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Charge and orbital order at head-to-head domain walls in PbTiO;
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At ferroelectric longitudinal domain walls there is an uncompensated charge, which could form a two-
dimensional electron gas in the insulator. However, the uncompensated charges can be accommodated by, e.g.,
defects or localized states that split off from the conduction band. We carried out density functional theory
calculations to study these scenarios in PbTiO; with and without consideration of strong correlation effects
simulated via inclusion of a Hubbard parameter U. The optimized structure and electronic structure depend on
the choice of this parameter: For vanishing U, a broad, conducting domain wall is obtained, while increasing U
leads to localized Ti 3d states and an insulating, sharp domain wall. We also investigated the effects of varying
the ferroelectric polarization on the electronic structure of these domain walls.
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I. INTRODUCTION

Nowadays, investigations on perovskite oxide materials are
an attractive challenge, due to the emerging novel electronic
and magnetic properties at the surfaces or interfaces which
do not exist in the corresponding parent bulk compounds. For
example, a charge discontinuity at the interface of two simple
band insulators LaAlO5; and SrTiO; can induce conductivity
at the interface [1], or a conductive domain wall forms in
the insulating multiferroic BiFeOs3 [2]. These novel electronic
and sometimes also the magnetic, properties are important for
applications in nanoelectronics. Moreover, perovskite oxide
materials are promising for energy applications: Thermoelec-
tric or photocatalytic properties of these materials can be used
for this purpose. For example, Nb or La-doped SrTiO; has a
large thermoelectric power factor [3,4]. In addition, perovskite
oxide materials have a good efficiency for photocatalytic water
splitting. These compounds can be used for water splitting
alone [5-7] or in combination with a good photolysis catalyst
such as titania [8—10]. In all of these materials the electronic
structure has a big impact on the energy efficiency.

In ferroelectrics, the electronic structure at surfaces, inter-
faces, or domain walls is different from the bulk. Electronic
properties at the ferroelectric surfaces can be manipulated
by switching the direction of the polarization perpendicular
to the surface [11]. In ferroelectric thin films, the formation
of a polarization perpendicular to the surface (out-of-plane
polarization) is not stable without a further charge compensa-
tion mechanism. Out-of-plane polarizations induce charges at
the surface that result in a depolarization field opposing the
polarization, thereby suppressing ferroelectricity. To stabilize
the ferroelectricity, the surface charges have to be screened
or compensated, e.g., screening by two metallic electrodes in
between which the ferroelectric material is placed stabilizes
the polarization [12—14]. In a freestanding ferroelectric, the
surface charge can be compensated by different surface
charges (positive or negative) or by atomic and molecular ad-
sorbates [15,16] controlled, for example, by different oxygen
partial pressure [17]. In addition, polarization domains are
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formed with opposite orientations [18] for compensating the
surface charges.

Similarly, 180° head-to-head domain walls (where the
wall is perpendicular to the polar vector) are energetically
costly due to electrostatic repulsion of dipoles. Although these
longitudinal domain walls seem energetically not favorable,
there is some experimental evidence about the existence of
such domain walls [19,20]. Consequently, there are different
ways to reduce the electrostatic energy at head-to-head domain
walls. Possible mechanisms are the formation of a conducting
layer, accumulation of defects, or changing the valency of
the atoms at the domain wall. In a theoretical study, Wu
and Vanderbilt stabilized a head-to-head 180° domain wall in
PbTiO; by substituting certain layers of Ti atoms by acceptor
or donor atoms like Sc or Nb [21].

In this paper, we study a head-to-head 180° domain wall
in PbTiO3 by means of density functional theory (DFT). The
domain wall is modeled by a supercell and a thin-film setup.
We investigate two methods for stabilizing a head-to-head
domain wall: the formation of a conducting layer at the domain
wall and, secondly, the localization of an electron on Ti by
adding local correlation effects that are modeled by an on-
site Coulomb repulsion parameter (Hubbard U). Finally, we
present a thin-film model with varying defect concentrations
at the thin-film surface, thereby modifying the polarization
and the electronic structure in the head-to-head domain wall
localized in the inner layers.

