000155986 001__ 155986
000155986 005__ 20240625095036.0
000155986 0247_ $$2doi$$a10.1088/0953-8984/26/27/274202
000155986 0247_ $$2ISSN$$a1361-648X
000155986 0247_ $$2ISSN$$a0953-8984
000155986 0247_ $$2WOS$$aWOS:000338702600005
000155986 037__ $$aFZJ-2014-04906
000155986 082__ $$a530
000155986 1001_ $$0P:(DE-HGF)0$$aFukushima, T.$$b0$$eCorresponding Author
000155986 245__ $$aHubbard U calculations for gap states in dilute magnetic semiconductors
000155986 260__ $$aBristol$$bIOP Publ.$$c2014
000155986 3367_ $$2DRIVER$$aarticle
000155986 3367_ $$2DataCite$$aOutput Types/Journal article
000155986 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1552577246_31636
000155986 3367_ $$2BibTeX$$aARTICLE
000155986 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000155986 3367_ $$00$$2EndNote$$aJournal Article
000155986 520__ $$aOn the basis of constrained density functional theory, we present ab initio calculations for the Hubbard U parameter of transition metal impurities in dilute magnetic semiconductors, choosing Mn in GaN as an example. The calculations are performed by two methods: (i) the Korringa–Kohn–Rostoker (KKR) Green function method for a single Mn impurity in GaN and (ii) the full-potential linearized augmented plane-wave (FLAPW) method for a large supercell of GaN with a single Mn impurity in each cell. By changing the occupancy of the majority t2 gap state of Mn, we determine the U parameter either from the total energy differences E(N + 1) and E(N − 1) of the (N ± 1)-electron excited states with respect to the ground state energy E(N), or by using the single-particle energies for $n_0\pm \frac {1}{2}$ occupancies around the charge-neutral occupancy n0 (Janak's transition state model). The two methods give nearly identical results. Moreover the values calculated by the supercell method agree quite well with the Green function values. We point out an important difference between the 'global' U parameter calculated using Janak's theorem and the 'local' U of the Hubbard model.
000155986 536__ $$0G:(DE-HGF)POF2-422$$a422 - Spin-based and quantum information (POF2-422)$$cPOF2-422$$fPOF II$$x0
000155986 536__ $$0G:(DE-Juel1)jiff02_20120501$$aQuantum description of nanoscale processes in materials science (jiff02_20120501)$$cjiff02_20120501$$fQuantum description of nanoscale processes in materials science$$x1
000155986 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000155986 7001_ $$0P:(DE-HGF)0$$aKatayama-Yoshida, H.$$b1
000155986 7001_ $$0P:(DE-HGF)0$$aSato, K.$$b2
000155986 7001_ $$0P:(DE-Juel1)130545$$aBihlmayer, G.$$b3$$ufzj
000155986 7001_ $$0P:(DE-Juel1)130823$$aMavropoulos, P.$$b4$$ufzj
000155986 7001_ $$0P:(DE-Juel1)130526$$aBauer, David$$b5$$ufzj
000155986 7001_ $$0P:(DE-Juel1)131057$$aZeller, R.$$b6$$ufzj
000155986 7001_ $$0P:(DE-Juel1)130612$$aDederichs, P. H.$$b7$$ufzj
000155986 773__ $$0PERI:(DE-600)1472968-4$$a10.1088/0953-8984/26/27/274202$$gVol. 26, no. 27, p. 274202 -$$n27$$p274202$$tJournal of physics / Condensed matter$$v26$$x1361-648X$$y2014
000155986 8564_ $$uhttps://juser.fz-juelich.de/record/155986/files/FZJ-2014-04906.pdf$$yRestricted
000155986 909CO $$ooai:juser.fz-juelich.de:155986$$pVDB
000155986 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130545$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000155986 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130823$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000155986 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130526$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000155986 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131057$$aForschungszentrum Jülich GmbH$$b6$$kFZJ
000155986 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130612$$aForschungszentrum Jülich GmbH$$b7$$kFZJ
000155986 9132_ $$0G:(DE-HGF)POF3-142$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bPOF III$$lForschungsbereich Energie$$vFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$x0
000155986 9131_ $$0G:(DE-HGF)POF2-422$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vSpin-based and quantum information$$x0
000155986 9141_ $$y2014
000155986 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000155986 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000155986 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000155986 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000155986 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000155986 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000155986 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000155986 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000155986 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000155986 915__ $$0StatID:(DE-HGF)1020$$2StatID$$aDBCoverage$$bCurrent Contents - Social and Behavioral Sciences
000155986 920__ $$lyes
000155986 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
000155986 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
000155986 9201_ $$0I:(DE-Juel1)IAS-3-20090406$$kIAS-3$$lTheoretische Nanoelektronik$$x2
000155986 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$kPGI-2$$lTheoretische Nanoelektronik$$x3
000155986 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x4
000155986 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x5
000155986 980__ $$ajournal
000155986 980__ $$aVDB
000155986 980__ $$aI:(DE-Juel1)IAS-1-20090406
000155986 980__ $$aI:(DE-Juel1)PGI-1-20110106
000155986 980__ $$aI:(DE-Juel1)IAS-3-20090406
000155986 980__ $$aI:(DE-Juel1)PGI-2-20110106
000155986 980__ $$aI:(DE-82)080009_20140620
000155986 980__ $$aI:(DE-82)080012_20140620
000155986 980__ $$aUNRESTRICTED
000155986 981__ $$aI:(DE-Juel1)PGI-1-20110106
000155986 981__ $$aI:(DE-Juel1)IAS-3-20090406
000155986 981__ $$aI:(DE-Juel1)PGI-2-20110106