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The center-of-mass dynamics of star polymers in dilute solution is analyzed by hybrid mesoscale
simulations. The fluid is modeled by the multiparticle collision dynamics approach, a particle-based
hydrodynamic simulation technique, which is combined with molecular dynamics simulations for the
polymers. Star polymers of various functionalities are considered. We determine the center-of-mass
velocity correlation functions, the corresponding mean square displacements, and diffusion coef-
ficients. The velocity correlation functions exhibit a functionality-dependent and structure-specific
intermediate time regime, with a slow decay. It is followed by the long-time tail 732, which is solely
determined by the fluid. Infinite-system-size diffusion coefficients are determined from the veloc-
ity correlation function by a combination of simulation and analytical results, as well as from the
center-of-mass mean square displacement for various systems sizes and extrapolation. In terms of
the hydrodynamic radius, the star polymer hydrodynamic diffusion coefficient exhibits the same uni-
versal system-size dependence as a spherical colloid. The functionality dependence of the ratio of
hydrodynamic radii and the radii of gyration agrees well with experimental predictions. © 2014 AIP
Publishing LLC. [http://dx.doi.org/10.1063/1.4893766]

Il. INTRODUCTION

The fundamental relevance of fluid-mediated interac-
tions for the dynamics of polymers dissolved in a fluid
is well established.'”> Experiments on synthetic®'* and bi-
ological flexible and semiflexible polymers,'!2° analytical
theory,' ™ 1%21-31 and computer simulations*>™#° corroborate
the presence and significance of hydrodynamic interactions.
Moreover, recent combined experimental, theoretical, and
simulation studies of a trapped colloidal particle in solution
reveal the effect of hydrodynamic fluctuations and correla-
tions on the colloid dynamics.*’” Fluid “memory” leads to
colored, non-white, thermal fluctuating forces,*’ i.e., hydro-
dynamic self-interactions lead to a self-awareness of the col-
loidal particle.*

Typically, linear polymers and their long-time and large-
scale dynamics are considered. In comparison, little attention
has been paid to their short-time behavior, where fluid fluc-
tuations are important.*®47-4%50 Moreover, the impact of hy-
drodynamic fluctuations on the dynamics of more complex
polymer architectures such as star polymers has not been ad-
dressed at all.

To gain insight into the fluid-mediated interactions in star
polymers, we perform mesoscale hydrodynamic simulations
by combining the multiparticle collision dynamics (MPC)
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approach®! for the fluid with molecular dynamics simulations
(MD) for polymers.®>3* MPC is a particle-based simulation
technique which incorporates thermal fluctuations, provides
hydrodynamic correlations, and is easily coupled with other
simulation techniques such as molecular dynamics simula-
tions for embedded particles.*®3!-53 It has successfully been
applied to study equilibrium and non-equilibrium dynamical
properties of linear*!-43:46:52-57 and star polymers.’%%2

In this article, we present results of the center-of-mass
dynamics of star polymers for various arm numbers (func-
tionalities). We determine the center-of-mass velocity auto-
correlation function (VACF), which reflects fluid fluctuations.
The correlation function exhibits a star-polymer-specific
time regime for short times, which depends on the arm
number, and crosses over to a universal, fluid-determined
long-time tail with the power-law dependence =2, as ob-
served for linear polymers.*®4%0 The simulation results are
well described by an analytical expression derived from
the Landau-Lifshitz Navier-Stokes fluctuating hydrodynamic
equations*® for small arm numbers. For larger functionali-
ties, additional effects lead to a faster decay of the corre-
lation function in the polymer-specific time range. Exploit-
ing the asymptotic behavior of the analytical solution, we
determine the infinite-system-size diffusion coefficient, at
least for small functionalities. In addition, the center-of-mass
mean square displacement is analyzed. Simulations for vari-
ous system sizes are performed to obtain the asymptotic dif-
fusion coefficient and the hydrodynamic radius. The diffusion

© 2014 AIP Publishing LLC
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coefficient decreases significantly with increasing functional-
ity. Thereby, the hydrodynamic radius increases faster with
functionality than the radius of gyration, in agreement with
experiments.®’

The paper is organized as follows. In Sec. II, the MPC
method is described, the star polymer model is introduced,
and the implemented parameters are summarized. The theo-
retical background is outlined in Sec. III, and a theoretical
model is presented. Section IV presents results on the velocity
correlation function and diffusive dynamics of star polymers,
and Sec. V summarizes our findings.

