively. The

envelope of the amplitude decays with its distance from the centre of mass as r−1, which is due to

energy conservation in a 3D sphere. Figure 4.2 and 4.3 show three similar plots, but for different

binary examples.

In Fig. 4.2 the case of unequal-masses is illustrated for the example of a mass-ratio of q = 0.5.

Here the mass-ratio q = m2/m1 is defined in such a way that the more massive star has the mass

m1 and the less massive star the mass m2. In a non-rotating reference frame, the orbital motion of

an unequal mass binaries involves an outer and an inner star (left hand panel). The more massive

star’s orbit (red) is always inside that of the less massive star (yellow). This means that the less

massive star is located closer to the surrounding gas. For binaries with unequal masses only one

outgoing wave is visible in the middle panel of Fig. 4.2. The reason is, that the perturbation of the

less massive star dominates the surrounding gas.

The inner star is more massive than the outer one, but also has a larger distance to the surround-

ing gas. In the here shown example the circumbinary gas starts at an inner radius of rin = 200 AU

and the binary system has a semi-major axis of a = 100 AU. As the system mass is Msys = 1 M⊙
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Figure 4.2: Same as Fig. 4.1. but for a binary system with a mass-ratio of q=0.5, with the outer star (yellow)
being the less massive one.

and the mass-ratio q = 0.5, the inner star has a mass of m1 = 0.66 M⊙ and an orbital radius of

r1 = 33 AU and the outer star has the properties m2 = 0.33 M⊙ and r2 = 66 AU. Since the static

terms of the gravitation potential are subtracted (see Sec. 3.3), only the quadrupole terms of the

potential remain, which are proportional to m1/2/(rin − r1/2)
3. This leads to a gravitational force

acting on the gas with F1/2 ∝ m1/2/(rin − r1/2)
4. The ratio of the resulting gravitational forces at

the inner radius is F1/F2 ≈ 0.83. The gravitational force of the outer, less massive star is stronger

than the gravitational force of the inner, more massive star. So it is the less massive star that pro-

duces the dominant spiral wave. But in fact the spiral wave seen in Fig. 4.2 is a superposition

of two equal frequency waves with a phase shift, the second wave being the much smaller con-

tribution of the more massive star. It manifests itself in the spiral wave being much broader than

the waves for equal mass binaries (Fig. 4.1). Having only one visible spiral arm results in the 1D

density perturbation waves at φ = 0◦ and φ = 90◦ being shifted by exactly 90◦. This is the case

for all unequal mass where the less massive star becomes more dominant.

The mass-ratios, where the less massive star is more dominant than the more massive can be

calculated via the quadrupole moment of the gravitational force. For an inner radius of rin = 2a

and the stellar positions being defined by r1/2 = m2/1/Msys ·a, this leads to:

1 >
F1

F2
=

m1

m2

(

rin − r2

rin − r1

)4

=
m1

m2

(

2m2 +m1

2m1 +m2

)4

=
1

q

(

2q+1

2+q

)4

. (4.1)

This equation is valid for 1 > q > 0.1. This means the density perturbation of the less massive

star is dominant for all unequal mass binaries with q > 0.1. For q ≤ 0.1 the mass of the less

massive star is so low, that both stars have an equally but very low influence on the surrounding

gas.

The next case investigated here is that of an equal mass binary on an eccentric orbit. As seen

in the unequal mass case, the distance to the gas is crucial for the resulting density perturbation.
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Figure 4.3: Same as Fig. 4.1. but for a binary system with an eccentricity of 0.2.

The eccentric case is even more complex than the case of an unequal mass binary, because the

distance between each star and the gas changes throughout the orbit. At the apastron the star has

the highest gravitational influence (Fa) on the gas, whereas the influence is lowest at the periastron

(Fp) resulting in a ratio only depending on the eccentricity

Fp

Fa

=
m1

m1

(

rin − rp

rin − ra

)4

=
2a−a · (1− e)

2a−a · (1+ e)
=

1+ e

1− e
. (4.2)

For an eccentricity of e = 0.2, the apastron influence is 1.5 times the periastron influence and for

e = 0.8 the aproastron influence is even 9 times the periastron influence.

The left panel in Fig. 4.3 shows the orbit of an equal mass binary system with an eccentricity

of e = 0.2 and a system mass of Msys = 1 M⊙. For eccentric orbits, two spiral wave arms are

induced (middle panel). The maximum of the density perturbation varies within each spiral arm.

This variation results from having double and single peaks throughout one wave (right panel). The

single peak results from the apastron passage of each star, where the influence of the other star is

lowest. A double peak is produced when both binaries have a nearly equal influence on the gas

and pass the same point of the gas shortly after each other. These double peaks result in a much

broader spiral arm than observed in the circular case.

For the three cases discussed here, a video is available under http://tinyurl.com/embedded-binary.

It shows how the stars produce a density perturbation into an initially uniform gas, finally resulting

in the density waves shown as snapshots above.

In this section only three specific examples were presented. However, the general picture re-

mains the same, if other binary and gas parameters are changed. The difference is the amplitude

and width of the density perturbation and consequently the impact on the orbital decay. These

dependencies are presented in the following.
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4.2 Evolution of binaries with circular orbits

In this section the results of the numerical simulations are compared to the analytic approximation

of Stahler (2010). His approach is only applicable to circular orbits, therefore this case is investi-

gated first. Stahler obtains a linear time depend semi-major axis aapprox(t) (see Eq. 1.19 and 1.20),

where the change ∆approx depends on the initial binary and gas properties.

aapprox(t) = a0(1−∆approx) (4.3)

∆approx =
32π

15

q

(1+q)2

ρ0

c5
s

G3M2
sys

a0
t.

In the simulations the binary evolution was followed over a time span of 1 Myr as this is the

typical duration of the gas-embedded phase in the most massive clusters in the solar neighbour-

hood (Sec. 1.3.3). Figure 4.4 shows the relative change of the semi-major axis as a function of

time (a(t)/a0) for a circular binary system. The simulations can be fitted with ∆num ∝ t9/10 (green

line), with anum(t) = a0(1−∆num). Like the analytic approximation, the time dependency of the

numerical simulations (red line) is nearly linear.

As shown later, the orbital decay is slower for shorter semi-major axis. Therefore, the decrease

of the semi-major axis during the simulation also causes the orbital decay to slow down. This

results in the time dependency of the orbital decay being only nearly linear in contrast to the linear

dependency in the analytic approximation.
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variation range default parameters

binary parameters

mass-ratio q [m1/m2] [0.01:1] qd = 1

system mass Msys [M⊙] [0.5:20] Md
sys = 1

initial semi-major axis a0 [AU] [20:150] ad
0 = 100

eccentricity e [0:1) ed = 0

gas parameters

embedded time t [Myr] [0:1] td = 1

initial gas number density ρ0 [cm−3] [107 : 1010] ρd
0 = 109

gas sound speed cs [km/s] [0.2:2.5] cd
s = 2

inner radius rin [semi-major axis] [1.5:4.5] rd
in = 2

Table 4.1: Binary and gas parameters.

The net orbital decay for circular orbits is considerably lower in the simulations than the analytic

approach predicts. This is caused by the generally higher amplitude of the density perturbation at

the inner radius rin in Stahler’s approximation (for a detailed discussion see Sec. 3.1). In contrast,

the amplitude of the density perturbation in the numerical simulations depends on the efficiency of

the wave generation, which will be discussed in the following. Thus, to put the approximation and

the numerical case side by side, one can for example reduce the gas density for the approximation

from 109 cm−3 to 5 ·105 cm−3 (blue line in Fig. 4.4).

To evaluate the influences of the different initial binary and gas properties only one of the

properties will be varied at a time and all other properties kept fixed at the value given in Tab. 4.1

as default parameters. The standard system is a circular equal mass (q = 1) binary system of

Msys = 1 M⊙ with a semi-major axis of a = 100 AU embedded for 1 Myr in a gas sphere which

starts at two semi-major axis (from the centre of mass of the binary system) with a density of

ρ = 109 cm−3 and a sound speed of cs = 2 km/s.