II. COMPUTATIONAL METHOD

The calculations have been performed using DFT in
the generalized gradient approximation (GGA) [22] and, in
some cases including the DFT4-U model for the Ti d states. We
employed the full-potential linearized augmented plane-wave
(FLAPW) method as implemented in the FLEUR code [23].

The wave functions are expanded into augmented plane
waves with a cutoff of Ky = 4.5 (a.u.)~'. For each structure,
the muffin-tin radii (Ryt) were chosen as 2.10, 1.71, and
1.30 a.u. for Pb, Ti, and O, respectively. The Pb 5d states and Ti
3s and 3 p states were treated as local orbitals. Self-consistency
was considered to be achieved when the total energy variation
from iteration to iteration did not exceed 10~ htr and forces on
the atoms were converged to 10~ htr/a.u. The reciprocal space
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FIG. 1. (Color online) Relaxed structure of a longitudinal do-
main wall in PbTiO;. Fluorine was used as an electron donor at
the tail-to-tail domain wall. Large gray spheres represent Pb; the
small (red) spheres are O atoms. The medium sized (blue) spheres
represent Ti.

was sampled by a mesh containing 40 k points (corresponding
to an [8 x 8 x 8] Monkhorst-Pack mesh) in the irreducible
Brillouin zone for the cubic (tetragonal) phases, and an
equivalently dense k-point sampling for films.

The domain walls were calculated either in thin-film
geometry or, for the p(1 x 1) in-plane unit cell in a supercell
approach (see Fig. 1). In the thin-film calculations, the layers
were embedded in semi-infinite vacuum. The advantage of this
geometry over supercells is that the electrostatic boundary con-
ditions can be easily changed and the out-of-plane degrees of
freedom can be optimized without stress-tensor calculations.
For the structural optimization, the in-plane lattice constant
was then kept fixed to the theoretical optimized bulk value [24],
while the remaining degrees of freedom were optimized. In the
following section, we study domain walls with different charge
and orbital order. This requires one to go beyond the structural
model of a p(1 x 1) in-plane unit cell, e.g., to chose a c(2 x 2)
cell if electrons are localized only on every second Ti atom
at the interface or a p(2 x 2) unit cell if additionally orbital
order effects are studied. Therefore, we group our results in
subsections according to the chosen in-plane unit cells.

III. RESULTS
A. p(1x1) unit cells

The formation of a conducting layer at the head-to-head do-
main wall is one possibility to stabilize a longitudinal domain
wall. The conduction layers screen the polarization charges at
the domain wall, thereby stabilizing the ferroelectric domain.
We simulated this mechanism by constructing a supercell with
13 formula units of PbTiO3 and an in-plane p(1x 1) unit cell.
The purpose of this simulation is to investigate the electronic
structure of the conducting layer.

We constructed the cell containing two domains with mirror
symmetry at the domain walls (see Fig. 1). The mirror planes
were placed at the head-to-head and the tail-to-tail domain
walls at z =0 and z = +£[/2, respectively. The supercell
contains two domains with six unit cells of bulk tetragonal
PbTiO;. The atomic positions in the supercell were initialized
by relaxed positions of bulk tetragonal structure with polar-
ization pointing in the %z direction throughout the structure.
The spontaneous polarization of PbTiO; is calculated by the
Berry phase method as 87.4C/cm? [24]. This polarization P
of the bulk structure induces a charge at the domain walls
that amounts to 2a P; (where a is the in-plane lattice constant)
which is about 1.62 electron charges per in-plane unit cell.
At the domain walls, the polarization can be screened by a
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FIG. 2. (Color online) Layer-resolved density of states (LDOS)
of a 5-nm domain with a longitudinal domain wall in PbTiOs;. The top
and bottom panels show the DOS at the tail-to-tail and head-to-head
domain walls, respectively. Full and dashed (red and black) lines
represent DOS of the anions and cations in the layers, respectively.
At the tail-to-tail wall a fluorine atom replacing the oxygen helps to
stabilize the polarization in the domain.

conductive layer: at the head-to-head (HH) domain wall, the
Fermi level (EF) cuts the conduction band minimum, mainly
formed by Ti d states. In the tail-to-tail (TT) wall, similarly
holes are created when Er reaches the valence band maximum,
i.e., the oxygen p states. In this situation, the potential gradient
between the HH and TT wall, that has to bridge the 3-eV
bandgap, would lead to a depolarization field destroying the
polarization. Therefore, at the TT wall we remove the holes by
creating half an oxygen defect or replacing O by F, effectively
introducing charge into the layer. Whether this is in nature
realized by O vacancies or donor atoms should be irrelevant
for our model of the HH wall.