Il. MODEL
A. Multiparticle collision dynamics

In the MPC method, the fluid is described by N, point
particles of mass m, with continuous values of the positions
r; and velocities v; (i = 1, ..., N;). Their dynamics proceeds
in two steps—the streaming and collision steps.’!=>? In the
streaming step, the fluid particles move ballistically with their
respective velocities, and their positions are updated accord-
Ing to

r;(t+h)=r;(t)+ hv,(1), (1

where A is denoted as collision time. In the collision step, the
particles are sorted into cubic cells of linear dimension a. Par-
ticles within a cell interact with each other by a stochastic
process. Here, we apply the stochastic rotation dynamics ap-
proach (SRD),>'5%6* where the relative velocities of the par-
ticles, with respect to the center-of-mass velocity of the cell,
are rotated around a randomly oriented axis by an angle «.
The orientation of the axis is chosen independently for every
cell and in every step. The particle velocities are then given
by

v,(t +h) =v,,0)+ R()(v,(#) — v, (1)), 2)

where

N
1 ¢

Vem = ﬁ Z vj (3)
c ,]:1

is the center-of-mass velocity of the cell of particle 7, and N,
is the number of the fluid particles in the cell. R denotes the
rotation operator.®® In this process mass, energy, and momen-
tum are conserved, which ensures the buildup of correlations
between particles and gives rise to hydrodynamic interactions.
The partition of space in collision cells implies a violation of
Galilean invariance;* it can be restored by performing a ran-
dom shift of the collision grid at every step.®*

B. Star polymer

A star polymer is comprised of f flexible polymer arms,
each with N,, monomers of mass M, which are attached to
a common center by one of their ends. For illustration, a
simulation snapshot is displayed in Fig. 1. The polymers
are modeled as linear bead-spring chains, where consecutive
monomers are connected by a harmonic potential according
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FIG. 1. Simulation snapshot of a star polymer with f = 20 polymer arms
of N,, = 30 monomers each at equilibrium. For better visibility, the various
arms are colored differently.

to
N, 1

K
vV, = ?b D (R, — R =17 )
k=1

R, denotes the position of particle k, and [ is the bond
length. Excluded-volume interactions between non-bonded
monomers are accounted for by the shifted, truncated, and re-
pulsive Lennard-Jones (LJ) potential

(ORI R N

for monomer distances R < (’/Ecr, and V; ; = 0 otherwise.
The symbol k; denotes Boltzmann’s constant, 7 is the tem-
perature, and o characterizes the diameter of a monomer. To
avoid a strong monomer overlap in the star center, the bond
length /. and o, for the central particle are set to twice the
values of the other monomers.

The dynamics of the monomers is described by Newton’s
equations of motion, which we solve by the velocity Verlet
algorithm.6-67

The coupling of the fluid with a star polymer can be real-
ized by various means. A very efficient way is to include the
monomers in the collision step.*'-3>% Hence, in cells with
monomers, the center-of-mass velocity is given by

N, N
Z mv,(t) + Z MV, (1)
1 k=1

v, (1) = =

mN, + MN" ’ ©)
where N is the number of monomers within the considered
cell. The velocity V, of monomer k after a collision follows
according to Eq. (2).

In order to maintain a constant temperature, a local
Maxwellian thermostat—the Maxwell-Boltzmann scaling
method (MBS)—is applied at every collision step and cell.®’



084901-3 Singh et al.

