001     155849
005     20240619083501.0
024 7 _ |a 10.1063/1.4881796
|2 doi
024 7 _ |a 1089-7623
|2 ISSN
024 7 _ |a 0034-6748
|2 ISSN
024 7 _ |a WOS:000339010500062
|2 WOS
037 _ _ |a FZJ-2014-04807
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Pfleiderer, P.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a X-ray scattering in the vorticity direction and rheometry from confined fluids
260 _ _ |a London
|c 2014
|b Inst.
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1413536956_13476
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a An X-ray flexure-based microgap rheometer (X-FMR) has been designed for combining rheology and in situ small-angle X-ray scattering from the vorticity plane. The gap distance can be varied continuously from 500 μm down to several μm, which provides the unique possibility to generate a strong confinement for many complex fluids. A singular advantage of this setup is the possibility to directly probe the vorticity direction of the flow field with a microfocus X-ray beam and to probe the structural response of the fluid to combined shear and confinement in the vorticity plane. The sliding-plate setup operates over a wide range of shear rates of γ̇ = 10−3–103 s−1 and strains in the range of 10−4–102. The flexure-based bearing maintains the plate parallelism within 10−5 rad. The X-FMR requires very small sample volumes on the order of 10 μl. The applicability of the device is demonstrated here with limited examples of a nematic suspension of fd virus (rods), and a crystalline suspension containing sterically stabilized polystyrene-butylacrylate latex particles.
536 _ _ |a 451 - Soft Matter Composites (POF2-451)
|0 G:(DE-HGF)POF2-451
|c POF2-451
|f POF II
|x 0
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |a Baik, S. J.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Zhang, Z.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Vleminckx, G.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Lettinga, M.P.
|0 P:(DE-Juel1)130797
|b 4
|u fzj
700 1 _ |a Grelet, E.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Vermant, J.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Clasen, C.
|0 P:(DE-HGF)0
|b 7
773 _ _ |a 10.1063/1.4881796
|g Vol. 85, no. 6, p. 065108 -
|0 PERI:(DE-600)2105249-9
|n 6
|p 065108
|t Journal of scientific instruments
|v 85
|y 2014
|x 0950-7671
856 4 _ |u https://juser.fz-juelich.de/record/155849/files/FZJ-2014-04807.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:155849
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)130797
913 2 _ |a DE-HGF
|b POF III
|l Key Technologies
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-551
|2 G:(DE-HGF)POF3-500
|v BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|x 0
913 1 _ |a DE-HGF
|b Schlüsseltechnologien
|1 G:(DE-HGF)POF2-450
|0 G:(DE-HGF)POF2-451
|2 G:(DE-HGF)POF2-400
|v Soft Matter Composites
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
|l BioSoft
914 1 _ |y 2014
915 _ _ |a Peer Review unknown
|0 StatID:(DE-HGF)0040
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ICS-3-20110106
|k ICS-3
|l Weiche Materie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ICS-3-20110106
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21