000155851 001__ 155851 000155851 005__ 20210129214140.0 000155851 0247_ $$2doi$$a10.1021/ct500084y 000155851 0247_ $$2ISSN$$a1549-9626 000155851 0247_ $$2ISSN$$a1549-9618 000155851 0247_ $$2WOS$$aWOS:000340351200029 000155851 0247_ $$2altmetric$$aaltmetric:2428725 000155851 0247_ $$2pmid$$apmid:26588287 000155851 037__ $$aFZJ-2014-04809 000155851 041__ $$aEnglish 000155851 082__ $$a540 000155851 1001_ $$0P:(DE-HGF)0$$aCarballo-Pacheco, Martín$$b0 000155851 245__ $$aExtension of the FACTS Implicit Solvation Model to Membranes 000155851 260__ $$aWashington, DC$$bAmerican Chemical Society (ACS)$$c2014 000155851 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1417708451_21921 000155851 3367_ $$2DataCite$$aOutput Types/Journal article 000155851 3367_ $$00$$2EndNote$$aJournal Article 000155851 3367_ $$2BibTeX$$aARTICLE 000155851 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000155851 3367_ $$2DRIVER$$aarticle 000155851 520__ $$aThe generalized Born (GB) formalism can be used to model water as a dielectric continuum. Among the different implicit solvent models using the GB formalism, FACTS is one of the fastest. Here, we extend FACTS so that it can represent a membrane environment. This extension is accomplished by considering a position dependent dielectric constant and empirical surface tension parameter. For the calculation of the effective Born radii in different dielectric environments we present a parameter-free approximation to Kirkwood’s equation, which uses the Born radii obtained with FACTS for the water environment as input. This approximation is tested for the calculation of self-free energies, pairwise interaction energies in solution and solvation free energies of complete protein conformations. The results compare well to those from the finite difference Poisson method. The new implicit membrane model is applied to estimate free energy insertion profiles of amino acid analogues and in molecular dynamics simulations of melittin, WALP23 and KALP23, glycophorin A, bacteriorhodopsin, and a Clc channel dimer. In all cases, the results agree qualitatively with experiments and explicit solvent simulations. Moreover, the implicit membrane model is only six times slower than a vacuum simulation. 000155851 536__ $$0G:(DE-HGF)POF2-452$$a452 - Structural Biology (POF2-452)$$cPOF2-452$$fPOF II$$x0 000155851 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de 000155851 7001_ $$0P:(DE-HGF)0$$aVancea, Ioan$$b1 000155851 7001_ $$0P:(DE-Juel1)132024$$aStrodel, Birgit$$b2$$eCorresponding Author$$ufzj 000155851 773__ $$0PERI:(DE-600)2166976-4$$a10.1021/ct500084y$$gVol. 10, no. 8, p. 3163 - 3176$$n8$$p3163 - 3176$$tJournal of chemical theory and computation$$v10$$x1549-9626$$y2014 000155851 8564_ $$uhttps://juser.fz-juelich.de/record/155851/files/FZJ-2014-04809.pdf$$yRestricted 000155851 909CO $$ooai:juser.fz-juelich.de:155851$$pVDB 000155851 9101_ $$0I:(DE-588b)235011-7$$6P:(DE-Juel1)138570$$aEuropäisches Laboratorium für Molekularbiologie$$b1$$kEMBL 000155851 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132024$$aForschungszentrum Jülich GmbH$$b2$$kFZJ 000155851 9132_ $$0G:(DE-HGF)POF3-553$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vPhysical Basis of Diseases$$x0 000155851 9131_ $$0G:(DE-HGF)POF2-452$$1G:(DE-HGF)POF2-450$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lBioSoft$$vStructural Biology$$x0 000155851 9141_ $$y2014 000155851 915__ $$0StatID:(DE-HGF)0040$$2StatID$$aPeer review unknown 000155851 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR 000155851 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000155851 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000155851 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000155851 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000155851 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000155851 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000155851 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record 000155851 920__ $$lyes 000155851 9201_ $$0I:(DE-Juel1)ICS-6-20110106$$kICS-6$$lStrukturbiochemie $$x0 000155851 980__ $$ajournal 000155851 980__ $$aVDB 000155851 980__ $$aI:(DE-Juel1)ICS-6-20110106 000155851 980__ $$aUNRESTRICTED 000155851 981__ $$aI:(DE-Juel1)IBI-7-20200312