C. Parameters

The transport properties of the MPC fluid are determined
by the collision time A, the rotation angle «, and the mean
number of fluid particles per collision cell (N,).>>3%37 By tun-
ing these parameters, we attain a fluid with a high Schmidt

number and a low Reynolds number Re. The choice (N,)

=10, « = 130°, and h/,/maz/(kBT) = 0.1, yields the fluid
viscosity n = 8.7,/mkzT/a* and the Schmidt number Sc
= 17, which ensures that momentum transport dominates
over mass transport.”? Note, the equation of state of the MPC
fluid is that of an ideal gas, thus, the velocity of sound is
¢ = /kgT/m.

For a polymer, we use the parameters M = 10m, the bond
length l/a = 1, and «;, = 103k, T/2. The Lennard-Jones pa-
rameter o is set to o/l = 0.8. The time step of the velocity
Verlet algorithm is 4/20. Stars with f = 5, 10, 20, 40, and 50
arms are considered with N,, = 30 monomers. In addition,
stars with short polymer arms of length N,, = 10 and func-
tionality f = 50 are studied for comparison.

A cubic simulation box is adopted and three-dimensional
periodic boundary conditions are applied. The box lengths L/a
= 30, 50, 70, 90, 110, and 140 are considered. This corre-
sponds to the maximum number of fluid particles Ny = 2.7
x 107. In all cases, a single star polymer is considered to
avoid effects due to inter-star-polymer interactions. At least
50 independent simulation runs of approximately 10° colli-
sions are performed for every setup to arrive at a satisfactory
statistical accuracy.

For an efficient simulation, we exploit a Graphics
Processing Unit (GPU) version of our MPC algorithm.%
Thereby, the fluid dynamics is treated by a GPU and the equa-
tions of motion for the star polymers are integrated on a Cen-
tral Processing Unit (CPU). This yields a significant perfor-
mance enhancement compared to a single CPU code. For a
system of size L/a = 140 and 10® MPC steps, the total run
time is on the order of two days on a single GPU.

Ill. THEORETICAL CONSIDERATIONS
A. Diffusion coefficient

The diffusion coefficient D of a molecule follows as in-
tegral over the center-of-mass velocity correlation function
(V) -V, (0)) according to

D= l/OO(ch(f)' V.. (0))dt, @)
3Jo

with the center-of-mass velocity V., (¢). Equivalently, in the
asymptotic limit t — oo, D follows from the corresponding
Einstein relation for the mean square displacement

(R, () = R,,(0)%) = 6Dt ®)

of the polymer center-of-mass R, (¢).°70

As is well known, hydrodynamic interactions are of long-
range character and velocity correlations exhibit a long-time
tail.>#%71-7% As a consequence, the diffusion coefficient de-
pends on the systems size for periodic systems,>%3%3680.81
due to the suppression of long-wavelength hydrodynamic
modes.”

J. Chem. Phys. 141, 084901 (2014)

For a periodic system, the finite-system-size self-
diffusion coefficient D, of a spherical particle of radius R,
in a periodic system can be written as

4w R?
- - ) ) ©)

D, =D kT 2.837
L= 6rnL \ 3L2

up to third order in the simulation box size L~'.8%83 The
asymptotic diffusion coefficient D itself is related to the hy-
drodynamic radius R, via
_ kgT
~ 6mnRy,

(10)

for no-slip boundary conditions on the sphere surface.

At large distance, we expect the flow field around a star
polymer to be similar to that around a spherical particle,
as also assumed for a linear polymer in Ref. 83. Therefore,
Eq. (9) should also apply to our star-polymer system.

The diffusion coefficient of a polymer structure
is determined by local friction, i.e., diffusion of the
monomers themselves, and intramolecular hydrodynamic
interactions.!8:19-27.34.36.41.46 Hence for a star polymer, we
set

D, = ——Lt— 4+ Dl (11)

where D! is the self-diffusion coefficient of a single monomer
and D is determined by hydrodynamic interactions between
the various monomers. Both terms are affected by periodic
boundary conditions.