Binary properties

First it is investigated how the orbital decay depends on the binary properties themselves, starting

with the mass-ratio of the binary system. As discussed above, the mass-ratio between the two

stars constituting the binary determines the type of outgoing wave (Fig. 4.2). According to the

definition of the mass-ratio q = m2/m1 with m2 ≤ m1 used here, the maximum of the mass-ratio

lies at q = 1 corresponding to the equal mass case. This case is used as a standard scenario, but the

range of q ∈ [0.01 : 1] is covered in the parameter study as well. For a binary system with a system
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Figure 4.5: Relative semi-major axis after 1 Myr for different mass-ratios. The crosses depict the simulation
results and the dotted lines show a fit to these results.

mass of Msys = 1 M⊙, a mass-ratio of q = 0.01 corresponds to a primary mass of m2 = 0.99 M⊙

and a secondary mass of m2 = 0.01 M⊙. The secondary mass is even below the hydrogen burning

limit at 0.08 M⊙. On the other hand, for a system mass of Msys = 100 M⊙, such a mass-ratio

leads to m1 = 99 M⊙ and m2 = 1 M⊙. The most massive stars observed have a mass of ≈ 150 M⊙

(Sec. 1.3.1) and it is shown later, that such massive stars do not need to be considered here since

for them the effect of orbital decay is very small < 3 % after an embedded time of 1 Myr.

Figure 4.5 shows the simulation results for binary systems with different mass-ratios (crosses).

They can be fitted with ∆num ∝ q/(1+q)2 (dotted line). This is the same dependency as predicted

by the analytic approximation. The orbital decay is caused by the quadrupole moment of the

binary system’s gravitational force. For an unequal mass system, only one spiral arm is visible,

which can also nicely be seen in the 2D-plane of Fig. 4.2. There the star closest to the surrounding

gas becomes dominant, resulting in only one visible spiral arm, which is less efficient in angular

momentum transport than two spiral arms. This leads to a semi-major axis reduction of 15 % for

q = 0.8, whereas the semi-major axis of a binary system with a mass-ratio of q = 0.1 decreases

only by 5 %.

The efficiency of the angular momentum transport for the binary to the surrounding gas depends

on how efficient the density wave is generated. As we will see, this efficiency is defined by the

ratio of the orbital velocity vorbit =
√

G ·Msys/a to the sound speed cs: V= vorbit/cs.

For this ratio, one can distinguish two regimes: One where the binary velocity is higher than the

sound speed (V≥ 1) and one where the binary velocity is lower than the sound speed (V< 1). For

the standard parameters investigated here, the orbital velocity as a fraction of the sound speed is

V=
vorbit

cs

=
2.97 km/s

2 km/s
≈ 1.5. (4.4)
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The crosses depict the simulation results and the dotted lines show a fit to these results.

It is important to notice, that vorbit changes as the semi-major axis decreases, here only the initial

semi-major axis is used to calculate the orbital velocity. To reach V < 1 by changing the initial

binary properties, a larger semi-major axis has to be chosen meaning a> 220 AU for Msys = 1 M⊙.

Alternatively, the system mass can be reduced to Msys < 0.5 M⊙ for a = 100 AU. For such binary

systems, the quadrupole moment ∝ Msys/a4 is low and thus the effect of orbital decay.

The considerations above imply an isolated binary system. Including the cluster environment,

the possibility of orbital decay for such systems is even smaller, when considering the circumbi-

nary gas. Depending on the cluster density, another star is likely to interact with the circumbinary

gas, necessary for the orbital decay. Especially for high semi-major axis, another star is likely to

destroy the gas environment, which would stop the orbital decay. Furthermore, for low system

masses another star is likely to engage in three-body interactions leading to the ejection of the

star with the lowest mass, which possibly hardens the binary system but not through orbital decay.

Thus, systems with V < 1 will not be considered at all, since the orbital decay is not the major

influence for these binary systems.

For V≥ 1, the simulation results show that the coupling mechanism is most efficient, when the

sound speed is similar to the orbital velocity (see Fig. 4.6). The resulting semi-major axis after

1 Myr can be fitted using ∆num ∝ V
−0.4.

For the here used default values, a binary system with V= 4 reduces its semi-major axis by 9 %

and for an optimal wave generation mechanism (V= 1), the semi-major axis is reduced by 18 %.

Thus, the orbital decay differs by 50 %, depending on the efficiency of the angular-momentum

transport.

Next, the dependency on the system mass is investigated. The lower limit of the investigated

system masses range is 0.5 M⊙, since for Msys < 0.5 M⊙ the orbital velocity of the stars in a
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Figure 4.7: Relative semi-major axis after 1 Myr for different system masses. The crosses depict the simu-
lation results and the dotted lines show a fit to these results.

circular binary system is lower than the chosen sound speed, meaning V< 1. The orbital decay is

very small < 3 % for a system mass of 20 M⊙, which is chosen as upper limit. This is well below

the high-mass case of 100 M⊙ mentioned above.

Varying the binary system mass, the numerical simulations show a dependency of ∆num ∝ M
−1/2
sys

(see Fig. 4.7). This strongly deviates from the analytic approximation, which shows a M2
sys - depen-

dency. Nevertheless, this approximated system mass dependency seems to be not in accordance

with observations (see Sec. 2.5). The reason for this difference is that for the analytic approxima-

tion the system mass is directly transformed into the density perturbation. Therefore, the system

mass of the approximation is comparable to the amplitude of the gas density perturbation at the

inner radius. In contrast, in the numerical simulation the amplitude of the gas perturbation in-

creases sub-linear with linear increase of the system mass. However, increasing the system mass

leads to a linear increase in the angular momentum of the binary system. Thus, the sub-linear

increasing angular momentum transfer cannot remove the same percentage of angular momentum

from a high-mass binary to the gas than in the low-mass case. This reduces the effect of orbital

decay for higher system masses.

Additionally, increasing the binary system mass while keeping the semi-major axis constant,

means also increasing the orbital velocity of the binary system. As shown above, the frac-

tion V= vorbit/cs determines how efficient the angular momentum is transported from the binary

system to the gas. In the here investigated case of V≥ 1, the coupling mechanism is most efficient

for V= 1. Therefore, the orbital decay of high-mass stars is much slower than for low-mass stars,

since V increases for increasing system mass.

The semi-major axis also changes the orbital velocity vorbit =
√

G ·Msys/a. The maximum semi-

major axis, where the velocity of the standard binary system is still larger than the sound speed
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the simulation results and the dotted lines show a fit to these results.

of 2 km/s is 220 AU. This is a reasonable upper limit for the semi-major axis investigation, since

one of the widest binary system which is still surrounded by a circumbinary disc is BD+31◦7643,

a main-sequence B5 star with a projected separation of 200 AU (Kalas & Jewitt, 1997). At a

semi-major axis of 20 AU, the semi-major axis loss is lower than 5%, using the default values for

all other initial binary and gas parameters. Therefore, the semi-major axis of this parameter study

was chosen to be in the range of 20−220 AU, with a default value of 100 AU.

In Stahlers analytic approximation, the change of the semi-major axis (second term Eq. 4.3)

depends as ∆approx ∝ a−1
0 on the initial semi-major axis. Again, including the effect of wave

generation, the simulation results in Fig. 4.8 show in contrast a linear dependency on the initial

semi-major axis ∆num ∝ a0. This results directly from the angular momentum transport being less

efficient for lower orbital velocities and thus high semi-major axis. The initial semi-major axis has

a huge influence on the final semi-major axis, since the resulting orbital decay changes from 30%

for a0 = 200 AU to 10% for a0 = 50 AU.

Gas properties

The simulation results are not only influenced by the initial binary parameters, but also depend

on the properties of the gas environment (lower part of Tab. 4.1). In an embedded cluster, the gas

density depends on the type of cluster (e.g. loose or compact cluster see Sec. 1.3.3) and the location

of the binary within the cluster, with the highest gas density located at the centre of the cluster.

In addition, the gas mass decreases with time as stars form and the gas becomes expelled due to

radiation pressure of high-mass stars and/or supernova explosions. In star forming infrared dark

clouds a gas density of 107 cm−3 is observed (Padmanabhan, 2001). Simulations predict densities

of up to 1010 cm−3 around protostars directly after their formation (Machida & Matsumoto, 2011),
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which coincides with observations of high-mass star formation sites where Indriolo et al. (2013)

observed a density of > 5 ·109cm−3. Taking these values as a guideline here, the simulations were

performed with the gas number density ranging from 107cm−3 up to 1010cm−3.

