001     155986
005     20240625095036.0
024 7 _ |a 10.1088/0953-8984/26/27/274202
|2 doi
024 7 _ |a 1361-648X
|2 ISSN
024 7 _ |a 0953-8984
|2 ISSN
024 7 _ |a WOS:000338702600005
|2 WOS
037 _ _ |a FZJ-2014-04906
082 _ _ |a 530
100 1 _ |a Fukushima, T.
|0 P:(DE-HGF)0
|b 0
|e Corresponding Author
245 _ _ |a Hubbard U calculations for gap states in dilute magnetic semiconductors
260 _ _ |a Bristol
|c 2014
|b IOP Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1552577246_31636
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a On the basis of constrained density functional theory, we present ab initio calculations for the Hubbard U parameter of transition metal impurities in dilute magnetic semiconductors, choosing Mn in GaN as an example. The calculations are performed by two methods: (i) the Korringa–Kohn–Rostoker (KKR) Green function method for a single Mn impurity in GaN and (ii) the full-potential linearized augmented plane-wave (FLAPW) method for a large supercell of GaN with a single Mn impurity in each cell. By changing the occupancy of the majority t2 gap state of Mn, we determine the U parameter either from the total energy differences E(N + 1) and E(N − 1) of the (N ± 1)-electron excited states with respect to the ground state energy E(N), or by using the single-particle energies for $n_0\pm \frac {1}{2}$ occupancies around the charge-neutral occupancy n0 (Janak's transition state model). The two methods give nearly identical results. Moreover the values calculated by the supercell method agree quite well with the Green function values. We point out an important difference between the 'global' U parameter calculated using Janak's theorem and the 'local' U of the Hubbard model.
536 _ _ |a 422 - Spin-based and quantum information (POF2-422)
|0 G:(DE-HGF)POF2-422
|c POF2-422
|f POF II
|x 0
536 _ _ |a Quantum description of nanoscale processes in materials science (jiff02_20120501)
|0 G:(DE-Juel1)jiff02_20120501
|c jiff02_20120501
|f Quantum description of nanoscale processes in materials science
|x 1
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |a Katayama-Yoshida, H.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Sato, K.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Bihlmayer, G.
|0 P:(DE-Juel1)130545
|b 3
|u fzj
700 1 _ |a Mavropoulos, P.
|0 P:(DE-Juel1)130823
|b 4
|u fzj
700 1 _ |a Bauer, David
|0 P:(DE-Juel1)130526
|b 5
|u fzj
700 1 _ |a Zeller, R.
|0 P:(DE-Juel1)131057
|b 6
|u fzj
700 1 _ |a Dederichs, P. H.
|0 P:(DE-Juel1)130612
|b 7
|u fzj
773 _ _ |a 10.1088/0953-8984/26/27/274202
|g Vol. 26, no. 27, p. 274202 -
|0 PERI:(DE-600)1472968-4
|n 27
|p 274202
|t Journal of physics / Condensed matter
|v 26
|y 2014
|x 1361-648X
856 4 _ |u https://juser.fz-juelich.de/record/155986/files/FZJ-2014-04906.pdf
|y Restricted
909 C O |p VDB
|o oai:juser.fz-juelich.de:155986
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)130545
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)130823
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)130526
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)131057
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)130612
913 2 _ |a DE-HGF
|b POF III
|l Forschungsbereich Energie
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-142
|2 G:(DE-HGF)POF3-100
|v Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|x 0
913 1 _ |a DE-HGF
|b Schlüsseltechnologien
|1 G:(DE-HGF)POF2-420
|0 G:(DE-HGF)POF2-422
|2 G:(DE-HGF)POF2-400
|v Spin-based and quantum information
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
|l Grundlagen zukünftiger Informationstechnologien
914 1 _ |y 2014
915 _ _ |a JCR/ISI refereed
|0 StatID:(DE-HGF)0010
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1020
|2 StatID
|b Current Contents - Social and Behavioral Sciences
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IAS-1-20090406
|k IAS-1
|l Quanten-Theorie der Materialien
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|k PGI-1
|l Quanten-Theorie der Materialien
|x 1
920 1 _ |0 I:(DE-Juel1)IAS-3-20090406
|k IAS-3
|l Theoretische Nanoelektronik
|x 2
920 1 _ |0 I:(DE-Juel1)PGI-2-20110106
|k PGI-2
|l Theoretische Nanoelektronik
|x 3
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 4
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 5
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IAS-1-20090406
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a I:(DE-Juel1)IAS-3-20090406
980 _ _ |a I:(DE-Juel1)PGI-2-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a I:(DE-82)080012_20140620
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)PGI-1-20110106
981 _ _ |a I:(DE-Juel1)IAS-3-20090406
981 _ _ |a I:(DE-Juel1)PGI-2-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21