For a monomer of mass M = 10m and the time step
h//ma?/(kyT) = 0.1, simulations yield the diffusion coef-
ficient D/\/kzTa*/m = 0.02, which implies the hydrody-
namic radius rp/a = 0.3. Since the hydrodynamic radius r,
of a monomer is much smaller than the system size, r,/L
< 1072 for all considered systems, we can neglect finite
system-size corrections for the monomer diffusion. More-
over, the total number of monomers is much larger than
unity, fN,, + 1 > 150, thus, the finite-size correction for the
monomer diffusion coefficient is much smaller than that due
to intramolecular hydrodynamic interactions. Therefore, we
consider

i =D, — (12)
fN, +1
in the following, and determine a star-polymer hydrodynamic
radius according to

kpT k,T 47 R?
pi=_"b__ _ ‘s (2.837——” H>, (13)
6nnRy,  6mnL 3L2

from which we obtain the infinite-system-size diffusion coef-
ficient D" = k,T/(67nRy).

B. Velocity autocorrelation function

The velocity autocorrelation function of a star polymer is
governed by intramolecular polymer-polymer interactions as
well as the conformational properties of individual arms. To
arrive at an analytical expression for the VACF, we adopt a
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fluctuating hydrodynamics approach, which provides excel-
lent agreement with MPC simulation data for polymers in
dilute solution.*® Thereby, the fluid is considered as a con-
tinuum and is described by the linearized Landau-Lifshitz
Navier-Stokes equations. Under the assumption of no-slip
boundary conditions, the center-of-mass velocity of the star
polymer is approximated by

N
ch(t) = NLZI)R(R”[), (14)
m =1

where vR(R,, 1) is the random fluid velocity due to thermal
fluctuations at the position R; of monomer i and time ¢. The
correlation function of the random velocity within the lin-
earized Landau-Lifshitz Navier-Stokes equations is

(Veu@® -V, (0))

1 kg

_ 1 kT T L
=y Xk:S(k)[ZQ (k,t)+ Q"(k, )] (15)

m

for a finite periodic simulation box, with the wave-vector
components kﬂ = Znnﬂ/L, ng € Z, B € {x,y, z}, and k
# 0.4679 § denotes the structure factor of a star polymer

S(k) = Ni Z(el’"'<’f-’j>>, (16)
m l,]

and the terms Q7 and QF are the hydrodynamic functions of
the transversal and longitudinal hydrodynamic modes, which
are explicitly given in the Appendix.*®’? The structure fac-
tor (16) captures the star polymer aspects, whereas the hydro-
dynamic functions are solely determined by the fluid prop-
erties. This approach applies above a minimum length scale
only, since the continuum solution of the Navier-Stokes equa-
tions is used, which does not apply to the MPC fluid on length
scales below the cell size a.” Moreover, star polymer inertia
effects are neglected. Hence, the theoretical approach applies
above a certain time scale only.

In Ref. 46, we derived analytical expressions for the
VACEF of individual phantom and self-avoiding polymers. As
an important result, we found a polymer-specific power-law
time regime for R;/c <t K Ré/ W, where the velocity cor-
relation function decays as (R%) ™"/ (ur)'/?)=3/2 Here, R
is the radius of gyration, ¢ the velocity of sound, p the kine-
matic viscosity of the fluid, and v the polymer scaling expo-
nent; v = 1/2 and v & 3/5 for phantom and self-avoiding poly-
mers, respectively. R;/c corresponds to the time for sound to
traverse the size of the polymer, and Ré /1 is the time for
hydrodynamic vorticity propagation over the same distance.
For times ¢ > R%/u, the VACF exhibits the long-time tail
(ut)~32, which is determined by the fluid only.

IV. RESULTS
A. Center-of-mass velocity correlation function

Figure 2 displays normalized star-polymer center-of-
mass velocity correlation functions,
m
—— (Ve -V, (0)), a7

C @)=
o) kgT

J. Chem. Phys. 141, 084901 (2014)
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FIG. 2. Center-of-mass velocity autocorrelation functions of star polymers
for the arm length N, = 30 and the box size L/a = 140. (a) Long time be-
havior for the functionalities f = 5, 10, 20, and 50 (top to bottom). (b) Short
time behavior with f = 5, 10, 20, and 50 (bottom to top). The black lines are
calculated using the theoretical expression (15).