A higher gas density speeds up the orbital decay in both, the analytic approximation and nu-

merical simulation (see Fig. 4.9). The simulation results confirm the linear dependency on the

gas density found in the analytic approximation for densities ≤ 109cm−3. However, for densities

> 109cm−3, the simulations show ∆num ∝ ρ3/4 (see Fig. 4.9). The difference between the linear

and non-linear behaviour starts when the semi-major axis is reduced by more than 20%. There, the

changes of orbital velocity of the star becomes dominant, reducing the efficiency of the angular

momentum transport and thus the final semi-major axis.

Since the observations of the gas density around high-mass protostars and simulation suggests,

that the density is mass dependent, this should be included when calculating a the orbital decay

of a specific binary system. Unfortunately, so far neither observational nor theoretical work can

describe the dependency of the surrounding gas density on the binary system mass.

Another physical property which influences the efficiency of the angular momentum transport

is the sound speed of the gas. It depends on the equation of state of the gas, its temperature

and composition. A representative model for regions of low-mass star formation would be a low

temperature (10 K) H2 gas that can be treated as ideal gas. In this case the sound speed would be

low with cs ≈ 0.2 km/s. On the other hand, in high-mass starless cores sound speeds from 1 km/s

to 2.5 km/s were observed (Sridharan et al., 2005). Therefore, this parameter study covers the

range of 0.2−2.5 km/s,

As seen before, the ratio of orbital velocity to sound speed V = vbinary/cs plays a crucial role,

when determining the efficiency of the coupling between the binary system and the surrounding
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gas. For constant initial binary parameters, changing the sound speed is equivalent to changing

V. Thus, the numerical results can be fitted using ∆num ∝ V
−0.4 ∝ c0.4

s (see Fig. 4.10). In contrast,

the analytic approximation shows a much stronger dependency with ∆approx ∝ c5
s . The reason is,

that for the sound speed the approximation and the numerical case cannot be compared, since

the dependency in the numerical simulations is determined by the wave generation, which was

neglected in the analytic approximation. Like for the ratio V, the difference in orbital decay

between a low and high sound speed can be ≈ 50%.

So far, the physical parameters of the gas have been discussed. The geometry of the gas sphere is

defined by the inner radius rin where the circumbinary gas starts. At first glance it seems to be just a

numerical choice, but it actually represents the extend of the physical area of the low-mass density

region surrounding the binary. As seen in Sec. 4.1, the outgoing density waves strongly depend

on the distance between the stars of the binary system and the innermost gas cell. Simulations

by Shi et al. (2012) of a stage where the gas sphere surrounding the binary system has formed a

disc, show an average inner radius of two semi-major axis (see also Sec. 1.5.3). Therefore, two

semi-major axis was used as a default parameter. Here, also smaller values of the inner radius

(1.5 semi-major axis) were tested and the entire range up to a semi-major axis loss lower than 1%

was covered, which corresponds to 4.5 semi-major axis.

Naturally the inner radius does not appear in a far field approximation, since there the wave

generation itself is not included. Throughout the simulation the inner radius is fixed at the chosen

multiple of the semi-major axis rin ∈ [1.5a : 4.5a]. This is achieved by decreasing the inner radius

as the binary orbit decays. The simulation results in Fig. 4.11 can be fitted using ∆num ∝ r−4
in . This

coincides with the force of the binaries quadrupole momentum acting on this inner radius F ∝ r−4

(see Sec. 4.1), which induces the density waves responsible for the orbital decay. Physically, the
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faster orbital decay for a smaller inner radius represents the increase of the gravitational force for

shorter distances between the star and the gas and thus a better coupling mechanism. The inner

gas radius is, beside the gas density itself, the property which influences the outcome of the orbital

decay most. In the here shown case, the orbital decay varies from only 1% for an inner radius of

4.5 semi-major axis to 50% for 1.5 semi-major axis. Thus it is vital to get a better observational

picture of those star forming regions to obtain a realistic parameter range.

4.3 Fit and Latin Hypercube Sampling

In the last section, the dependence of the orbital decay on the initial binary and gas properties was

determined. Table 4.2 summarises the change ∆ of the semi-major axis for Stahler’s approximation

aapprox = a0(1−∆approx) and the fit to the numerical simulations anum = a0(1−∆num).

In summary, the dependence of the orbital decay onto the duration of the embedded phase,

gas density and binary mass-ratio are similar to the predictions of the analytic approximation.

However, the dependence on semi-major axis, system mass, sound speed, and inner radius differ

from that in the approximation. This is caused by their influence on the efficiency of the wave

generation, which was neglected in the analytic approximation. As pointed out in Sec. 2.5, for the

system-mass this was already expected, given that the mass dependency of analytic approximation

is not in accordance with the observations.

In Stahler’s approximation, the independence of the binary and gas properties is assumed. Ob-

servations suggest, that this is actually not the case and several possible dependencies will be

discussed later. Nevertheless, to retrieve a fit-formula it is also assume that all variables are inde-
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∆approx ∆num

analytic approach fit to numerical simulation

binary parameters

mass-ratio C2 ·
q

(1+q)2
Cq = 0.6 ·

q

(1+q)2

system mass C3 ·M
2
sys Cq ·

(

Md
sys

Msys

)1/2

semi-major axis C4/a0 Cq ·
a0

ad
0

gas parameters

time C1 · t Cq ·
( t

td

)9/10

gas density C5 ·ρ Cq ·

(

ρ0

ρd
0

)3/4

gas sound speed C6/c5
s Cq ·

(

cs

cd
s

)0.4

inner radius - Cq

(

rd
in

rin

)4

Table 4.2: Change ∆ of the semi-major axis for the fit to the numerical simulations anum = a0(1−∆num)
and the analytic approximation aapprox = a0(1−∆approx). Xd denotes the default values from
Tab. 4.1, all Cis are constants and Cq = 0.6 ·q/(1+q)2.

pendent and combine for example the rin-term (rd
in/rin)

5 with the fit of

a(q, t) = a0

(

1−0.6 ·
q

(1+q)2
·
( t

td

)9/10
)

,

which results in

a(q, t,rin) = a0

(

1−0.6 ·
q

(1+q)2
·

(

rd
in

rin

)5

·
( t

td

)9/10
)

.

In the same manner, the terms of ρ0, cs, Msys, and a0 are included, leading to

a(t,rin,ρ0,cs,a0,e,q,Msys) = a0(1−∆num) (4.5)

∆num = 0.6 ·
q

(1+q)2

(

cs

cd
s

)0.4(
rd

in

rin

)4(
a0

ad
0

)(

ρ

ρd

)3/4
(

Md
sys

Msys

)1/2
( t

td

)9/10
.

As discussed above, this formula is only valid for a binary system with an orbital velocity greater

than the sound speed of the gas (V≥ 1).
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Figure 4.12: Choosing variables from a 2D sample. Left panel: Testing the variability of one parameter /

Middle panel: Latin Hypercube sampling / Right panel: Orthogonal Latin Hypercube sampling

In Sec. 4.2 this fit was only tested for the default case with one parameter varied at a time. In a

2D example, this means fixing ’property 1’ while changing ’property 2’ (see left panel Fig. 4.12).

Testing the whole 6-dimensional parameter space is extensive. Thus, a mathematical tool called

orthogonal Latin Hypercube Sampling was used to verify the fit (Hoare et al., 2008). With this

method a set of parameters can be calculated, which represent this 6-dimensional parameter space

and reduces the number of necessary simulations to N = 2 · (ninput + nout put) = 14, since here

six input parameters a0,Msys,q,ρ,rin and cs and one output parameter aare tested. In the middle

panel of Fig. 4.12 an example of a Latin Hypercube Sampling to retrieve an optimal coverage of

a 2D parameter space is shown. The here used orthogonal Latin Hypercube Sampling ensures

additionally, that from every sub-bin of the parameter space, indicated by thick lines in the right

panel of Fig. 4.12, one parameter set is chosen.

