Development of corrosion protection layers for current collectors

G. Teucher, M. Krott, T. Van Gestel, S. Uhlenbruck, R.-A. Eichel, H.P. Buchkremer Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung IEK-1, Jülich, Germany

<u>Introduction:</u> The first approaches of lithium ion batteries with simultaneous lithium and anion intercalation are based on commercial electrolytes consisting of organic solvents and a dissolved Li-salt. These solvents have a limited electrochemical and thermal stability. Therefore in the new dual-ion cell these solvents are replaced by ionic liquids, which are compatible with higher cell voltages. But some anions are corrosive to the aluminum current collector at potentials above 5 V. The approach of depositing an electronically conductive protection layer made of metal oxides is presented in this work.

Corrosion of current collector:

- aluminum oxide layer is locally removed
- Pit corrosion triggered by fluorinated anions like TFSI: bis(trifluoromethylsulfonyl)imide

Figure 1: Aluminum working electrode in 1 M LiTFSI/PMPyr-FSI electrolyte; (a) cyclic voltametry, 10 mV/s; (b) FE-SEM after CV; from Cho, E. et al., Electrochem. Comm., 2012, 22, 1-3.

Approach:

- Deposition of thin ceramic layers on aluminum foil by sol-gel method (dip- or spin-coating) and subsequent heat treatment or PVD (reactive sputtering)
- Materials: electronically conductive metal oxides, e.g. CGO, ZnO:Al

Figure 2 a: Sol wetted silicon wafer (5x5 cm²) using 0.15 M ethanolic solution of stabilized particles (sizes 0.7...7 nm).

Figure 2 b: Photo after 2x spin-coating and heat treatment at 500 °C (10 min).

Figure 3: Laser
ellipsometry
graphic of a layer
(see figure 3).
Except for the
thicker areas at
the edges, the
film thickness is
conformal
(52 nm).

Characterization:

- Laser ellipsometry for film thickness
- SEM and XRD for layer structure

Figure 4: SEM image of a ZnO:Al layer, deposited by spincoating 3x, heated at 500 °C (a) surface, (b) fracture.

The microstructure is fine-grained and microporous. The layer covered the substrate completely and had sufficient adhesion.

- Electrochemical investigation in test cells

Figure 5: CV of ZnO:Al layer on aluminum foil. The low and decreasing current density indicates a suppressed corrosion. Data from P. Meister, MEET Battery research center.

Conclusion and Outlook:

- Diverse mixed/doped oxides were synthesized and thin homogenous films were deposited on aluminum foil.
- Protection layers were characterized regarding their structure, firstly on silicon wafers.
- Samples of ZnO:Al films showed a promising electrochemical performance in CV tests.
- New materials with different compositions will be deposited and tested.
- The coating procedure will be improved referring to the layer's densification.