for various functionalities. We observe a clear dependence
on functionality, where the correlation function decreases in
magnitude with increasing f. In agreement with the equipar-
tition theorem, we find C,(0) = 3/[10(f N,, + 1)]. As shown
in Fig. 2(b) for C,(¢)/C,(0), the correlation functions for the
various functionalities decay in the same way during the first
collision step.*! This decay is determined by the average num-
ber of monomers in a collision cell, which is equal for all con-
sidered f. Only afterwards hydrodynamic correlations build
up, which leads to a splitting of the correlation functions with
stronger correlations for the higher functional star polymers.
The minimum at 7 & 10y/ma?/(kzT) reflects backtrack-
ing effects due to sound propagation of the compressible MPC
fluid.”®3* Thereby, the effect becomes more pronounced with
increasing arm number. Moreover, sound is responsible for
the oscillations of the correlation functions for ¢+ 2> Lic
(Fig. 2(a)). The periodic boundary conditions imply a reoc-
currence of fluid sound waves after traversing the simulation
box. Figure 3 illustrates the system-size dependence of the
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FIG. 3. Center-of-mass velocity autocorrelation functions of a star polymer
with f'= 10 arms of length N, = 30 for the system sizes L/a = 50 (bottom)
and L/a = 140 (top). The solid lines (black) are calculated using the theoret-
ical expression (15).

correlation function. For L/a = 50, the oscillations set in at
earlier times than for L/a = 140, the variations are more pro-
nounced, and C, assumes negative values. Moreover, the cor-
relation function for L/a = 50 shows the exponential decay
in the asymptotic limit of long times.”® Evidently, the finite
system size affects the correlation function even at rather
short times. Only for systems larger than L/a ~ 100, we
find a system-size independent correlation for 7 /\/ma?/(kz T)
< 80. This suggests that a minimum system size is required
to achieve an accurate correlation function and ultimately a
suitable diffusion coefficient.

The results of the analytical expression (15), with the re-
spective star-polymer structure factors of Ref. 61, are also
shown in Figs. 2 and 3. The theoretical approach matches the
simulated correlation function for f = 5 very well. However,
with increasing functionality the agreement becomes worse;
for f = 50 there is a considerable mismatch between simu-
lation data and theory over almost the whole displayed time
scale. The theoretical curves for the various f merge into a
universal dependence for long times, which reflects the fact
that in the asymptotic limit C,(¢) is independent of any star-
polymer property and only depends on fluid correlations (see
also Fig. 6). We expect the simulation data to exhibit the
same behavior, however, the limit might only be reached for
times beyond those accessible in simulations with reasonable
accuracy.

To shed light on the long-time behavior, we study a star
polymer with f= 50 arms of length N,, = 10 only. Since its ra-
dius of gyration is smaller, we expect to reach the asymptotic
limit earlier. The simulation data are compared with the the-
oretical expression in Fig. 4. As for the longer-arm stars, we
observe a significant difference between the theoretical pre-
diction and the simulation data over a wide time range. How-
ever, for times ¢ > 400,/ma?/(k gT), the theoretical expres-
sion reproduces the simulation results rather well. Hence, the
hydrodynamic behavior of a star polymer on long-time scales
is solely governed by fluid fluctuations.

Interestingly, the correlation functions for the higher-
functionality stars can very well be described by the theo-

J. Chem. Phys. 141, 084901 (2014)

t(ma’/(k, )"

FIG. 4. Normalized center-of-mass velocity autocorrelation function of a
star polymer with functionality f = 50 and arm length N, = 10 in a sim-
ulation box of size L/a = 140 (red). The black line is calculated using the
theoretical expression (15). The inset shows the same function on a linear
scale.

retical expression, when a somewhat larger viscosity is used.
Such an increase in the frictional properties could be at-
tributed to enhanced polymer-polymer interactions in dense
stars, e.g., in the denser and more extended core region. How-
ever, this modified description would only apply over a certain
time range, since in the asymptotic long-time limit the fluid
viscosity should determine the decay of the correlation func-
tion. To account for the observed deviations, an improved the-
oretical description is desirable. Thereby, the dynamic struc-
ture factor rather than only the static one may have to be taken
into account.