Here the ’Sampling and sensitivity analyses tools’ (SaSAT) of Hoare et al. (2008) was used

to calculate an orthogonal Latin Hypercube Sample, which ensures that the ensemble of random

numbers is a good representative of the real variability. As an input the ranges for each parameter

(see Tab. 4.1) are used to calculate 14 independent parameter sets. These parameter sets were

simulated using the hydrodynamic simulations and the resulting semi-major axis was compared

to the semi-major axis calculated with the fit formula above. Tab. A.1 in the appendix shows the

parameter combinations, simulation results, fit results and the difference between the semi-major

axis loss due to orbital decay in the simulations and fit formula. Since these parameters represent

an orthogonal Latin Hypercube in 6 dimensions, the resulting differences between the fit formula

and simulation can be used to determine an error for the fit formula. The maximum difference

between the semi-major axis loss in the simulation and the fit was 3%. This means that an error

of 3% can be assumed for the combined fit formula (for the accuracy of the simulation itself see

Sec. 3.4).

As mentioned above, some binary and gas properties are not independent from each other,

which has been neglected here and also in the analytic approach. The surrounding gas density

might depend on two parameters ρ(Msys,rcluster):
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• The density surrounding a star or stellar system seems to correlate with the mass of this

system Msys, since around high-mass protostars a higher gas density as at low-mass star

formation sites was observed (Indriolo et al., 2013).

• The mean gas density of a cluster depends on the radius of the cluster rcluster. High mass

stars, which need a high density, might not form in the outskirts of clusters. In contrast, low-

mass stars might as well form in the inner cluster region as in the outskirts and therefore may

be surrounded by dense or sparse gas.

Here an ideal gas was assumed, which simplifies the equation of state to ρ = p/(Rs ·T ), where T

is the temperature of the gas, p the pressure and Rs the gas constant. For the parameter study above

T and p are set indirectly via gas density and sound speed c2
s = ∂ p/∂ρ . However, the temperature

of the gas also depends on the binary system mass, since the higher the mass of a star the higher its

luminosity and thus the heating of the gas environment. Therefore, knowing the system mass and

position of a binary system in a cluster could define the gas properties via a chosen equation of

state. If such a law were available, this would restrict the parameter study above. In this case, the

last free gas parameter would be the inner radius. Observations and simulations which determine

this inner radius are only for a few specific binaries available so far and even if a dependency of

the inner radius on the mass-ratio, system mass, and eccentricity is suggested, rin(q,Msys,e), no

general rule is given so far (see Sec. 1.5.3). Thus, with further observations and theoretical work,

the gas parameters could be determined only by the binary and cluster properties.

Additionally, all of these parameters depend on the semi-major axis, which changes throughout

the simulation. If the reduction of the semi-major axis is large enough, this change actually dom-

inates the evolution. This was shown for densities > 109 cm−3, where the density dependence of

the orbital decay becomes non-linear resulting from a semi-major axis reduction of ≥ 20%.

4.4 Evolution of binaries on eccentric orbits

The analytic approximation is so far limited to binary systems on circular orbits. However, obser-

vations show that binaries on eccentric orbits are much more common. The observed eccentricity

distribution of f (e) = 2e (see Sec. 1.4) leads to 96% of a typical binary cluster population having

eccentricities larger than e = 0.2. Therefore, if one wants to know the relevance of the orbital

decay in a binary population of a star forming cluster, the extension to eccentric orbits is crucial.

Therefore, the temporal development of the orbit for binaries with eccentricities in the range of

e ∈ [0,1) was simulated.

In Sec. 4.4, it was demonstrated that the orbital decay depends strongly on the inner radius,

where the circumbinary gas starts. For eccentric orbits, the distance between the star’s position
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Figure 4.13: (a) Sketch of binary orbits with different eccentricities and their position in reference to the

inner gas boundary rin.

(b) Density perturbation resulting from binary systems with orbits of different eccentricities.

and the inner radius varies strongly with time and with it the gravitational force acting on the gas

(see Eq. 4.2).

Figure 4.13a shows three different binary orbits and their relation to the inner radius, assuming

rin = 2a. The minimal distance between the apocentre of the stellar orbits and the inner radius

depends on the eccentricity. For the circular case this minimal distance is 1.5a, whereas for an

eccentricity of 0.2 the distance reduces to 1.4a and even further to 1.05a for an eccentricity of 0.9.

Here it is neglected, that the inner radius might also depend on the eccentricity (see Sec. 1.5.3),

since no underlying dependency was found so far. Additionally, the radiation pressure of the stars

could influence the inner radius, which would have an even higher impact for binary systems with

highly eccentric orbits.

The distance between the apastron of the stellar orbit and the inner radius determines the am-

plitude of the density perturbation Δρ = ρ(t)− ρ0. Figure 4.13b shows the resulting density

perturbation within the circumbinary gas for different eccentricities. The maximum amplitude of

the density perturbation exceeds the background density ρ0 = 109cm−3 for all binary systems with

e ≥ 0.2. Following this simulations, these high density perturbations lead to a physically incor-

rect treatment in the hydrodynamic simulation. Therefore, to investigate high eccentricities, but

ensure the validity limit of the simulation code, all simulations are performed with an inner radius

larger than the default value of two semi-major axis. A larger inner radius reduces the amplitude

of the density perturbation and the resulting semi-major axis change, which is proportional to the

inner radius with Δnum ∝ r−4
in . Thus, with a larger inner radius, the effect of eccentric orbits can be

investigated.
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For the same semi-major axis, the higher amplitudes of the outgoing waves in binaries with

higher eccentricities lead to a stronger orbital decay than circular binaries experience. Figure 4.14a

shows the dependency of the orbital decay on the eccentricities for different inner radii.

To exclude the case, where the perturbation exceeds the background density, for an inner radius

of 2.5 semi-major axis only eccentricities e ≤ 0.4 were simulated. For larger inner radii the whole

eccentricity range was investigated. The dependency of the orbital decay on the eccentricity can

be approximated by

a(e) = a(ed = 0, t) ·

(

1− (1.8 · r−1.5
in −0.2) · e ·

( t

td

)9/10
)

, (4.6)

where a(ed = 0, t) is the semi-major axis after a simulation time t of a circular binary for which all

other binary and gas parameters are the same. Using this formula, a system with an inner radius

of two semi-major axis and an eccentricity of e = 0.7 would experience an semi-major axis loss

of 40% due to orbital decay (light blue line Fig. 4.14a).

Assuming again, that the variables are independent, the combined fit formula for circular bi-

naries (Eq. 4.5) can be inserted as a(ed = 0) in the fit formula for the eccentricity (Eq. 4.6)

leading to

a(t,rin,ρ0,cs,a0,e,q,Msys,e) = a0(1−∆num)(1−∆ecc
num) (4.7)

∆ecc
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Thus, the eccentricity is included as a correction factor. To test this fit, a 7-dimensional orthogonal

Latin Hypercube Sampling was performed (see Sec. 4.3), yielding to an error of . 6%. In Tab. A.2

in the appendix all initial and calculated properties and resulting errors are shown.

Now it is possible to compare the semi-major axis decay with time for different eccentricities.

Figure 4.14b shows the simulation results and fits of an orbital decay for e = 0, e = 0.5 and e = 0.9

and an inner radius of rin = 3a. The differences between the circular and the eccentric case result

from the closer minimum separation between the innermost gas cell and the outermost point of the

orbit. Thus, even if a binary system with a circular orbit shows only a 2% orbital decay, the orbit

of a binary system with an eccentricity of 0.9 decays by 15%.

4.5 Summary

In this chapter the numerical code developed for this thesis was used to simulate the orbital evolu-

tion of a binary system embedded in gas for an extensive parameter space.

• Qualitatively, the changes of the binary parameters are directly visible in the shape of the

resulting outgoing density wave in the surrounding gas. There, it can be seen that for a bi-

nary system with unequal masses only one spiral arm is visible, because one star dominates

the binary - gas interaction. Since, the gravitational force of the density, which acts on the

stars, results in the observed orbital decay. Thus, these unequal mass systems with only one

visible spiral arm show a slower orbital decay.

• Quantitatively, the effect of this density wave onto the semi-major axis of the binary system

was investigated in an extensive parameter study for different gas and binary properties.

The results were fitted and compared to the analytic approximation by Stahler (2010). It

was shown that the approximation overestimates the effect of orbital decay by neglecting

the wave generation process itself. Including the wave generation process in the simulations

leads to a slower orbital decay for circular binary systems.

• The efficiency of the wave generation itself depends on the fraction of V= vorbit/cs, with

the orbital velocity of the binary system vorbit =
√

G ·Msys/a. Thus, for all properties which

are involved in the wave generation, the semi-major axis development shows different de-

pendencies as predicted by the approximation.