After setting up the supercell we optimized the atomic
positions, subsequently the electronic structure of the supercell
was analyzed. The layer-resolved density of states (DOS) of
one domain is depicted in Fig. 2. The occupied Ti d state
extends over nine layers close to the head-to-head domain
wall. This means that the conductive layer is not localized at
the domain wall but extends almost 7 nm.

Experimentally, no electronic conductivity at the head-to-
head domain wall was reported. One way for recovering a
globally insulating behavior is localizing the electrons at the
transition metal atom (Tit* — Ti*®). As will be shown in
the following, this localization is driven by strong Coulomb
interaction and is assisted by KCuFs-type distortions around
the transition metal atoms. This mechanism leads to a complete
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split-off of one of the Ti 1, states from the bottom of the
conduction band, so that a band gap opens. Since KCuF;-type
distortions cannot be accommodated in a p(1x1) geometry,
we will consider ¢(2x2) unit cells in the following.

B. ¢(2x2) unit cells

We constructed a thin film of 13-layer thickness with PbO
termination and z — —z mirror symmetry. The mirror plane
is placed at the head-to-head domain (see Fig. 1). The atomic
positions in thin film were initialized with the relaxed positions
of the bulk tetragonal structure with a polarization which is
pointing in the £z direction towards the mirror plane. For
compensating the polarization charges at the film surfaces,
one electronic charge defect was created by replacing a single
O by F in each surface unit cell. A similar situation is obtained
by the creation of a single O vacancy per p(2x2) unit cell [24].

On the other hand, to compensate the polarization charges
at the head-to-head domain wall, two electrons on two Ti
atoms were localized at the domain wall by adding an
on-site Coulomb repulsion term (characterized by a Hubbard
parameter U) on the d states of all Ti atoms in the film. Here,
the simulation is guided by the studies of other Ti** systems,
e.g., LaTiOs3, where an orbital polarization and accompanying
gap opening is observed for a value of U between 5 and
6 eV [25]. Other DFT+U studies of single, localized Ti d
electrons, e.g., at polar/nonpolar interfaces applied U values
ranging from 4 eV [26] to 8 eV [27]. In the electronically and
structurally related PbVO3, values between 3 and 6 eV gave
reasonable agreement with more advanced functionals and
experiment [28]. Since we have, apart from the observation that
our studied domain walls are nonconducting, no experimental
data to compare with, we can only scan a range of U values
and observe, where the Ti d state splits off the conduction
band. However, one should keep in mind that this value might
be overestimated due to the underestimation of the band gap
in the DFT calculation.

We varied U}]' between 4.0 and 6.0 eV and fixed Hund’s
exchange parameter J to 0.7 eV. For each UY, the thin-
film structure was optimized and the DOS, ferroelectric
distortion (dgg), and Ti 2p core-level energy of the thin
films were calculated. Here, 8g for TiOY and PbO' layers is
defined as §8,(Ti) — 6.(O™) and 8.(Pb) — §.(O"), respectively.
As the split-off state can be spin polarized, different magnetic
configurations have to be investigated in the calculations.

The density of states in Fig. 3 show that the (ferromagnetic)
structures for U' < 4eV,4eV> Ul <5eV,and U] > 5eV
were metallic, half metallic, and insulating, respectively. We
observe magnetic ordering with a small magnetic moment of
0.5up for the DFT calculation (U = 0), while for U =4 eV
the moment is already almost 1. When a finite bandgap has
developed, the magnetic moment is of course exactly unity.