B. Center-of-mass mean square displacement

Figure 5 provides an example of the center-of-mass mean
square displacement (MSD),

ARZ, = (R, () — R,,,(0))*), (18)

10°

ol

-
o_n
T

|

cm
=]
T T T

<R (-R_(0)>/a’
)
T
sl

-
o|
Ll

-2 TR | TR | TR |
10
10" 2 10° 10
2 -1/2
t(ma’/kgT)

4

= f
o

FIG.5. Center-of-mass mean square displacements of star polymers of func-
tionality f= 20 for the system sizes L/a = 30, 50, 70, 110 (bottom to top). The
straight line indicates the linear time dependence (R, (t) — R (0)2) ~ 1.

cm
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for various system sizes. At short times, AR?Z, increases
somewhat stronger than linearly with time due to inertia ef-
fects. For longer times, the MSD reaches the linear diffusive
regime. As expected, we find a pronounced system-size de-
pendence, with a slower dynamics in a smaller simulation
box.

C. Diffusion coefficient

Here, we determine the infinite-system-size center-of-
mass diffusion coefficient for stars of various functionalities.
We exploit both, the velocity correlation function as well as
the mean square displacement.

1. Velocity correlation function

Finite-size effects in the correlation function C, mani-
fest themselves as oscillations for ¢ 2> L/c and an exponen-
tial damping for even longer times.”® Thereby, the oscillations
shift to longer time scales with increasing system size and
vanish completely for an infinite system (cf. Fig. 3). Figure 6
presents correlation functions C, for finite systems and the
corresponding asymptotic ones in comparison with the sim-
ulation data. The theoretical correlations for an infinite sys-
tem agree well with those for finite systems above ¢ ~ R,/c.
Hence, we suggest the following procedure to obtain the dif-
fusion coefficient (7). We combine the numerically obtained
correlation functions below a certain time, where finite-size
effects or not yet present, with the analytical infinite-system-
size function above that time and integrate the combined cor-
relation function.

The time dependence

1 t
D(t) = gfo (V@) -V, 0)dt 19)

of integrated correlation functions is displayed in Fig. 7 . Evi-
dently, there is a significant functionality dependence. For ev-
ery functionality, three different curves are shown: the bare

c,

M| L L

L L L L

10 10°
t(ma’/(kgT) "

FIG. 6. Normalized center-of-mass velocity autocorrelation function of star
polymers with functionalities f= 5, 10, and 20 (top to bottom) and arm length
N,, = 30 in a simulation box of size L/a = 140. The solid black lines indi-
cate the analytical solution (15) for the finite system and the dashed lines the
solution for an infinite system.
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FIG. 7. Time dependence of the integral of the VACF (19) for star polymers
of functionality f = 5, 10, and 20 (top to bottom) with N, = 30 in a peri-
odic box of length L/a = 140. The colored solid lines (bottom) are integrals
of the bare simulation data. The dashed lines are obtained by a combination

of simulation data forr < 7,/,/ ma?/(k 5 T) = 40 and the infinite system-size

analytical correlation function, whereas for the black lines (middle) the fi-
nite system-size analytical correlation function is used. D, is the diffusion
coefficient of an individual monomer.

finite-system-size integral, the integral of the combined set
of the simulation data for ¢ < t./\/ma?/(kyT) = 40 and the
finite-size analytical expression for larger times, and simi-
larly, the simulation data combined with the infinite system
size analytical expression. For the functionalities f= 5 and 10,
the combined curves compare well with the pure simulation-
based curves even considerably above the time 7. The worse
agreement of the analytical expression with the simulation
data for f = 20 (cf. Fig. 6) is reflected in the earlier splitting of
the theory-based curves from that of the bare simulation data.
The finite and infinite system-size theoretical VACFs
agree well for ¢t > ¢_. Significant deviations between these
curves appear as soon as sound undulations become important
and, more importantly, the finite-size correlation functions
start to decay exponentially. The latter implies the quantita-
tive difference between the finite-system size D(f) integrals,
which assume a constant value at large times, and the infinite
system asymptotic values, which are indicated by horizontal
bars on the right. We like to emphasize that sound is not con-
tributing to the diffusion coefficient, as is well known.*® The
diffusion coefficients themselves are listed in Table 1.