• The semi-major axis is changing throughout the simulation. Therefore, a separation from

the other properties is not possible. This causes the properties which are not involved in the

wave generation (t, q, ρ) to show similar dependencies as the analytic approximation.
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• By simulating the wave generation itself, the inner radius rin where the circumbinary gas

starts was introduced. The resulting orbital decay depends crucially on this inner radius

∝ r−4
in . Thus, observations of this radius are vital to improve the simulations.

• In contrast to the analytic approximation, the numerical simulations can be extended to

eccentric orbits. The investigation of eccentric orbits showed, that the orbital decay is faster

for binary systems with higher eccentricities than for circular ones. This results from the

apastron of the binary orbit being closer to the circumbinary gas for high eccentricities than

for low ones. Therefore the resulting forces between binary system and gas are stronger.

• All binary and gas properties were combined into a fit formula Testing this fit formula using

an orthogonal Latin Hypercube Sampling, an error of . 6% was calculated.

The here retrieved fit formula of the numerical simulation improves the analytic approxima-

tion by Stahler (2010), since now the wave generation and eccentric orbits are included. In the

next chapter it will be investigated how a whole binary population is influenced by the orbital

decay calculated via this fit formula. The results will be compared to Chap. 2, where the analytic

approximation was applied to a binary population.
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population in a typical cluster

In Chap. 4 the temporal evolution of single binary systems was investigated. Since most stars form

in a cluster environment, the obtained results are now applied to a binary population typical for a

cluster. This means that the fit formula for the orbital decay
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which was retrieved from the numerical simulations is used to calculate the effect of orbital de-

cay for an entire binary population. The temporal development of the period distribution of this

binary population is monitored and the period distribution obtained after 1 Myr is compared to

observations of the field binary population.

Additionally, the differences of these results to Chap. 2 are discussed, where the analytic ap-

proximation by Stahler (2010)

aapprox(t) = a0(1−∆approx)

∆approx =
32π
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s
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was used to calculate the period distribution change of a binary population. To ease comparison,

an ONC-like cluster was modelled and the same binary population as in Chap. 2 was used. The

binary development was investigated for a cluster evolution time of 1 Myr. After this, the cluster

is assumed to disperse the gas and therefor the gas-induced orbital decay stops.

In Chap. 2 all binary systems were assumed to be on circular orbits, since the analytic ap-

proximation is only valid for circular orbits. Therefore, in a first step, the fit formula is applied

to a binary population with only circular orbits. Secondly, the fit formula is applied to a binary

population with an eccentricity distribution and the differences between both results are discussed.
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5.1 Method

First the properties of the modelled cluster are defined. Equivalent to Chap. 2 the stellar density

distribution of the ONC-like cluster was chosen to be nearly isothermal (see Eq. 2.1) and include

mass segregation. The velocity and gravitational interactions of the stars are not considered here.

As demonstrated in Chap. 2 the here neglected dynamical effects like binary destruction act on

long-period binaries (> 105 days). Therefore, the orbital decay was investigated only for binaries

with periods ≤ 105 days.

In order for the gas-induced orbital decay to work, a binary system has to be surrounded by gas.

Even during the first Myr, where the cluster is still embedded in gas, other stars might remove it.

This can happen if the gravitational force of another nearby star is more dominant than the sur-

rounding gas or the radiation pressure of the other star destroys the circumbinary gas environment.

To consider this in the investigation, the here calculated orbital decay takes only place if other stars

have a minimum mean distance to a binary system. This distance was estimated by having a larger

mean distance between the stars than the sum of the inner radius rin and at least ten wavelengths

λgas of the resulting acoustic wave in the gas

R ≈ ρ
−1/3
star > rin +10λgas = rin +10πcs ·

√

4 ·π2

G ·Msys

a3.

Here the mean distance is calculated via the stellar number density ρstar, and the wavelength in the

gas can be derived from λgas = cs ·Tbinary/2 (see Sec. 3.4.2) and the Kepler equation (see Eq. 1.4).

This means that for high-mass systems the mean distance at which the orbital decay still takes

place can be much smaller than for low-mass systems. In the case of rin = 2a and a solar-mass star

with a semi-major axis of 100 AU, the mean distance between a binary system and any other star

or system has to be larger than 2310 AU. For an ONC-like cluster a smaller mean distance is only

reached in the dense inner cluster region, inside a radius of 0.02 pc from the cluster centre. There,

the highest gas density can be found, but gravitational force or radiation pressure of the other stars

are more dominant. Since in this sphere of 0.02 pc only a few stellar systems are enclosed, most

binary systems of the here modelled binary population fulfil the minimum-distance criterion and

will be processed by orbital decay.

For the gas properties, the observations are not conclusive so far. In contrast to Chap. 2 where

the mean cluster gas density was modelled with an isothermal density distribution with a maximum

density of 105 cm−3 and a constant sound speed of 0.49 km/s, here the standard scenario of Chap. 4

is used, since observations have shown, that the gas surrounding a just formed star is much denser

and the sound speed higher. Therefore, the binary systems are for 1 Myr embedded in a gas

density of 109 cm−3 with a sound speed of 2 km/s. The inner radius of a binary system, where the

circumbinary gas starts, was chosen to be two semi-major axis.
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In reality the density (and sound speed) varies throughout the cluster, with the highest density

in the cluster centre. Thus, the observed mean density results from a highly varying local density,

with stars being formed at the densest cores of these turbulent medium. So far it is unknown, how

the density and sound speed of these cores might depend on the system mass of the binary system.

Assuming the relatively high density of 109cm−3 gives a good upper limit, since around high-mass

stars densities of > 5 ·109 cm−3 were observed (Indriolo et al., 2013).

For the binary population, the initial distribution of the binary properties have to be cho-

sen. Like in Chap. 2, the semi-major axis is initially log-uniform fa(a) ∝ dN/da ∝ a−1 where

a ∈ [0.02AU,10000AU] and the mass-ratio distribution follows fq(q) ∝ q0.4 with

q = m2/m1 ∈ [0,1]. The system mass distribution of the binary population is sampled from the

stellar IMF given by Eq. 1.14 with Msys ∈ [0.08M⊙,50M⊙].

The fit formula is limited to binary systems with V= vorbit/cs ≥ 1, since the orbital decay does

not act on binary systems with V < 1 (see Sec. 4.2). Therefore, only binary systems which fulfil

V ≥ 1 were processed by the orbital decay. For example for the solar-mass case, this restriction

excludes all binary systems with a semi-major axis a > 220 AU, which corresponds to periods

T > 106 days.

In contrast to the analytic approximation, which is only valid for circular orbits, the fit formula

includes also binary systems with eccentric orbits. For comparison the fit formula is applied to

a binary population with only circular orbits. Additionally, a more realistic thermal eccentricity

distribution f (e) = 2e is used (see Sec. 1.4) and compared to the results with binary systems on

circular orbits.

In summary, the fit formula for the orbital decay is applied to all binary systems with periods

lower than 105 days, a higher orbital velocity than the surrounding sound speed V ≥ 1 and an

environment with a mean stellar distance R > rin +10λ .

5.2 Results

The period distribution processed by the orbital decay is calculated for binary systems with M-dwarf

primaries (0.1 M⊙ < m1 < 0.5 M⊙), G-star primaries (0.7 M⊙ < m1 < 1.3 M⊙), B-star primaries

(1.5 M⊙ < m1 < 5.0 M⊙), and O-star primaries (m1 > 16 M⊙), to compare the period distributions

to observations (see Sec. 1.2) and the results of Chap. 2.

Since in Chap. 2 all binary orbits were assumed to be circular, the fit formula was first applied

to such a binary population with only circular orbits. The resulting binary population for binary

systems with solar-mass primaries is shown as a dark blue line in Fig. 5.1. This period distribu-

tions results from an initially log-uniform period distribution, which is shown as a green line. The

resulting period distribution with only circular orbits is also log-uniform. It can be seen that this

binary population is not processed by the orbital decay, since initial and final period distribution



76 5 Consequences of orbital decay for a binary population in a typical cluster

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

10−2 10−1 100 101 102 103 104 105

N
b

period distribution [days]

observations
initial

only circular orbits
eccentricity distribution

approximation

Figure 5.1: Observed period distributions for binaries with solar-mass primaries (red line) and effect of the
orbital decay on an initially log-uniform distribution (green line) for binary population with only
circular orbits (dark blue line) and with an eccentricity distribution of f (e) = 2e (magenta line).
For comparison the result of Chap. 2 is included (light blue line).

coincide.

