000155754 001__ 155754
000155754 005__ 20240711101428.0
000155754 0247_ $$2Handle$$a2128/7994
000155754 037__ $$aFZJ-2014-04761
000155754 041__ $$aEnglish
000155754 1001_ $$0P:(DE-Juel1)138664$$aTokariev, O.$$b0$$eCorresponding Author
000155754 1112_ $$a6th Forum on New Materials$$cMontecatini Terme$$d2014-06-15 - 2014-06-19$$gCIMTEC 2014$$wItaly
000155754 245__ $$aSTUDY OF STORAGE MATERIAL FOR A HIGH-TEMPERATURE RECHARGEABLE OXIDE BATTERY (ROB)
000155754 260__ $$c2014
000155754 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1442822969_28362$$xOther
000155754 3367_ $$033$$2EndNote$$aConference Paper
000155754 3367_ $$2DataCite$$aOther
000155754 3367_ $$2ORCID$$aLECTURE_SPEECH
000155754 3367_ $$2DRIVER$$aconferenceObject
000155754 3367_ $$2BibTeX$$aINPROCEEDINGS
000155754 520__ $$aThis work focuses on the fundamental research of porous storage materials for a novel high temperature rechargeable oxide battery (ROB). In the battery, a solid oxide cell (SOC) runs alternately in fuel cell (discharge cycle) and electrolyzer (charge cycle) modes. The hydrogen produced in the electrolyzer mode makes the utilization of the battery safer, by avoiding external hydrogen storage systems. The stagnant atmosphere in the battery, consisting of H2 and H2O vapor, is used as a reducing and oxidizing agent for a metal-metal oxide material, which serves as the integrated energy storage unit. The storage components have to meet requirements such as; good kinetics of redox reactions, high oxygen storage capacity, and high lifetime, in order to assure a continuous ROB operation for at least 10,000 hours.Storage components are manufactured by type casting or extrusion using iron oxide based slurries or pastes. Because of long-term redox cycling at 800 °C, the structure of the Fe/FeO storage material degrades, making the material incapable of storing oxygen for continuous redox reactions. Hence, to prevent storage degradation, the Fe/FeO matrix was supplemented by “inert” (ZrO2, 8YSZ, Al2O3, MgAl2O4) as well as reactive oxides (Mn2O3, CeO2, Cr2O3, TiO2, CuO, Y2O3, SrO, SiO2, CaO, MgO) which are capable of promoting and/or inhibiting ageing and the kinetics of redox reactions.Thermogravimetric, XRD, and microstructural analysis after redox cycling in the redox furnace (420 h) show that the “inert” oxides hinder to some extent structural degradation, whereas reactive mixed oxides are fully capable of preventing sintering for several redox cycles. The influence of the powder parameters on the thermochemical processes in the ROB were also revealed as significant characteristics.
000155754 536__ $$0G:(DE-HGF)POF2-123$$a123 - Fuel Cells (POF2-123)$$cPOF2-123$$fPOF II$$x0
000155754 536__ $$0G:(DE-Juel1)SOFC-20140602$$aSOFC - Solid Oxide Fuel Cell (SOFC-20140602)$$cSOFC-20140602$$fSOFC$$x1
000155754 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x2
000155754 7001_ $$0P:(DE-Juel1)156166$$aBerger, Cornelius$$b1$$ufzj
000155754 7001_ $$0P:(DE-Juel1)145679$$aOrzessek, P.$$b2
000155754 7001_ $$0P:(DE-Juel1)145945$$aFang, Q.$$b3
000155754 7001_ $$0P:(DE-Juel1)129636$$aMenzler, N. H.$$b4
000155754 7001_ $$0P:(DE-Juel1)129594$$aBuchkremer, H. P.$$b5
000155754 773__ $$y2014
000155754 8564_ $$uhttps://juser.fz-juelich.de/record/155754/files/FZJ-2014-04761.pptx$$yOpenAccess
000155754 909CO $$ooai:juser.fz-juelich.de:155754$$pVDB$$popen_access$$pdriver$$popenaire
000155754 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138664$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000155754 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156166$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000155754 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145679$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000155754 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145945$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000155754 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129636$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000155754 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129594$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000155754 9132_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bPOF III$$lForschungsbereich Energie$$vSpeicher und vernetzte Infrastrukturen$$x0
000155754 9131_ $$0G:(DE-HGF)POF2-123$$1G:(DE-HGF)POF2-120$$2G:(DE-HGF)POF2-100$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lRationelle Energieumwandlung und -nutzung$$vFuel Cells$$x0
000155754 9141_ $$y2014
000155754 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000155754 920__ $$lyes
000155754 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000155754 9201_ $$0I:(DE-Juel1)IEK-3-20101013$$kIEK-3$$lElektrochemische Verfahrenstechnik$$x1
000155754 9801_ $$aFullTexts
000155754 980__ $$aconf
000155754 980__ $$aVDB
000155754 980__ $$aI:(DE-Juel1)IEK-1-20101013
000155754 980__ $$aI:(DE-Juel1)IEK-3-20101013
000155754 980__ $$aUNRESTRICTED
000155754 981__ $$aI:(DE-Juel1)ICE-2-20101013
000155754 981__ $$aI:(DE-Juel1)IMD-2-20101013
000155754 981__ $$aI:(DE-Juel1)IEK-3-20101013