000156035 001__ 156035
000156035 005__ 20240712100830.0
000156035 0247_ $$2doi$$a10.1002/2013JD020772
000156035 0247_ $$2WOS$$aWOS:000333138300021
000156035 0247_ $$2Handle$$a2128/16095
000156035 0247_ $$2altmetric$$aaltmetric:2156118
000156035 037__ $$aFZJ-2014-04934
000156035 082__ $$a550
000156035 1001_ $$0P:(DE-HGF)0$$aFueglistaler, S.$$b0$$eCorresponding Author
000156035 245__ $$aDeparture from Clausius- Clapeyron scaling of water entering the stratosphere in response to changes in tropical upwelling
000156035 260__ $$aWashington, DC$$bUnion$$c2014
000156035 3367_ $$2DRIVER$$aarticle
000156035 3367_ $$2DataCite$$aOutput Types/Journal article
000156035 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1412152653_10719
000156035 3367_ $$2BibTeX$$aARTICLE
000156035 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000156035 3367_ $$00$$2EndNote$$aJournal Article
000156035 520__ $$aWater entering the stratosphere ([H2O]entry) is strongly constrained by temperatures in the tropical tropopause layer (TTL). Temperatures at tropical tropopause levels are 15–20 K below radiative equilibrium. A strengthening of the residual circulation as suggested by general circulation models in response to increasing greenhouse gases is, based on radiative transfer calculations, estimated to lead to a temperature decrease of about 2 K per 10% change in upwelling (with some sensitivity to vertical scale length). For a uniform temperature change in the inner tropics, [H2O]entry may be expected to change as predicted by the temperature dependence of the vapor pressure, referred here as “Clausius-Clapeyron (CC) scaling.” Under CC scaling, this corresponds to ∼1 ppmv change in [H2O]entry per 10% change in upwelling. However, the change in upwelling also changes the residence time of air in the TTL. We show with trajectory calculations that this affects [H2O]entry, such that [H2O]entry changes ∼10 % less than expected from CC scaling. This residence time effect for water vapor is a consequence of the spatiotemporal variance in the temperature field. We show that for the present-day TTL, a little more than half of the effect is due to the systematic relation between flow and temperature field. The remainder can be understood from the perspective of a random walk problem, with slower ascent (longer path) increasing each air parcel's probability to encounter anomalously low temperatures. Our results show that atmospheric water vapor may depart from CC scaling with mean temperatures even when all physical processes of dehydration remain unchanged.
000156035 536__ $$0G:(DE-HGF)POF2-234$$a234 - Composition and Dynamics of the Upper Troposphere and Stratosphere (POF2-234)$$cPOF2-234$$fPOF II$$x0
000156035 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000156035 7001_ $$0P:(DE-HGF)0$$aLiu, Y. S.$$b1
000156035 7001_ $$0P:(DE-HGF)0$$aFlannaghan, T. J.$$b2
000156035 7001_ $$0P:(DE-Juel1)129141$$aPloeger, F.$$b3$$ufzj
000156035 7001_ $$0P:(DE-HGF)0$$aHaynes, P. H.$$b4
000156035 773__ $$0PERI:(DE-600)2016800-7$$a10.1002/2013JD020772$$n4$$p1962-1972$$tJournal of geophysical research / Atmospheres$$v119$$x0148-0227$$y2014
000156035 8564_ $$uhttps://juser.fz-juelich.de/record/156035/files/FZJ-2014-04934.pdf$$yOpenAccess
000156035 909CO $$ooai:juser.fz-juelich.de:156035$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire
000156035 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129141$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000156035 9132_ $$0G:(DE-HGF)POF3-244$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$aDE-HGF$$bPOF III$$lMarine, Küsten- und Polare Systeme$$vAtmosphäre und Klima$$x0
000156035 9131_ $$0G:(DE-HGF)POF2-234$$1G:(DE-HGF)POF2-230$$2G:(DE-HGF)POF2-200$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vComposition and Dynamics of the Upper Troposphere and Stratosphere$$x0
000156035 9141_ $$y2014
000156035 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000156035 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000156035 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000156035 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000156035 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000156035 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000156035 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000156035 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer review
000156035 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000156035 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000156035 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000156035 915__ $$0StatID:(DE-HGF)1020$$2StatID$$aDBCoverage$$bCurrent Contents - Social and Behavioral Sciences
000156035 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000156035 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x0
000156035 9801_ $$aFullTexts
000156035 980__ $$ajournal
000156035 980__ $$aVDB
000156035 980__ $$aUNRESTRICTED
000156035 980__ $$aI:(DE-Juel1)IEK-7-20101013
000156035 981__ $$aI:(DE-Juel1)ICE-4-20101013