000155913 001__ 155913
000155913 005__ 20210129214145.0
000155913 0247_ $$2doi$$a10.1016/j.jhydrol.2014.07.065
000155913 0247_ $$2ISSN$$a1879-2707
000155913 0247_ $$2ISSN$$a0022-1694
000155913 0247_ $$2WOS$$aWOS:000347589500079
000155913 037__ $$aFZJ-2014-04843
000155913 041__ $$aEnglish
000155913 082__ $$a690
000155913 1001_ $$0P:(DE-Juel1)144811$$aRötzer, Kathrina$$b0$$eCorresponding Author$$ufzj
000155913 245__ $$aCatchment scale validation of SMOS and ASCAT soil moisture products using hydrological modeling and temporal stability analysis
000155913 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2014
000155913 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1410849330_28793
000155913 3367_ $$2DataCite$$aOutput Types/Journal article
000155913 3367_ $$00$$2EndNote$$aJournal Article
000155913 3367_ $$2BibTeX$$aARTICLE
000155913 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000155913 3367_ $$2DRIVER$$aarticle
000155913 520__ $$aSince soil moisture is an important influencing factor of the hydrological cycle, knowledge of its spatio- temporal dynamics is crucial for climate and hydrological modeling. In recent years several soil moisture data products from satellite information have become available with global coverage and sub-monthly resolution. Since the remote sensing of soil moisture is an indirect measurement method and influenced by a large number of factors (e.g. atmospheric correction, vegetation, soil roughness etc.), a comprehensive validation of the resulting soil moisture products is required. However, the coarse spatial resolution of these products hampers the comparison with point-scale in situ measurements. Therefore, upscaling of in situ to the scale of the satellite data is needed. We present the validation results of the soil moisture products of the years 2010 to 2012 retrieved from the Soil Moisture and Ocean Salinity (SMOS) and the Advanced Scatterometer (ASCAT) for the Rur and Erft catchments in western Germany. For the upscaling of in situ data obtained from three test sites of the Terrestrial Environmental Observatories (TERENO) initiative we used the hydrological model WaSiM ETH. Correlation of the SMOS product to modeled and upscaled soil moisture resulted in a mean correlation coefficient of 0.28 whereas for ASCAT a correlation coefficient of 0.50 was obtained. However, for specific regions the SMOS product showed similar correlation coefficients as the ASCAT product. While for ASCAT correlation was mainly dependent on topography and vegetation, SMOS was also influenced by radiofrequency interferences in our study area. Both products show dry biases as compared to the soil moisture reference. However, while SMOS showed relatively constant bias values, ASCAT bias is variable throughout the year. As an additional validation method we performed a temporal stability analysis of the retrieved spatio-temporal soil moisture data. Through investigation of mean relative differences of soil moisture for every pixel, their standard deviations and their rankings, we analyzed the temporal persistence of spatial patterns. Our results show high standard deviations for both SMOS and ASCAT soil moisture products as compared to modeled soil moisture, indicating a lower temporal persistence. The consistence of ranks of mean relative differences was low for SMOS and relative ASCAT soil moisture compared to modeled soil moisture, while ASCAT soil moisture, converted to absolute values, showed higher rank consistence.
000155913 536__ $$0G:(DE-HGF)POF2-246$$a246 - Modelling and Monitoring Terrestrial Systems: Methods and Technologies (POF2-246)$$cPOF2-246$$fPOF II$$x0
000155913 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x1
000155913 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000155913 7001_ $$0P:(DE-Juel1)129506$$aMontzka, Carsten$$b1$$ufzj
000155913 7001_ $$0P:(DE-Juel1)129440$$aBogena, Heye$$b2$$ufzj
000155913 7001_ $$0P:(DE-HGF)0$$aWagner, W.$$b3
000155913 7001_ $$0P:(DE-HGF)0$$aKerr, Y. H.$$b4
000155913 7001_ $$0P:(DE-HGF)0$$aKidd, R.$$b5
000155913 7001_ $$0P:(DE-Juel1)129549$$aVereecken, Harry$$b6$$ufzj
000155913 773__ $$0PERI:(DE-600)1473173-3$$a10.1016/j.jhydrol.2014.07.065$$gVol. 519, p. 934 - 946$$nPart A$$p934 - 946$$tJournal of hydrology$$v519$$x0022-1694$$y2014
000155913 8564_ $$uhttps://juser.fz-juelich.de/record/155913/files/FZJ-2014-04843.pdf$$yRestricted
000155913 909CO $$ooai:juser.fz-juelich.de:155913$$pVDB:Earth_Environment$$pVDB
000155913 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144811$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000155913 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129506$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000155913 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129440$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000155913 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129549$$aForschungszentrum Jülich GmbH$$b6$$kFZJ
000155913 9132_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$aDE-HGF$$bMarine, Küsten- und Polare Systeme$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000155913 9131_ $$0G:(DE-HGF)POF2-246$$1G:(DE-HGF)POF2-240$$2G:(DE-HGF)POF2-200$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vModelling and Monitoring Terrestrial Systems: Methods and Technologies$$x0
000155913 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x1
000155913 9141_ $$y2014
000155913 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000155913 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000155913 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000155913 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000155913 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000155913 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000155913 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000155913 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000155913 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000155913 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000155913 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000155913 920__ $$lyes
000155913 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000155913 980__ $$ajournal
000155913 980__ $$aVDB
000155913 980__ $$aI:(DE-Juel1)IBG-3-20101118
000155913 980__ $$aUNRESTRICTED