TABLE I. Values for the radius of gyration R, hydrodynamic radius Ry,
and diffusion coefficient D,,—extrapolated to infinite system size—for dilute
solutions of star polymers of functionality f. D, is the diffusion coefficient
of an individual monomer. The diffusion coefficients D}, (last column) are
extracted from the center-of-mass velocity autocorrelation function, whereas
the other ones are obtained by the center-of-mass mean square displacement.

! R/l Ryl Ry /R D,/D, DY/ D,
5 6.3 6.1 0.97 0.050 0.051
10 7.1 7.5 1.05 0.041 0.042
20 7.9 9.2 1.16 0.033 0.035
40 8.9 113 127 0.027

50 9.2 12.0 130 0.026
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FIG. 8. Hydrodynamic part of the diffusion coefficients of star polymers as
a function of system size L for the functionalities f = 5, 10, 20, 40, 50 (top
to bottom). The data are obtained from the stars’ center-of-mass mean square
displacements. The solid lines are fits of Eq. (13) with respect to Ry. D, is
the diffusion coefficient of an individual monomer.

2. Mean square displacement

The self-diffusion coefficient D, of a star polymer for a
finite system can be obtained from its center-of-mass mean
square displacement (8) (cf. Fig. 5). Corresponding values
D} are presented in Fig. 8 for various systems size. As for the
integrals (19), the diffusion coefficients D}’ exhibit a strong
functionality dependence—they increase with increasing sys-
tem size, and approach a limiting value in the asymptotic limit
L — oo. The diffusion coefficients are well described by the
expression (13) within the accuracy of the simulations for
all functionalities. The asymptotic values D¥ and the corre-
sponding hydrodynamic radii are summarized in Table I. Evi-
dently, these diffusion coefficients agree very well with those
obtained from the velocity correlation functions.

Figure 9 displays the scaled diffusion coefficients
DH /Dy, as function of the Ry/L, i.e., the value D°/(fN,, + 1)
has been subtracted from the diffusion coefficient extracted
from the mean square displacement. The obtained data follow
the predicted dependence well. Evidently, higher order cor-

1.0

o
r o 0.6
o

0.4

‘ ‘ ! ‘ ‘
0.0 0.1 0.2 0.3 0.4
Ry/L
FIG. 9. Scaled diffusion coefficients of star polymers as function of Ry/L

for the functionalities f = 5 (bullets), 10 (squares), 20 (diamonds), 40 (up
triangle), and 50 (left triangle). The solid line corresponds to Eq. (13).
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rections O((Ry/ L)?) cannot be neglected for the considered
range of R, /L values. Interestingly, our star polymers exhibit
the same system-size dependence as spherical colloids®> 3-8
and linear polymers.**#3 At a first glance, this seems to be
obvious, because the first-order correction term is indepen-
dent of the star-polymer size. For our system sizes, however,
higher order corrections are required to adequately describe
the simulation results, where we characterize the size of a star
polymer by the hydrodynamic radius. Hence, the hydrody-
namic radius seems to be a suitable quantity to characterize
the size of the star polymer in diffusion.

The dependence on functionality of the radius of gyra-
tion, as documented in Table I, is consistent with theoretical
predictions R; ~ fU1 =72 839 From the static structure fac-
tor of individual arms,®" we find v &~ 0.63, a value somewhat
larger than the theoretical value v ~ 0.6.> The difference is
related to the shortness of the polymers and strong excluded-
volume interactions. The values of Table I yield R; ~ f0'16,
which is close to the theoretical expectation R ~ %8 with v
=0.63.

Diffusion coefficients of star polymers in good solvent
have been measured experimentally, and R, values have been
extracted by using the Stokes-Einstein relation for the func-
tionality range f = 18-64.9 The corresponding ratios of the
hydrodynamic radii and the radii of gyration R,/R,; are in the
range 1.18-1.4.9 These values are close to the values ob-
tained from our simulations. In particular, we find the same
qualitative dependence on f, but the experimental values are
slightly larger at the same functionality. This deviation could
be related to differences in arm lengths, in (micro)structural
details of the cores, effective monomer sizes, or even experi-
mental uncertainties.