The magenta line in Fig. 5.1 shows the resulting binary period distribution of a more realistic

binary population with a thermal eccentricity distribution (Ambartsumian, 1937). This period dis-

tribution results from the same initial log-uniform period distribution processed by orbital decay,

which was calculated via the fit formula retrieved in Chap. 4, differs significantly from the initial

distribution. The difference between binary systems with circular orbits and binaries with highly

eccentric orbits was already visible in Fig. 4.14b, where the orbital decay for systems with high

eccentricities is much faster.

The results of Chap. 2 (light blue line), where the orbital decay was calculated via the analytic

approximation by Stahler (2010), differ significantly from the initial log-uniform period distribu-

tion (green line), even if there all binaries were assumed to be on circular orbits. The reason for

this is that the neglected wave generation process in the approximation overestimates the orbital

decay.

Comparing the processed binary population with a thermal eccentricity distribution (magenta

line) to the field observations of main-sequence stars by Raghavan et al. (2010) (red line), more

binary systems are left for periods lower than 103 days in the calculation than expected. This

results from the dependency of the orbital decay on the semi-major axis, where the orbital decay

slows down as the semi-major axis decreases until no further orbital decay takes place. In contrast,

in the analytic approximation the orbital decay speeds up for a decreasing semi-major axis. This

leads to the conclusion, that the results of the approximation in Chap. 2 might have shown only by
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Figure 5.2: As in Fig. 5.1, but for the primary mass range of 0.1M⊙ < m1 < 0.5M⊙.

chance a similar dependency than the observations.

To merge more binary systems with periods lower than 103 days the embedded time span would

have to be longer, but this would also reduce the number of binary systems with periods between

103 and 105 days and thus not coincide with observations. Another possibility to merge more

binary systems would be a higher gas density, but since here already a density of 109 cm−3 was

used and densities > 5 ·109 cm−3 are only observed around high-mass protostars (Indriolo et al.,

2013), a higher density is not likely. Thus, the question arises if the initial period distribution is

log-uniform on the short period side or if other processes alter the period distribution further.

In Sec. 2.5 we saw that a binary population processed by the analytic approximation is less

capable of reproducing the period distributions, which were observed for main-sequence M-dwarf

primaries (0.1 M⊙ < m1 < 0.5 M⊙), B-star primaries (1.5 M⊙ < m1 < 5.0 M⊙) and O-star pri-

maries (m1 > 16 M⊙).

Figure 5.2 shows the binary population with M-dwarf primaries (0.1 M⊙ < m1 < 0.5 M⊙).

The period distribution resulting from the binary population with only circular orbits remains again

log-uniform (dark blue line). The initially log-uniform period distribution (green line) is processed

by the orbital decay calculated via the fit formula for 1 Myr resulting in a shift towards lower

periods and merging binary systems for the population with a thermal eccentricity distribution

(magenta line). Neither the fit formula (magenta line) nor the analytic approximation (light blue

line) processes the initially log-uniform period distribution in such a way to represent the fit to the

observational data (red line) of Fischer & Marcy (1992).

In contrast to the analytic approximation, the period distribution resulting from the applica-

tion of the fit formula shows less binaries for periods > 102 days and more binaries for periods
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Figure 5.3: As in Fig. 5.1, but for the primary mass range of 1.5M⊙ < m1 < 5.0M⊙.

< 102 days, which can be explained by comparing both equations. With decreasing semi-major

axis, the orbit decays speeds up in the approximation (Eq. 4.3) and slows down in the fit for-

mula (Eq. 4.7). Thus in the approximation, the short-period binary systems are more likely to

be destroyed. For the period distribution resulting from the fit formula, a longer embedded time

span or a higher gas density would lead to less binaries for periods > 102 days, but even more

binary systems with periods > 102 days would be destroyed which means that the observed period

distribution cannot be reproduced by changing these gas properties.

For binary systems with B-star primaries (1.5 M⊙ < m1 < 5.0 M⊙) the final period distri-

bution of a binary population with only circular orbits remains log-uniform (dark blue line) after

applying the fit formula. Using the same binary population, all binary systems with periods < 102

days were destroyed when applying the approximation (light blue line in Fig. 5.3). This contra-

dicts the spectroscopic observations of (Carquillat & Prieur, 2007), who found binary systems in

this period and mass range. However, after the application of the fit formula to a population with a

thermal eccentricity distribution, considerable less binary systems than in the approximation have

merged (magenta line). Thus, the mass dependency of the fit formula seems to reflect the obser-

vations better than the analytic approximation. Considering that for the fit formula the speed of

orbital decay slows down with decreasing semi-major axis, even a lower gas density or a longer

embedded time would not lead to a period distribution with a peak at the short period end.

The same is true for binary systems with O-star primaries m1 > 16 M⊙. There no binaries

merge when applying the fit formula to a binary population on circular orbits (dark blue line) and

nearly all binary systems merged when applying the analytic approach (light blue line in Fig. 5.4),

which contradicts the observed overabundance of very-short period binary systems (red line).
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Figure 5.4: As in Fig. 5.1, but for the primary mass of m1 > 16M⊙.

After the application of the fit formula to a binary population with a thermal eccentricity dis-

tribution, more short-period binary systems remain (magenta line) than in the approximation, but

the fit to the observations cannot be reproduced.

On the one hand, radiation pressure of high-mass stars removes the gas faster than low-mass

stars, resulting in these binaries being exposed shorter (< 1 Myr) to the effect of orbital decay and

only a few high-mass binary systems with circumbinary discs were observed so far (e.g. Sánchez-

Monge et al., 2013). This indicates a fast destruction of a disc and expulsion of other circumbinary

gas, resulting in a less effective orbital decay. On the other hand, the gas surrounding high-mass

protostars might be even denser (> 5 · 109 cm−3 Indriolo et al., 2013) which would lead to a

more effective orbital decay. It remains unknown which of these processes is dominant during the

high-mass stellar evolution.

Summarising, these applications of the fit formula onto a whole binary population show that

including the wave generation changes the resulting period distribution significantly. For the pop-

ulations with binary systems assumed to be on circular orbits the period distribution remains log-

uniform, which emphasises the importance to consider eccentric orbits. In the case of a thermal

eccentricity distribution, especially the system mass and semi-major axis dependency seems to

reflect the observations much better than the analytic approach. Nevertheless, for all mass-ranges

the question remains if the initial period distribution is indeed log-uniform and if other processes

influence short period binaries.

As mentioned in Chap. 2, an ONC-like cluster is only one representation of a cluster. Therefore,

the results cannot represent the entire field binary population, which develops at least from two

cluster types (see Sec. 1.3.3), ONC-like clusters and clusters with a much higher stellar density



80 5 Consequences of orbital decay for a binary population in a typical cluster

throughout their evolution. Thus, the results presented here are only one example of how the

orbital decay influences a typical binary population. Additionally, only the short period sides of

the distributions are shown here. Thus, it is not possible to normalise these distributions.

The comparison of the results to the observational fits have to be considered with caution, since

some of these observations have huge errors themselves (for a detailed discussion see Sec. 2.5).

Thus, further observations of very young binary populations are necessary for a better comparison

and to improve the simulations.



6 Discussion

The investigation of a complex system via numerical simulations, is restricted by the computa-

tional resources, the quality of observations needed for the modelled properties and the available

theoretical models. This applies to some extent, when discussing the assumptions made in this

thesis. These assumptions can be divided into those of the binary system simulations performed

in Chap. 3 and 4 and those of applying the effect to a whole binary population in Chap. 2 and

5. For both investigations the restrictions imposed by the observations, theoretical models and

computational resources are summarised in Tab. 6.1

First, the possible influences of the assumptions for the binary system simulations in Chap. 3

and 4 will be discussed. Ideally, simulations of the here investigated gas-induced orbital decay of a

binary system should include also the formation process. This would lead to a better model of the

gas surrounding the binary system. However, additional to the huge computational effort, which

would restrict the number of cases which can be simulated in a reasonable time, the setup of the

initial gas cloud would also introduce a new set of parameters to the investigation. Furthermore,

the formation of binary systems is still an open question (see Sec. 1.3.2) and the effort to introduce

a more self-consistent treatment would only lead to a larger parameter space. Given the fact that

the binary formation process itself is unknown, one has to rely on observations and theoretical

models of the earliest phases of binaries for the initial conditions and restrictions applied here.