Figure 4(a) depicts the ferroelectric distortion (§gg) for each
layer in one of the domains of the thin films for different U
We observe the transition from a structurally smooth to a sharp
domain wall with a critical U;ﬁ between 4 and 5 eV. Recent
high-resolution transmission electron microscopy (HR-TEM)
measurements indeed reported a longitudinal domain wall
that shows a gradual change of the polarization over several
nanometers. This can be reconciled with the model of strongly
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FIG. 3. (Color online) Density of states (DOS) of the two do-
mains and the head-to-head domain wall in PbTiO; with different
Hubbard U on the Ti d states. Gray (red) and black lines (negative
and positive DOS values) represent minority and majority DOS,
respectively.

localized d electrons if we allow for a spatial distribution of
the Ti** over several layers, in contrast to the (electrostatically
unfavorable) accumulation in a single layer as assumed in our
model.

0.3

Ti 2p core level (eV)
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FIG. 4. (Color online) (a) Calculated ferroelectric distortion
(6re) in different layers of the head-to-head domain wall (DW) in
PbTiO; for varying Hubbard U on Ti d states. Since the introduced
surface charge is 62% smaller than what would be expected from
the bulk polarization, the ferroelectric distortions are accordingly
smaller. The dashed lines indicate the bulk values (scaled by 0.62)
of the ferroelectric distortions for the PbO and TiO, planes. (b) Ti
2p core-level energies for different U. The core-level energies at
the surface are fixed for U = 0 eV to 0; lines have been shifted by
200 meV for visibility.
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FIG. 5. (Color online) (a) and (b) Orbital-resolved density of
states of the Ti atoms in a head-to-head domain wall in PbTiO;
in c(2x2) geometry. Curves outlining the filled or shaded areas
correspond to d,, or d,. orbital contributions, respectively. Notice that
the ferroelectric polarization is directed along the z axis, therefore we
see the electrons localize on d,, (Ti,) and d,, (Ti») when a Hubbard
U of 5.5eV is applied on the Ti d states. (c) Electron density (yellow)
localized in the TiO, layer at head-to-head domain wall. Large (gray),
small (red), and medium-sized (blue) spheres represent Pb, O, and Ti
atoms, respectively.

The transition from a smooth to a sharp domain wall with
increasing U}i is also visible electronically in the Ti 2p core-
level shifts that are presented in Fig. 4(b), where only the
majority spin channels of the 2 p core-level energies are shown.
The difference of the 2p core-level energies of the two spin
channels is (for Ti*?) about 0.2 eV. For U} = 0 eV, the core-
level shifts between the Ti atoms in the domain wall and the
Ti atoms at other layers are small (about 0.15 eV). In contrast,
these shifts increase for U] = 5-6 eV (shifts between Ti">
and neighboring Ti™) to about 4+2.5 eV. This value can be
compared to the experimentally determined core-level shift
between TiO, and Ti,O3 that amounts to roughly +1 eV [29].

In Fig. 5 the orbital-resolved d-DOS of the Ti atoms at
the head-to-head domain wall with U;,n = 5.5 eV is shown.
This DOS and the corresponding charge density near the
Fermi energy [see Fig. 5(c)] shows an orbital ordering at the
central (domain wall) layer. Each atomic Ti site is occupied by
one electron in the d levels. Here, the d,, and d_, orbitals
accommodate the two electrons at the Ti; and Ti, sites;
therefore, the TiOg octahedron is distorted. When an electron
is accommodated at a d,, orbital, the TiOg octahedron is
elongated in the y direction and contracted in the x direction.
This distortion is the opposite way when an electron is
localized on a d,, orbital. This distortion (expressed as the
difference of the Ti-O bond length in the two directions)
amounts to 0.09 A for U(;ﬁ =5.5eV.
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In addition, different magnetic orderings, i.e., ferromag-
netic (FM) and antiferromagnetic (AFM), were considered at
the domain wall. We find that the FM state is energetically
more favorable than the AFM ordering: For U]' ranging
from 4.5 to 6 eV, the energy difference Eapv-Erv changes
from 75 to 29 meV. We see that larger values of U lead
to stronger localization and reduced hopping, resulting in a
smaller exchange interaction.

Up to now, we considered (bulk) polarizations that are
compatible with the existence of one additional electron/hole
per unit cell at the domain walls. As the ferroelectric polar-
ization varies for different materials or as it can be changed
in thin films by the defect concentration at the surface, it is
important to know how the electronic structure at the domain
wall is manipulated by varying the ferroelectric polarization.
For example, there is experimental data showing a change
of ferroelectric polarization P with varying oxygen partial
pressure at the surface [17]. A question arising in this context
is now whether the electrons at the domain wall always remain
localized, or, below a critical P, form an extended state or
electron gas.