V. SUMMARY AND CONCLUSIONS

We have analyzed the influence of hydrodynamic inter-
actions on the center-of-mass dynamics of star polymers of
various functionalities. Both, the velocity autocorrelation
function and the mean square displacement of the star center-
of-mass have been investigated.

The velocity correlation function exhibits a time regime,
which is determined by the dynamics of the polymer arms.
Its range strongly depends on the arm length and should show
the power-law decay +~>3 under good-solvent conditions for
arm lengths much longer than those considered here.* The
simulations yield exponents on the order of unity. Hence, the
decay is (much) slower than that of the fluid long-time tail.
Moreover, the decay of the correlation function in that regime
strongly depends on functionality. Thereby, the disagreement
of the simulated correlation function with the theoretical pre-
diction for f 2 20 suggests that inter-arm interactions play a
significant role in dense stars.

Both, the velocity autocorrelation function and the mean
square displacement exhibit a strong dependence on the sys-
tem size due to suppression of long-wavelength hydrody-
namic modes by periodic boundary conditions.?*36:7%:30 In
order to extract infinite-system-size diffusion coefficients and
hydrodynamic radii, we applied two approaches. On the one
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hand, we used a combination of simulation and analytical re-
sults to calculate the diffusion coefficient from the velocity
autocorrelation function. On the other hand, we performed
a series of simulations for various system sizes, and extrap-
olated the corrected diffusion coefficient extracted from the
star-polymer mean square displacement to infinite system
sizes. The respective values agree very well with each other.
Moreover, we find the same system-size dependence as for
spherical colloids, when we replace the colloid radius by the
hydrodynamic radius of a star polymer. In addition, the ratios
of the hydrodynamic radii and the radii of gyration obtained
from simulations show the same functionality dependence as
experimental results.®

Our simulations confirm that MPC is a valuable simula-
tion approach for the investigation of the dynamics of com-
plex soft matter systems. Specifically, the implementation of
the approach on a GPU opens a route to investigate a broad
range of yet unexplored systems, in particular, systems with
longer arms and higher functionalities. Without GPU usage,
the study would have required considerably more computa-
tion time on CPU-based clusters, or would have been much
more costly on massively parallel computers.
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APPENDIX: HYDRODYNAMIC TENSOR

The solution for the fluid velocity field v(k, ) in Fourier
space of the linearized Landau-Lifshitz Navier-Stokes is
given by

vk,t) = /Q(k, t— 1) f(&')dr, (A1)

with the hydrodynamic tensor Q(k, t — t’) and the volume
force density f(1).*>7 The tensor itself is composed of
a transverse Q7 and longitudinal QF part, where Q(k, t)
=QT(k,t)+ QL(k,t) = QT (k,1)(E — P) + QL(k,t)P. P is
the projection operator with the components Pgg = kgkg / k?
and E is the unit tensor. Explicitly, the transverse part Q7 is
given by

0"k, 1) = %e*”%(r), (A2)

where O(f) is Heaviside’s function, ;& = n/p denotes the kine-
matic viscosity, and p the mass density. For the MPC fluid, the
viscosity n = n* 4+ n° is composed of a kinetic (n*) and col-
lisional () contribution.’' The longitudinal part Q" reads as
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O (k. 1) = —eHmn
o

k2'a2

—————5 sin(¢
4c2 — K232 (1)

x | cos(Qt) — o)

(A3)

for 4¢%/(k*ji%) > 1, where Q = k?fi\/4c2/(k2ji?) — 1/2 and
f=1/p=m+n"/3)/p,and

QL(k, t) — leszﬂt/z
1%

k2'a2

X | cosh(At) — m

sinh(A?) | ©(t)

(A4)
for 4c?/(k*i*) < 1, where A = k%fi/1 — 4c2/(k2ji%)/2.7°
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