000155932 001__ 155932
000155932 005__ 20240711085600.0
000155932 0247_ $$2doi$$a10.1016/j.ces.2013.12.030
000155932 0247_ $$2ISSN$$a0009-2509
000155932 0247_ $$2ISSN$$a1873-4405
000155932 0247_ $$2WOS$$aWOS:000332392100010
000155932 037__ $$aFZJ-2014-04862
000155932 041__ $$aEnglish
000155932 082__ $$a660
000155932 1001_ $$0P:(DE-HGF)0$$aLi, H.$$b0$$eCorresponding Author
000155932 245__ $$aExperimental and modeling study of gas transport through composite ceramic membranes
000155932 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2014
000155932 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1411020202_17264
000155932 3367_ $$2DataCite$$aOutput Types/Journal article
000155932 3367_ $$00$$2EndNote$$aJournal Article
000155932 3367_ $$2BibTeX$$aARTICLE
000155932 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000155932 3367_ $$2DRIVER$$aarticle
000155932 520__ $$aConcerning the gas transport through ceramic membranes, insufficient attention is paid to concentration polarization (mass transfer) in the measuring cell or module used and to support effects. Therefore, the aim of this study is to demonstrate these effects based on a combined experimental and modeling study of two types of membranes. The gas permeation through a graded ceramic microporous membrane consisting of α-Al2O3/γ-Al2O3/silica was well simulated with the “Binary-Friction-Model” (α-Al2O3/γ-Al2O3 substrate) and the Maxwell–Stefan model (silica top-layer), respectively. For both the α-Al2O3 support and γ-Al2O3 interlayer, the geometric factors, such as the pore radius (r), and the ratio of porosity versus tortuosity (ε/τ) obtained from single gas permeation agree well with physical characterizations. Knudsen diffusion is the dominant transport mechanism through both the α-Al2O3 support and γ-Al2O3 interlayer and the support effect cannot be neglected due to significant contributions of transport resistance.For the asymmetric BSCF membrane the comparison of experimental data and gas transport simulation using the “Binary-Friction-Model” and the “Wagner equation” coupled to a 2D fluent simulation to account for the local variations of oxygen concentration and gas velocities profiles show a deviation by a factor of ca. 2. The oxygen concentration profile and the gas velocity profile derived from 2D fluent clearly pointed out the concentration polarization effect, which resulted in a permeation reduction up to ca. 20.3%. The porous support exerts a great influence on the gas transport through the asymmetric BSCF membrane. With increasing sweep flow rates, the effect of concentration polarization is less pronounced, while the gas transport through dense and support layer become more important.
000155932 536__ $$0G:(DE-HGF)POF2-122$$a122 - Power Plants (POF2-122)$$cPOF2-122$$fPOF II$$x0
000155932 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x1
000155932 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000155932 7001_ $$0P:(DE-HGF)0$$aSchygulla, U.$$b1
000155932 7001_ $$0P:(DE-Juel1)141929$$aHoffmann, J.$$b2$$ufzj
000155932 7001_ $$0P:(DE-Juel1)144671$$aNiehoff, P.$$b3$$ufzj
000155932 7001_ $$0P:(DE-HGF)0$$aHaas-Santo, K.$$b4
000155932 7001_ $$0P:(DE-HGF)0$$aDittmeyer, R.$$b5
000155932 773__ $$0PERI:(DE-600)1501538-5$$a10.1016/j.ces.2013.12.030$$gVol. 108, p. 94 - 102$$p94 - 102$$tChemical engineering science$$v108$$x0009-2509$$y2014
000155932 8564_ $$uhttps://juser.fz-juelich.de/record/155932/files/FZJ-2014-04862.pdf$$yRestricted
000155932 909CO $$ooai:juser.fz-juelich.de:155932$$pVDB
000155932 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)141929$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000155932 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144671$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000155932 9132_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bPOF III$$lForschungsbereich Energie$$vEnergieeffizienz, Materialien und Ressourcen$$x0
000155932 9131_ $$0G:(DE-HGF)POF2-122$$1G:(DE-HGF)POF2-120$$2G:(DE-HGF)POF2-100$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lRationelle Energieumwandlung und -nutzung$$vPower Plants$$x0
000155932 9141_ $$y2014
000155932 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000155932 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000155932 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000155932 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000155932 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000155932 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000155932 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000155932 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000155932 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000155932 920__ $$lyes
000155932 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000155932 980__ $$ajournal
000155932 980__ $$aVDB
000155932 980__ $$aI:(DE-Juel1)IEK-1-20101013
000155932 980__ $$aUNRESTRICTED
000155932 981__ $$aI:(DE-Juel1)IMD-2-20101013