001     155913
005     20210129214145.0
024 7 _ |a 10.1016/j.jhydrol.2014.07.065
|2 doi
024 7 _ |a 1879-2707
|2 ISSN
024 7 _ |a 0022-1694
|2 ISSN
024 7 _ |a WOS:000347589500079
|2 WOS
037 _ _ |a FZJ-2014-04843
041 _ _ |a English
082 _ _ |a 690
100 1 _ |a Rötzer, Kathrina
|0 P:(DE-Juel1)144811
|b 0
|e Corresponding Author
|u fzj
245 _ _ |a Catchment scale validation of SMOS and ASCAT soil moisture products using hydrological modeling and temporal stability analysis
260 _ _ |a Amsterdam [u.a.]
|c 2014
|b Elsevier
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1410849330_28793
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a Since soil moisture is an important influencing factor of the hydrological cycle, knowledge of its spatio- temporal dynamics is crucial for climate and hydrological modeling. In recent years several soil moisture data products from satellite information have become available with global coverage and sub-monthly resolution. Since the remote sensing of soil moisture is an indirect measurement method and influenced by a large number of factors (e.g. atmospheric correction, vegetation, soil roughness etc.), a comprehensive validation of the resulting soil moisture products is required. However, the coarse spatial resolution of these products hampers the comparison with point-scale in situ measurements. Therefore, upscaling of in situ to the scale of the satellite data is needed. We present the validation results of the soil moisture products of the years 2010 to 2012 retrieved from the Soil Moisture and Ocean Salinity (SMOS) and the Advanced Scatterometer (ASCAT) for the Rur and Erft catchments in western Germany. For the upscaling of in situ data obtained from three test sites of the Terrestrial Environmental Observatories (TERENO) initiative we used the hydrological model WaSiM ETH. Correlation of the SMOS product to modeled and upscaled soil moisture resulted in a mean correlation coefficient of 0.28 whereas for ASCAT a correlation coefficient of 0.50 was obtained. However, for specific regions the SMOS product showed similar correlation coefficients as the ASCAT product. While for ASCAT correlation was mainly dependent on topography and vegetation, SMOS was also influenced by radiofrequency interferences in our study area. Both products show dry biases as compared to the soil moisture reference. However, while SMOS showed relatively constant bias values, ASCAT bias is variable throughout the year. As an additional validation method we performed a temporal stability analysis of the retrieved spatio-temporal soil moisture data. Through investigation of mean relative differences of soil moisture for every pixel, their standard deviations and their rankings, we analyzed the temporal persistence of spatial patterns. Our results show high standard deviations for both SMOS and ASCAT soil moisture products as compared to modeled soil moisture, indicating a lower temporal persistence. The consistence of ranks of mean relative differences was low for SMOS and relative ASCAT soil moisture compared to modeled soil moisture, while ASCAT soil moisture, converted to absolute values, showed higher rank consistence.
536 _ _ |a 246 - Modelling and Monitoring Terrestrial Systems: Methods and Technologies (POF2-246)
|0 G:(DE-HGF)POF2-246
|c POF2-246
|f POF II
|x 0
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 1
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |a Montzka, Carsten
|0 P:(DE-Juel1)129506
|b 1
|u fzj
700 1 _ |a Bogena, Heye
|0 P:(DE-Juel1)129440
|b 2
|u fzj
700 1 _ |a Wagner, W.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Kerr, Y. H.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Kidd, R.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Vereecken, Harry
|0 P:(DE-Juel1)129549
|b 6
|u fzj
773 _ _ |a 10.1016/j.jhydrol.2014.07.065
|g Vol. 519, p. 934 - 946
|0 PERI:(DE-600)1473173-3
|n Part A
|p 934 - 946
|t Journal of hydrology
|v 519
|y 2014
|x 0022-1694
856 4 _ |u https://juser.fz-juelich.de/record/155913/files/FZJ-2014-04843.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:155913
|p VDB
|p VDB:Earth_Environment
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)144811
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129506
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129440
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)129549
913 2 _ |a DE-HGF
|b Marine, Küsten- und Polare Systeme
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
913 1 _ |a DE-HGF
|b Erde und Umwelt
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF2-240
|0 G:(DE-HGF)POF2-246
|2 G:(DE-HGF)POF2-200
|v Modelling and Monitoring Terrestrial Systems: Methods and Technologies
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2014
915 _ _ |a JCR/ISI refereed
|0 StatID:(DE-HGF)0010
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21