Due to restricted computational resources the effects which take place inside the inner gas ra-

dius, were excluded in the here presented simulations. This results in a setup with no gas inside

this inner radius and a uniform, non-rotating surrounding gas density outside this radius. The stars

are treated as point masses and the monopole moment of the binary potential is subtracted from

the total binary potential, because this monopole moment is usually counteracted by a gas density

distribution and rotating of the surrounding gas. The consequences of these initial conditions and

the resulting influences on the gas-induced orbital decay are the following:

Since the area next to the stars was not modelled here, accretion from a protostellar disk or even

from the circumbinary disk was excluded. Here only the final system mass and mass-ratio was

used to simulate the orbital decay. To include the accretion process, the simulation would start

with a lower system mass and reach the final mass during the binary simulation.

Including accretion and internal processes during the protostellar phase would change the stellar

radius during the binary evolution (see Fig. 1.7). For short period binary systems, this could
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binary system cluster

no gas inside inner radius long periods not considered

initial uniform surrounding density only stellar density and binary properties

conditions star as point masses only one cluster type

excluding monopole moment

accretion

excluded radius evolution stellar velocity

evolution mass transfer & merger processes three-body interactions

processes tidal interactions (circularisation) changing gas environment

magnetic fields radiation pressure

Table 6.1: Restrictions for the binary simulations and the cluster calculation.

influence the time at which the mass transfer between the stars starts. These processes would only

be important if the merger process were modelled in detail. However, the merger process itself

is complex. Depending on the age of each stellar component, the chemical processes during the

merger differ and thus influence the outcomes of a binary merger (e.g. Glebbeek et al., 2013).

Tidal effects, like circularisation in binaries with very short periods, are not included here, since

the stars are treated as point masses. The circularisation itself would slow down the orbital decay,

but is only effective for periods . 8 days, which corresponds to a semi-major axis of 0.08 AU in

the solar-mass case. Since the in Chap. 4 presented simulations show that the orbital decay can be

neglected for such small semi-major axis, the circularisation would not influence the simulation

results presented in this thesis. However, it needs to be investigated if this is still the case when

including accretion and the changes of the protostellar radius.

Flows within the gas and even through the gap might also influence the gas-induced orbital

decay. Artymowicz & Lubow (1996) found, that a binary system might accrete gas from a cir-

cumbinary disc, without closing the low density region between circumbinary and circumstellar

disc. Overall, the circumbinary disc was found to reduce the semi-major axis and increase the

eccentricity of the binary system, but they presented only a few case studies (Artymowicz et al.,

1991). Additionally, their low-resolution simulations follow the binary orbits only for 70 periods,

which corresponds to ≈ 70.000 years. Therefore, these simulations already suggest the effect

described in this thesis, but only for a very limited set of parameters.

Artymowicz & Lubow (1996) used a rotating gas profile with a surface density of Σ(r) ∝ r−1.

By contrast, here a non-rotating 3D gas sphere with a uniform gas distribution was used. The effi-

ciency of the angular momentum transport might differ for these two environments. The presented

results show that, for the gas, the efficiency depends only on the sound speed of the gas, but having
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a rotating disc would introduce a new set of properties.

Here, magnetic fields have not been included. However, in MHD simulations of T Tauri stars

by Shi et al. (2012), the same geometry of circumstellar discs, gap, and circumbinary disc was

found as in the HD T Tauri simulations used as basis for the here presented binary simulation (see

Sec. 3.1). Additionally, they found that, at least for the examples considered in their study, the

angular momentum gained through accretion and the angular momentum loss due to the torques

is nearly balanced. Since the gain of mass through accretion would slow down the orbital decay,

these effects should be included in a further study.

Now looking at a whole cluster population as investigated in Chap. 2 and 5, a self consistent

formation and evolution of such a cluster cannot be simulated with current knowledge and com-

putational resources. Thus, for the cluster itself only the stellar density distribution and the binary

properties are given in Chap. 5. This means that the velocity of the stars inside the cluster and

the resulting three-body interactions and gas dynamic are neglected. Binary systems with periods

> 105 days are not considered, since these are mostly influenced by the three-body interactions.

Additionally, the presented ONC-like cluster is an example for one type of clusters. Thus, the

cluster results can only be considered as a first step in understanding how the gas-induced orbital

decay would influence a whole binary population.

The orbital decay ends when the gas is expelled from the cluster due to radiation pressure or

even supernova explosions. On short time-scales (< 1 Myr), the radiation pressure of a binary

system could also influence its inner radius where the circumbinary gas starts, which is a crucial

parameter when determine the effect of orbital decay. Additionally, the radiation pressure might

also influences the gas environment of nearby binary systems and thus their orbital decay. For

nearby binary systems and even the radiating star itself, it is not clear how the gas inside the inner

radius interacts with this radiation. Thus, so far the radiation pressure cannot be calculated for

the circumbinary gas. For future investigations, a detailed study of the processes inside the inner

radius would be vital to improve the orbital decay simulations.

Even the time evolution for the gas distribution of a cluster is unknown. Parmentier & Pfalzner

(2013) developed a model calculating the mean gas density evolution in an ONC-like cluster, but

this does not include the local gas density surrounding a binary system. At first, the local density

might be much higher than the mean density, since the binary system has just formed from this gas.

Later, the local density could be even lower than the mean density, when dispersed by radiation

pressure. The first would increase the orbital decay whereas the latter decreases the orbital decay.

Comparing the period distribution resulting from the orbital decay with observations of a field

binary population shows, that the above discussed restrictions have a huge impact. Additionally,

the log-uniform period distribution is questionable, since only a few protostellar binary systems

were observed in this stage so far. Furthermore, since the interaction with other stars is neglected,
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it is also neglected how the orbital decay might influence the cluster dynamic. Thus, the here

applied cluster model is only a first approach.



7 Summary and conclusion

In this thesis, the influences of the surrounding gas on a young binary system was investigated.

This included detailed numerical studies of isolated binary systems and investigations of the con-

sequences for a whole population of binaries as typically found in young clusters.

The effect of the gas on the binary is angular momentum loss due to the excitation of acoustic

waves in the surrounding gas, leading to a decay of the orbit. First, the analytic approximation

of Stahler (2010) was applied to a binary population, assuming an initially log-uniform period

distribution (Chap. 2). In this approximation all binaries were assumed to be on circular orbits. The

results were combined with the destruction of long-period binaries due to three-body interactions,

known from cluster simulations by Kaczmarek et al. (2011). The combined binary population

reproduces the period distribution observed for main-sequence solar-mass stars very well, but fails

to match observations of other mass ranges.

The main shortcoming of the analytic approximation, besides not being valid for circular orbit,

is that the wave generation itself is not calculated. Therefore, in a second investigation a self-

consistent hydrodynamic code was developed to overcome these restrictions (Chap. 3). This code

was used to simulate the evolution of the binary orbit (Chap. 4). It was shown, that the initial

binary properties affect the shape of the resulting outgoing density waves in the surrounding gas,

which influence the efficiency of the angular momentum transport. The effect of these density

waves onto the semi-major axis of the binary system was investigated for different gas and binary

properties. The resulting dependencies of the gas-induced orbital decay were combined into a fit

formula (Eq. 4.7).

This fit formula was tested using an orthogonal Latin Hypercube sample, leading to an error of

. 6%. The orthogonal Latin Hypercube method provides a parameter set with optimal coverage

of this huge parameter space, with simulations of only 16 different parameter sets to test the fit

formula.

It was shown, that the efficiency of the wave generation itself depends on the fraction of

V= vorbit/cs, with vorbit =
√

G ·Msys/a being the orbital velocity of the binary system. Since

the wave generation was neglected by the analytic approximation, all properties which are in-

volved in the wave generation show a different scaling as predicted by the approximation (a, Msys,

cs) or were not necessary to calculate for the approximation (rin). As a consequence, neglecting

the wave generation leads to overestimating the orbital decay in the analytic approach. However,
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an investigation of eccentric orbits showed, that the orbital decay is faster for binary systems with

higher eccentricities than their circular counterparts.

