000156113 001__ 156113
000156113 005__ 20230426083113.0
000156113 0247_ $$2doi$$a10.1103/PhysRevB.90.054412
000156113 0247_ $$2ISSN$$a0163-1829
000156113 0247_ $$2ISSN$$a1095-3795
000156113 0247_ $$2ISSN$$a1550-235X
000156113 0247_ $$2ISSN$$a0556-2805
000156113 0247_ $$2ISSN$$a1098-0121
000156113 0247_ $$2WOS$$aWOS:000341266000004
000156113 0247_ $$2Handle$$a2128/9115
000156113 0247_ $$2altmetric$$aaltmetric:2398673
000156113 037__ $$aFZJ-2014-04987
000156113 082__ $$a530
000156113 1001_ $$0P:(DE-HGF)0$$aKashid, Vikas$$b0$$eCorresponding Author
000156113 245__ $$aDzyaloshinskii-Moriya interaction and chiral magnetism in 3d − 5d zigzag chains: Tight-binding model and ab initio calculations
000156113 260__ $$aCollege Park, Md.$$bAPS$$c2014
000156113 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1411547175_12263
000156113 3367_ $$2DataCite$$aOutput Types/Journal article
000156113 3367_ $$00$$2EndNote$$aJournal Article
000156113 3367_ $$2BibTeX$$aARTICLE
000156113 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000156113 3367_ $$2DRIVER$$aarticle
000156113 520__ $$aWe investigate the chiral magnetic order in freestanding planar 3d−5d biatomic metallic chains (3d: Fe, Co; 5d: Ir, Pt, Au) using first-principles calculations based on density functional theory. We find that the antisymmetric exchange interaction, commonly known as the Dzyaloshinskii-Moriya interaction (DMI), contributes significantly to the energetics of the magnetic structure. For the Fe-Pt and Co-Pt chains, the DMI can compete with the isotropic Heisenberg-type exchange interaction and the magnetocrystalline anisotropy energy, and for both cases a homogeneous left-rotating cycloidal chiral spin-spiral with a wavelength of 51 Å and 36 Å, respectively, was found. The sign of the DMI, which determines the handedness of the magnetic structure, changes in the sequence of the 5d atoms Ir(+), Pt(−), Au(+). We use the full-potential linearized augmented plane wave method and perform self-consistent calculations of homogeneous spin spirals, calculating the DMI by treating the effect of spin-orbit interaction in the basis of the spin-spiral states in first-order perturbation theory. To gain insight into the DMI results of our ab initio calculations, we develop a minimal tight-binding model of three atoms and four orbitals that contains all essential features: the spin canting between the magnetic 3d atoms, the spin-orbit interaction at the 5d atoms, and the structure inversion asymmetry facilitated by the triangular geometry. We find that spin canting can lead to spin-orbit active eigenstates that split in energy due to the spin-orbit interaction at the 5d atom. We show that the sign and strength of the hybridization, the bonding or antibonding character between d orbitals of the magnetic and nonmagnetic sites, the bandwidth, and the energy difference between occupied and unoccupied states of different spin projection determine the sign and strength of the DMI. The key features observed in the trimer model are also found in the first-principles results.
000156113 536__ $$0G:(DE-HGF)POF2-422$$a422 - Spin-based and quantum information (POF2-422)$$cPOF2-422$$fPOF II$$x0
000156113 542__ $$2Crossref$$i2014-08-18$$uhttp://link.aps.org/licenses/aps-default-license
000156113 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000156113 7001_ $$0P:(DE-Juel1)138253$$aSchena, Timo$$b1$$ufzj
000156113 7001_ $$0P:(DE-Juel1)131065$$aZimmermann, Bernd$$b2$$ufzj
000156113 7001_ $$0P:(DE-Juel1)130848$$aMokrousov, Yuriy$$b3$$ufzj
000156113 7001_ $$0P:(DE-Juel1)130548$$aBlügel, Stefan$$b4$$ufzj
000156113 7001_ $$0P:(DE-HGF)0$$aShah, Vaishali$$b5
000156113 7001_ $$0P:(DE-HGF)0$$aSalunke, H. G.$$b6
000156113 77318 $$2Crossref$$3journal-article$$a10.1103/physrevb.90.054412$$bAmerican Physical Society (APS)$$d2014-08-18$$n5$$p054412$$tPhysical Review B$$v90$$x1098-0121$$y2014
000156113 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.90.054412$$gVol. 90, no. 5, p. 054412$$n5$$p054412$$tPhysical review / B$$v90$$x1098-0121$$y2014
000156113 8564_ $$uhttps://juser.fz-juelich.de/record/156113/files/FZJ-2014-04987.pdf$$yOpenAccess
000156113 909CO $$ooai:juser.fz-juelich.de:156113$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000156113 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000156113 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000156113 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000156113 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000156113 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000156113 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000156113 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000156113 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000156113 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000156113 915__ $$0StatID:(DE-HGF)1020$$2StatID$$aDBCoverage$$bCurrent Contents - Social and Behavioral Sciences
000156113 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000156113 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000156113 9141_ $$y2014
000156113 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138253$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000156113 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131065$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000156113 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130848$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000156113 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130548$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000156113 9132_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bPOF III$$lForschungsbereich Energie$$vFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$x0
000156113 9131_ $$0G:(DE-HGF)POF2-422$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vSpin-based and quantum information$$x0
000156113 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
000156113 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
000156113 980__ $$ajournal
000156113 980__ $$aVDB
000156113 980__ $$aUNRESTRICTED
000156113 980__ $$aI:(DE-Juel1)IAS-1-20090406
000156113 980__ $$aI:(DE-Juel1)PGI-1-20110106
000156113 9801_ $$aFullTexts
000156113 981__ $$aI:(DE-Juel1)PGI-1-20110106
000156113 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nature05802
000156113 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.288.5472.1805
000156113 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.101.027201
000156113 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.108.197204
000156113 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.88.057201
000156113 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.78.140403
000156113 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.110.177204
000156113 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/26/10/104202
000156113 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nnano.2013.102
000156113 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nmat3675
000156113 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.104.137203
000156113 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.96.167203
000156113 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1367-2630/9/10/396
000156113 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nphys2045
000156113 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.1240573
000156113 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0022-3697(58)90076-3
000156113 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRev.120.91
000156113 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0304-8853(76)90069-X
000156113 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.44.1538
000156113 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.4028/www.scientific.net/MSF.59-60.439
000156113 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1143/JPSJ.53.3624
000156113 999C5 $$1I. E. Dzyaloshinskii$$2Crossref$$oI. E. Dzyaloshinskii 1965$$y1965
000156113 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/416301a
000156113 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.69.212410
000156113 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.70.100404
000156113 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.73.104427
000156113 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/srep03054
000156113 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jmmm.2011.03.007
000156113 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1080/10584587.2012.686823
000156113 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.87.054425
000156113 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.24.864
000156113 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.30.561
000156113 999C5 $$1C. Herring$$2Crossref$$oC. Herring Magnetism 1966$$tMagnetism$$y1966
000156113 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/pssb.2221360119
000156113 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/3/44/004
000156113 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.80.890
000156113 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1139/p80-159
000156113 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physb.2009.06.070
000156113 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1166/jnn.2011.3926
000156113 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/s11051-011-0507-8
000156113 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.4710081
000156113 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.56.2728
000156113 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.81.208
000156113 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.77.1805
000156113 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRev.94.1498
000156113 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1098/rspa.1936.0075
000156113 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1098/rspa.1938.0066
000156113 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1023/A:1020070028021
000156113 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/18/29/018