In the following, we keep U fixed at 5.5 eV for all Ti atoms
and simulate different ferroelectric polarizations by varying
the defect concentration at the tails of the domains. In our film
model, where the HH domain wall is located at the center of
the film, this means that we vary the concentration of charged
defects at the surface between 0.3e™ and 1.0e™ per c(2x2) in-
plane unit cell. Consequently, the charge accumulating in the
domain wall is 0.3—1.0e™ per Ti atom. The charge defects on
the surface were simulated by the virtual crystal approximation
[i.e., the nuclear and electron number of the atoms at the
O sites was varied smoothly between 8 (O) and 9 (F)] and
the thin-film structure was optimized. Figure 6(a) shows the
relation between surface defect concentration and ferroelectric
distortion in the layers of the thin film. We further calculated
the local Ti DOS at the domain wall for each optimized
structure (cf. Fig. 7) finding that the electronic structure at the
domain wall can be modified from insulating to conducting by
a small change of P, i.e., by changing the defect concentration
on the surface. This result is in agreement with theoretical
investigations of Sr-doped LaTiO3 [25]. Qualitatively, we see
that beyond a critical concentration the electrons at the DW
tend to localize on a Ti d band. In cases of integer filling (1.0
and 0.5 e~ /surface unit cell), we observe an insulating ground
state, while in between metallic phases are observed (Fig. 7).
However, we can expect that the insulating regime extends
much further and the observed metallicity is just a size effect
from the c(2x2) unit cell. We will discuss this aspect in the
next section for the p(2x2) geometry.

In Fig. 6 we show the ferroelectric distortion (Sgg) for
each layer of the thin films for different defect concentrations.
We find that not only dpg decreases by reducing the defect
concentration, there is also a transition to an extended domain
wall for 0.3e~ charge defects indicating delocalization of the
Ti 2d electrons. This is also visible in the Ti 2 p core-level shifts
presented in Fig. 6(b) for different charge defects on surfaces.
The core-level shifts between Ti atoms at the domain wall
increase by decreasing charge defects at the surface. Below
0.3e™ per surface unit cell the screening charge is delocalized
and the core level shifts (CLSs) for both central Ti atoms are
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FIG. 6. (Color online) (a) Calculated ferroelectric distortion
(8pg) at different layers of the head-to-head domain wall (DW) in
PbTiO; with the fixed UT' = 5.5 eV and varying defect concentration
at the thin-film surface. (b) Ti 2 p core-level energies for these defect
concentrations at the thin-film surface. The core-level energies at the
surface are fixed for 1 electron/surface concentration to 0 meV; lines
have been shifted by 200 meV for visibility. Solid and dashed lines
represent the two different Ti atoms, Ti; and Ti, in Fig. 5(c), at each
layer, respectively.

similar. Beyond 0.5¢~ per unit cell one electron localizes on
one of the Ti atoms and the CLS amounts to almost 2 eV for
that atom. For one electron per unit cell, both Ti get equivalent
again and show a large CLS.

C. p(2x2) unit cells

To identify artifacts in the above analysis that come from
the size constraint of the c(2x2) unit cell, we studied the
localization and orbital order on Ti at domain walls in p(2x2)
geometry. For this purpose, we constructed a thin film of
PbTiO; of seven-layer thickness. In this setup, we choose
the same termination and mirror symmetry as in the c(2x2)
geometry. The concentration of the charge defects at the
p(2x2) thin-film surface was varied from 1.5¢~ to le~ and
0.5¢~ per in-plane unit cell. Again, the charge defects on the
surface were simulated by the virtual crystal approximation.
On the other hand, the polarization charges at the domain
wall which are induced by the polarization are compensated
by a change of the Ti valency (localization of an electron on
Ti assisted in the DFT calculation by a Hubbard U). In this
geometry there are four Ti atoms at the domain wall. For 1.5¢~,
le™, and 0.5¢~ defects at the surface the valency of three, two,
and one Ti at the domain wall was changed, respectively. U"
was again fixed to 5.5 eV and the structure of the thin film was
optimized. For each defect concentration insulating behavior
was observed. The gap in these configurations is smaller than
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FIG. 7. (Color online) Majority density of states of Ti at the head-
to-head domain wall in PbTiOj; for different defect concentration at
the thin-film surface: Panels (a)—(e) show the local DOS for 1, 0.8, 0.6,
0.5, and 0.3 electron defects per c(2x2) surface unit cell, respectively.

