001     156007
005     20240712100829.0
024 7 _ |a 10.5194/acp-14-3231-2014
|2 doi
024 7 _ |a 1680-7316
|2 ISSN
024 7 _ |a 1680-7324
|2 ISSN
024 7 _ |a 2128/7941
|2 Handle
024 7 _ |a WOS:000334608400005
|2 WOS
024 7 _ |a altmetric:21824014
|2 altmetric
037 _ _ |a FZJ-2014-04922
082 _ _ |a 550
100 1 _ |a Engel, I.
|0 P:(DE-Juel1)159462
|b 0
|e Corresponding Author
|u fzj
245 _ _ |a Arctic stratospheric dehydration – Part 2: Microphysical modeling
260 _ _ |a Katlenburg-Lindau
|c 2014
|b EGU
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 156007
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a Large areas of synoptic-scale ice PSCs (polar stratospheric clouds) distinguished the Arctic winter 2009/2010 from other years and revealed unprecedented evidence of water redistribution in the stratosphere. A unique snapshot of water vapor repartitioning into ice particles was obtained under extremely cold Arctic conditions with temperatures around 183 K. Balloon-borne, aircraft and satellite-based measurements suggest that synoptic-scale ice PSCs and concurrent reductions and enhancements in water vapor are tightly linked with the observed de- and rehydration signatures, respectively. In a companion paper (Part 1), water vapor and aerosol backscatter measurements from the RECONCILE (Reconciliation of essential process parameters for an enhanced predictability of Arctic stratospheric ozone loss and its climate interactions) and LAPBIAT-II (Lapland Atmosphere–Biosphere Facility) field campaigns have been analyzed in detail. This paper uses a column version of the Zurich Optical and Microphysical box Model (ZOMM) including newly developed NAT (nitric acid trihydrate) and ice nucleation parameterizations. Particle sedimentation is calculated in order to simulate the vertical redistribution of chemical species such as water and nitric acid. Despite limitations given by wind shear and uncertainties in the initial water vapor profile, the column modeling unequivocally shows that (1) accounting for small-scale temperature fluctuations along the trajectories is essential in order to reach agreement between simulated optical cloud properties and observations, and (2) the use of recently developed heterogeneous ice nucleation parameterizations allows the reproduction of the observed signatures of de- and rehydration. Conversely, the vertical redistribution of water measured cannot be explained in terms of homogeneous nucleation of ice clouds, whose particle radii remain too small to cause significant dehydration.
536 _ _ |a 234 - Composition and Dynamics of the Upper Troposphere and Stratosphere (POF2-234)
|0 G:(DE-HGF)POF2-234
|c POF2-234
|f POF II
|x 0
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |a Luo, B. P.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Khaykin, S. M.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Wienhold, F. G.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Vömel, H.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Kivi, R.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Hoyle, C. R.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Grooß, J.-U.
|0 P:(DE-Juel1)129122
|b 7
|u fzj
700 1 _ |a Pitts, M. C.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Peter, T.
|0 P:(DE-HGF)0
|b 9
773 _ _ |a 10.5194/acp-14-3231-2014
|g Vol. 14, no. 7, p. 3231 - 3246
|0 PERI:(DE-600)2069847-1
|n 7
|p 3231 - 3246
|t Atmospheric chemistry and physics
|v 14
|y 2014
|x 1680-7324
856 4 _ |u https://juser.fz-juelich.de/record/156007/files/FZJ-2014-04922.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/156007/files/FZJ-2014-04922.jpg?subformat=icon-144
|x icon-144
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/156007/files/FZJ-2014-04922.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/156007/files/FZJ-2014-04922.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:156007
|p openaire
|p open_access
|p driver
|p VDB:Earth_Environment
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)159462
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)129122
913 2 _ |a DE-HGF
|b Marine, Küsten- und Polare Systeme
|l Atmosphäre und Klima
|1 G:(DE-HGF)POF3-240
|0 G:(DE-HGF)POF3-244
|2 G:(DE-HGF)POF3-200
|v Composition and dynamics of the upper troposphere and middle atmosphere
|x 0
913 1 _ |a DE-HGF
|b Erde und Umwelt
|l Atmosphäre und Klima
|1 G:(DE-HGF)POF2-230
|0 G:(DE-HGF)POF2-234
|2 G:(DE-HGF)POF2-200
|v Composition and Dynamics of the Upper Troposphere and Stratosphere
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
914 1 _ |y 2014
915 _ _ |a Creative Commons Attribution CC BY 3.0
|0 LIC:(DE-HGF)CCBY3
|2 HGFVOC
915 _ _ |a JCR/ISI refereed
|0 StatID:(DE-HGF)0010
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1020
|2 StatID
|b Current Contents - Social and Behavioral Sciences
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-7-20101013
|k IEK-7
|l Stratosphäre
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a FullTexts
980 _ _ |a I:(DE-Juel1)IEK-7-20101013
981 _ _ |a I:(DE-Juel1)ICE-4-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21