000155631 001__ 155631
000155631 005__ 20240619092122.0
000155631 0247_ $$2doi$$a10.1021/jp502580a
000155631 0247_ $$2ISSN$$a1520-6106
000155631 0247_ $$2ISSN$$a1520-5207
000155631 0247_ $$2ISSN$$a1089-5647
000155631 0247_ $$2WOS$$aWOS:000339540600038
000155631 037__ $$aFZJ-2014-04689
000155631 082__ $$a530
000155631 1001_ $$0P:(DE-HGF)0$$aSchmiele, Martin$$b0
000155631 245__ $$aMesoscopic Structures of Triglyceride Nanosuspensions Studied by Small-Angle X-ray and Neutron Scattering and Computer Simulations
000155631 260__ $$aWashington, DC$$bSoc.$$c2014
000155631 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1427973241_14753
000155631 3367_ $$2DataCite$$aOutput Types/Journal article
000155631 3367_ $$00$$2EndNote$$aJournal Article
000155631 3367_ $$2BibTeX$$aARTICLE
000155631 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000155631 3367_ $$2DRIVER$$aarticle
000155631 520__ $$aAqueous suspensions of platelet-like shaped tripalmitin nanocrystals are studied here at high tripalmitin concentrations (10 wt % tripalmitin) for the first time by a combination of small-angle X-ray and neutron scattering (SAXS and SANS). The suspensions are stabilized by different lecithins, namely, DLPC, DOPC, and the lecithin blend S100. At such high concentrations the platelets start to self-assemble in stacks, which causes interference maxima at low Q-values in the SAXS and SANS patterns, respectively. It is found that the stack-related interference maxima are more pronounced for the suspension stabilized with DOPC and in particular DLPC, compared to suspensions stabilized by S100. By use of the X-ray and neutron powder pattern simulation analysis (XNPPSA), the SAXS and SANS patterns of the native tripalmitin suspensions could only be reproduced simultaneously when assuming the presence of both isolated nanocrystals and stacks of nanocrystals of different size in the simulation model of the dispersions. By a fit of the simulated SAXS and SANS patterns to the experimental data, a distribution of the stack sizes and their volume fractions is determined. The volume fraction of stacklike platelet assemblies is found to rise from 70% for S100-stabilized suspensions to almost 100% for the DLPC-stabilized suspensions. The distribution of the platelet thicknesses could be determined with molecular resolution from a combined analysis of the SAXS and SANS patterns of the corresponding diluted tripalmitin (3 wt %) suspensions. In accordance with microcalorimetric data, it could be concluded that the platelets in the suspensions stabilized with DOPC, and in particular DLPC, are significantly thinner than those stabilized with S100. The DLPC-stabilized suspensions exhibit a significantly narrower platelet thickness distribution compared to DOPC- and S100-stabilized suspensions. The smaller thicknesses for the DLPC- and DOPC-stabilized platelets explain their higher tendency to self-assemble in stacks. The finding that the nanoparticles of the suspension stabilized by the saturated lecithin DLPC crystallize in the stable β-tripalmitin modification with its characteristic platelet-like shape is surprising and can be explained by the fact that the main phase transformation temperature for DLPC is, as for unsaturated lecithins like DOPC and S100, well below the crystallization temperature of the supercooled tripalmitin emulsion droplets.
000155631 536__ $$0G:(DE-HGF)POF2-451$$a451 - Soft Matter Composites (POF2-451)$$cPOF2-451$$fPOF II$$x0
000155631 536__ $$0G:(DE-HGF)POF2-54G24$$a54G - JCNS (POF2-54G24)$$cPOF2-54G24$$fPOF II$$x1
000155631 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000155631 65027 $$0V:(DE-MLZ)SciArea-210$$2V:(DE-HGF)$$aSoft Condensed Matter$$x1
000155631 65027 $$0V:(DE-MLZ)SciArea-110$$2V:(DE-HGF)$$aChemistry$$x0
000155631 65017 $$0V:(DE-MLZ)GC-1602-2016$$2V:(DE-HGF)$$aPolymers, Soft Nano Particles and Proteins$$x2
000155631 65017 $$0V:(DE-MLZ)GC-150-1$$2V:(DE-HGF)$$aKey Technologies$$x1
000155631 65017 $$0V:(DE-MLZ)GC-130$$2V:(DE-HGF)$$aLife Science and Health$$x0
000155631 693__ $$0EXP:(DE-MLZ)KWS2-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)KWS2-20140101$$6EXP:(DE-MLZ)NL3ao-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eKWS-2: Small angle scattering diffractometer$$fNL3ao$$x0
000155631 7001_ $$0P:(DE-HGF)0$$aSchindler, Torben$$b1
000155631 7001_ $$0P:(DE-HGF)0$$aWestermann, Martin$$b2
000155631 7001_ $$0P:(DE-HGF)0$$aSteiniger, Frank$$b3
000155631 7001_ $$0P:(DE-Juel1)130905$$aRadulescu, Aurel$$b4$$ufzj
000155631 7001_ $$0P:(DE-HGF)0$$aKriele, Armin$$b5
000155631 7001_ $$0P:(DE-HGF)0$$aGilles, Ralph$$b6
000155631 7001_ $$0P:(DE-HGF)0$$aUnruh, Tobias$$b7$$eCorresponding Author
000155631 773__ $$0PERI:(DE-600)2006039-7$$a10.1021/jp502580a$$gVol. 118, no. 29, p. 8808 - 8818$$n29$$p8808 - 8818$$tThe @journal of physical chemistry <Washington, DC> / B$$v118$$x1520-5207$$y2014
000155631 8564_ $$uhttps://juser.fz-juelich.de/record/155631/files/FZJ-2014-04689.pdf$$yRestricted
000155631 909CO $$ooai:juser.fz-juelich.de:155631$$pVDB$$pVDB:MLZ
000155631 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130905$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000155631 9132_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000155631 9132_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x1
000155631 9131_ $$0G:(DE-HGF)POF2-451$$1G:(DE-HGF)POF2-450$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lBioSoft$$vSoft Matter Composites$$x0
000155631 9131_ $$0G:(DE-HGF)POF2-54G24$$1G:(DE-HGF)POF2-540$$2G:(DE-HGF)POF2-500$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bStruktur der Materie$$lForschung mit Photonen, Neutronen, Ionen$$vJCNS$$x1
000155631 9141_ $$y2014
000155631 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000155631 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000155631 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000155631 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000155631 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000155631 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000155631 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000155631 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000155631 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000155631 915__ $$0StatID:(DE-HGF)1020$$2StatID$$aDBCoverage$$bCurrent Contents - Social and Behavioral Sciences
000155631 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kNeutronenstreuung ; JCNS-1$$lNeutronenstreuung $$x0
000155631 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS (München) ; Jülich Centre for Neutron Science JCNS (München) ; JCNS-FRM-II$$lJCNS-FRM-II$$x1
000155631 9201_ $$0I:(DE-Juel1)ICS-1-20110106$$kICS-1$$lNeutronenstreuung $$x2
000155631 980__ $$ajournal
000155631 980__ $$aVDB
000155631 980__ $$aI:(DE-Juel1)JCNS-1-20110106
000155631 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000155631 980__ $$aI:(DE-Juel1)ICS-1-20110106
000155631 980__ $$aUNRESTRICTED
000155631 981__ $$aI:(DE-Juel1)IBI-8-20200312
000155631 981__ $$aI:(DE-Juel1)JCNS-1-20110106
000155631 981__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000155631 981__ $$aI:(DE-Juel1)ICS-1-20110106