that of the c(2x2) cell with the 0.5¢~ or le~ defect. One
should note, that the concentrations of the 1.5¢~ and 0.5¢~
defects would correspond to 0.25¢~ and 0.75¢~ per c(2x2)
surface unit cell and hence we find that metallic behavior is
suppressed and that also in these cases the correlation effect can
introduce split-off states within the gap. Thus, charge-ordered
states keep the structure insulating. Nevertheless, we also see
that the gap shrinks in Fig. 7 from (a) to (d) for a fixed value
of U and below a certain electron concentration, a transition
to metallic behavior can be expected. However, the details
of this metal-to-insulator transition might actually be very
complex as the decreasing concentration of Ti ™ can counteract
the decrease in the bandgap and hence the band picture of
conductance might not be appropriate in the limit of small gaps.

Moreover for two electrons in the p(2x2) unit cell of
the domain wall, we investigated two different electronic
structures at the Ti*> atoms: First, one electron was localized
on ad, orbital of Ti; and other one on the d_, orbital of Ti4 (cf.
Fig. 8). In comparison the two electrons were localized on the
same orbital type, e.g., dy., on Ti; and Tis. We found that the
second electronic structure is more favorable than the first one
by 94 meV per p(2x2) unit cell. This type of orbital ordering is
different from the one obtained by DFT4-U calculations of the
two-dimensional electron gas at the LaAlO3/SrTiO; interface,
where a d,, orbital was occupied at every second Ti site [27].

At the head-to-head domain wall of PbTis, also for three
Ti™? atoms in the p(2x2) unit cell, strong orbital-ordering
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FIG. 8. (Color online) Orbital resolved density of states of Ti at
a head-to-head domain wall in PbTiO;, the p(2x2) geometry with
a Hubbard U of 5.5 eV on the Ti d states. The orbital contribution
of the d., and d,. orbitals is indicated by filled and shaded curves,
respectively. In the inset, (blue) spheres represent Ti atoms and the
yellow lobes represent the electrons which are localized on Ti.

effects were observed, again with alternating d, and d,,
orbitals as nearest neighbors.

IV. CONCLUSIONS

The atomic and electronic structure of longitudinal domain
walls in PbTiOj; stabilized by charge compensating defects
was investigated from first principles. The tail-to-tail domain
walls (in supercell geometry) or the tails of the domains (in
thin-film setup) were stabilized by F atoms replacing O or
oxygen defects. At the resulting head-to-head domain wall,
one electron is accommodated by the Ti d band. Simulating
strong correlation effects by inclusion of a static Hubbard
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U, we find a metal-to-insulator transition at a critical U of
about 5 eV. The calculation of magnetic configurations at the
domain walls with one electron per Ti atom in the central layer
showed that the ferromagnetic configuration is energetically
more favorable than the antiferromagnetic one. Although
this insulating domain-wall model is—in contrast to recent
HR-TEM investigations—atomically sharp (the ferroelectric
displacements revert across the interface within two unit cells),
one can assume that in the realistic head-to-head domain wall
with a more extended distribution of Ti*? sites over several
layers similar localization effects should occur resulting in
insulating domain walls.

While these structures are very similar to those at interfaces
between different polar insulators, the use of ferroelectric
materials in principle enables one to tune the interface or
domain wall by varying the ferroelectric polarization. The
resulting changes of the electronic structure of the head-
to-head domain wall were also investigated and complex
charge- and orbital-ordering effects have been found. Although
our model for on-site correlation is a simple frequency-
independent method, it can be expected to capture this
part of the complexity to some extent. In particular, our
investigation suggests that the insulator-metal transition in Ti
oxides is not necessarily sharp; charge- and orbital-ordering
effects allow a variation of the electron concentration without
losing the insulating properties of the system within a certain
range.
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