The influence of the eccentricity is also visible when applying the fit formula to a whole binary

population in a young star cluster (see Chap. 5). There, binary populations with only circular orbits

show no visible difference between the initial and final period distribution. In contrast, the final

period distribution of binary populations with an eccentricity distribution differ significantly from

the initial distribution. However, also this period distribution processed by the orbital decay does

not reproduce the observations of field binary populations. This is due to three different reasons.

The here modelled ONC-like cluster is only one example for stellar clusters which will resolve

into the field population and therefore cannot represent the whole field population. Furthermore,

the modelling of the cluster neglects the stellar dynamic and the used initial properties of the

modelled binary population. Especially the initial period distribution needs to be substantiated by

observations of more binary systems covering all mass ranges. Finally, more detailed observations

of protostellar binary populations are needed to improve the simulation of the gas-induced orbital

decay.

In summary, the here developed numerical simulation can be used to model the gas-induced

orbital decay. The application to a binary population of a young star cluster shows, that this effect

cannot be neglected when investigating the gas embedded phase of a young cluster. There, most

stars are part of a binary or higher order system, but so far only the stellar interactions leading to

the destruction of long period binaries via three body encounters were investigated.

When including the gas-induced orbital decay, the final period distribution changes signifi-

cantly. Binary systems with periods < 105 days are shifted towards lower periods and even merge.

So far the formation of more massive stars via merger was only considered for stellar densities

≥ 106 stars pc−3 (Bonnell & Bate, 2005), which is rather unlikely for most clusters. For example,

in an ONC-like cluster the stellar density reaches only ≈ 7 · 104 stars pc−3 in the cluster centre.

Thus, binary systems processed by the gas-induced orbital decay are more likely to merge.

The binary properties also influence the star which might result from a merger. The merger of

binary systems is believed to result in so called fast rotators, since the external angular momentum

might be converted into internal angular momentum. Additionally, it might be observable if a star

results from the merger during the embedded phase where the merging stars are still young or later

when the stars are already on the main sequence. The resulting merger product should be nitrogen-

rich if the merger happens on the main sequence and nitrogen-normal otherwise (Glebbeek et al.,

2013).

Observations of the field population showed, that the number of binaries with high-mass pri-

maries (m1 > 16 M⊙) increases with decreasing period. The orbital decay is a possible mechanism

to shift longer periods toward shorter once. However, in the here applied cluster environment more
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binary systems with short periods and high-mass primaries are merged than shifted towards these

short periods. The radiation pressure could prohibit these binary systems from merging, since

such massive stars might remove the surrounding gas in < 1 Myr due to their radiation pressure.

For example, for a binary system with a system mass of 20 M⊙ a period of 1.4 · 104 days and an

eccentricity of 0.7, in a surrounding gas density of 5 ·109 cm−3 and a sound speed of 2 km/s, the

gas-induced orbital decay would still reduce the period by 26% even when considering that the

embedded phase might be only 0.5 Myr.

Investigations of other effects between the binary systems and the surrounding gas would be

vital for a future study. It is especially interesting to consider how a binary system and the cluster

environment influences the inner gas radius via radiation pressure, accretion and gas dynamics or

the surrounding gas density and sound speed. The here presented model of the gas-induced orbital

decay can then be used to interpret this future observations.
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A Tables

A.1 Latin hypercube parameters for circular orbits

rin ρ cs a(0Myr) q Msys asim(1Myr) acalc(1Myr) Error [ loss %]

3.24 9.21E+009 0.69 41.49 0.73 15.60 41.34 41.37 -0.08

2.92 7.18E+009 1.32 83.78 0.34 5.39 81.05 82.43 -1.65

4.46 1.20E+009 1.03 44.97 0.62 0.10 44.44 44.96 -1.15

3.10 9.72E+009 1.52 63.00 0.22 3.59 61.59 62.22 -1.00

3.44 2.02E+009 2.13 87.81 0.09 1.78 87.49 87.54 -0.06

4.29 9.14E+008 0.93 55.30 0.46 6.86 54.76 55.28 -0.94

3.57 6.78E+009 1.82 91.49 0.99 2.70 90.10 90.09 0.01

2.64 4.49E+009 1.79 64.81 0.41 14.01 63.20 64.22 -1.57

2.05 2.64E+009 1.42 58.58 0.12 8.72 56.40 57.91 -2.57

3.86 8.34E+009 0.56 51.19 0.55 1.47 49.93 50.88 -1.85

4.05 7.58E+009 2.42 94.30 0.95 10.77 93.59 93.94 -0.37

3.75 5.94E+009 2.01 81.05 0.28 13.46 80.71 80.88 -0.21

1.66 1.48E+008 1.19 73.97 0.02 8.98 73.44 73.90 -0.62

2.29 1.55E+009 0.49 72.11 0.86 14.56 71.96 71.64 0.44

2.83 3.01E+009 1.67 52.12 0.67 7.91 50.99 51.78 -1.52

Table A.1: Parameter selection for an orthogonal latin hypercube (column 1-7). Simulated (column 8) and
calculated (column 9) semi-major axis and resulting differences between the semi-major axis
loss of both (column 10).

.



A.2 Latin hypercube parameters for eccentric orbits

rin ρ cs a(0Myr) e q Msys asim(1Myr) acalc(1Myr) Error

3.74 8.72E+09 2.49 77.35 0.79 0.52 6.91 68.77 73.45 -6.05

3.96 8.44E+09 0.63 68.34 0.53 0.13 4.38 64.87 67.11 -3.28

3.28 7.27E+08 1.39 88.70 0.66 0.70 8.37 87.80 82.43 6.05

1.96 9.01E+09 2.16 47.69 0.11 0.27 4.99 39.21 41.25 -4.21

2.23 5.38E+09 0.69 95.56 0.01 0.92 13.60 89.58 92.13 -2.67

2.87 1.33E+09 1.26 84.52 0.19 0.81 9.93 83.32 81.30 2.39

2.83 7.50E+09 1.47 71.27 0.49 0.37 1.30 56.49 60.49 -5.61

1.77 5.65E+09 2.15 54.99 0.05 0.16 15.02 51.75 51.45 0.54

3.56 9.67E+09 1.62 99.99 0.46 0.08 5.89 92.27 96.32 -4.05

3.08 6.98E+09 0.97 79.98 0.40 0.06 3.31 77.26 75.27 2.48

4.43 6.10E+09 1.79 44.85 0.42 0.41 11.06 42.96 44.91 -4.33

2.51 4.21E+09 1.01 55.59 0.13 0.73 12.39 53.68 53.10 1.06

2.56 4.26E+08 2.34 64.57 0.30 0.59 7.34 63.70 59.60 6.34

4.30 2.24E+09 1.98 41.96 0.73 0.99 11.96 41.92 41.86 0.14

4.19 1.60E+09 1.20 62.41 0.21 0.86 0.45 62.04 61.67 0.59

2.28 4.99E+09 0.35 49.29 0.60 0.50 2.95 V< 1 V< 1 0

Table A.2: Parameter selection for an orthogonal latin hypercube (column 1-6). Simulated (column 7) and
calculated (column 8) semi-major axis and resulting differences between the semi-major axis
loss of both (column 9).
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Numerical simulation of gas-induced orbital decay  
of binary systems in young clusters

Christina Korntreff

Most stars are not single but part of a binary or multiple system. These binary systems form from 
the gas and dust in molecular clouds usually building clusters that are initially embedded in the 
star-forming gas. Hence, the question arises whether the properties and frequency of binary stars 
change during this gas-embedded phase.

Until today, the interaction between binary systems and surrounding gas has been neglected. In 
this interaction, the binary system potential torques the nearby gas, producing an outgoing acous-
tic wave. This wave transports angular momentum from the binary system to the gas, resulting in 
a decay of the binary orbit.

In my thesis I investigated how a binary population in a typical young cluster is affected by this 
gas-induced orbital decay.  When observing a forming star cluster, the developed method can be 
used to deduce the impact of the gas-induced orbital decay on its binary population.

This publication was written at the Jülich Supercomputing Centre (JSC) which is an integral part 
of the Institute for Advanced Simulation (IAS). The IAS combines the Jülich simulation sciences 
and the supercomputer facility in one organizational unit. It includes those parts of the scientific 
institutes at Forschungszentrum Jülich which use simulation on supercomputers as their main 
research methodology.
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