000155849 001__ 155849
000155849 005__ 20240619083501.0
000155849 0247_ $$2doi$$a10.1063/1.4881796
000155849 0247_ $$2ISSN$$a1089-7623
000155849 0247_ $$2ISSN$$a0034-6748
000155849 0247_ $$2WOS$$aWOS:000339010500062
000155849 037__ $$aFZJ-2014-04807
000155849 041__ $$aEnglish
000155849 082__ $$a530
000155849 1001_ $$0P:(DE-HGF)0$$aPfleiderer, P.$$b0
000155849 245__ $$aX-ray scattering in the vorticity direction and rheometry from confined fluids
000155849 260__ $$aLondon$$bInst.$$c2014
000155849 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1413536956_13476
000155849 3367_ $$2DataCite$$aOutput Types/Journal article
000155849 3367_ $$00$$2EndNote$$aJournal Article
000155849 3367_ $$2BibTeX$$aARTICLE
000155849 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000155849 3367_ $$2DRIVER$$aarticle
000155849 520__ $$aAn X-ray flexure-based microgap rheometer (X-FMR) has been designed for combining rheology and in situ small-angle X-ray scattering from the vorticity plane. The gap distance can be varied continuously from 500 μm down to several μm, which provides the unique possibility to generate a strong confinement for many complex fluids. A singular advantage of this setup is the possibility to directly probe the vorticity direction of the flow field with a microfocus X-ray beam and to probe the structural response of the fluid to combined shear and confinement in the vorticity plane. The sliding-plate setup operates over a wide range of shear rates of γ̇  = 10−3–103 s−1 and strains in the range of 10−4–102. The flexure-based bearing maintains the plate parallelism within 10−5 rad. The X-FMR requires very small sample volumes on the order of 10 μl. The applicability of the device is demonstrated here with limited examples of a nematic suspension of fd virus (rods), and a crystalline suspension containing sterically stabilized polystyrene-butylacrylate latex particles.
000155849 536__ $$0G:(DE-HGF)POF2-451$$a451 - Soft Matter Composites (POF2-451)$$cPOF2-451$$fPOF II$$x0
000155849 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000155849 7001_ $$0P:(DE-HGF)0$$aBaik, S. J.$$b1
000155849 7001_ $$0P:(DE-HGF)0$$aZhang, Z.$$b2
000155849 7001_ $$0P:(DE-HGF)0$$aVleminckx, G.$$b3
000155849 7001_ $$0P:(DE-Juel1)130797$$aLettinga, M.P.$$b4$$ufzj
000155849 7001_ $$0P:(DE-HGF)0$$aGrelet, E.$$b5
000155849 7001_ $$0P:(DE-HGF)0$$aVermant, J.$$b6
000155849 7001_ $$0P:(DE-HGF)0$$aClasen, C.$$b7
000155849 773__ $$0PERI:(DE-600)2105249-9$$a10.1063/1.4881796$$gVol. 85, no. 6, p. 065108 -$$n6$$p065108$$tJournal of scientific instruments$$v85$$x0950-7671$$y2014
000155849 8564_ $$uhttps://juser.fz-juelich.de/record/155849/files/FZJ-2014-04807.pdf$$yRestricted
000155849 909CO $$ooai:juser.fz-juelich.de:155849$$pVDB
000155849 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130797$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000155849 9132_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bPOF III$$lKey Technologies$$vBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$x0
000155849 9131_ $$0G:(DE-HGF)POF2-451$$1G:(DE-HGF)POF2-450$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lBioSoft$$vSoft Matter Composites$$x0
000155849 9141_ $$y2014
000155849 915__ $$0StatID:(DE-HGF)0040$$2StatID$$aPeer Review unknown
000155849 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000155849 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000155849 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000155849 920__ $$lyes
000155849 9201_ $$0I:(DE-Juel1)ICS-3-20110106$$kICS-3$$lWeiche Materie $$x0
000155849 980__ $$ajournal
000155849 980__ $$aVDB
000155849 980__ $$aI:(DE-Juel1)ICS-3-20110106
000155849 980__ $$aUNRESTRICTED