001     156113
005     20230426083113.0
024 7 _ |2 doi
|a 10.1103/PhysRevB.90.054412
024 7 _ |2 ISSN
|a 0163-1829
024 7 _ |2 ISSN
|a 1095-3795
024 7 _ |2 ISSN
|a 1550-235X
024 7 _ |2 ISSN
|a 0556-2805
024 7 _ |2 ISSN
|a 1098-0121
024 7 _ |2 WOS
|a WOS:000341266000004
024 7 _ |2 Handle
|a 2128/9115
024 7 _ |a altmetric:2398673
|2 altmetric
037 _ _ |a FZJ-2014-04987
082 _ _ |a 530
100 1 _ |0 P:(DE-HGF)0
|a Kashid, Vikas
|b 0
|e Corresponding Author
245 _ _ |a Dzyaloshinskii-Moriya interaction and chiral magnetism in 3d − 5d zigzag chains: Tight-binding model and ab initio calculations
260 _ _ |a College Park, Md.
|b APS
|c 2014
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1411547175_12263
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 0
|2 EndNote
|a Journal Article
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |2 DRIVER
|a article
520 _ _ |a We investigate the chiral magnetic order in freestanding planar 3d−5d biatomic metallic chains (3d: Fe, Co; 5d: Ir, Pt, Au) using first-principles calculations based on density functional theory. We find that the antisymmetric exchange interaction, commonly known as the Dzyaloshinskii-Moriya interaction (DMI), contributes significantly to the energetics of the magnetic structure. For the Fe-Pt and Co-Pt chains, the DMI can compete with the isotropic Heisenberg-type exchange interaction and the magnetocrystalline anisotropy energy, and for both cases a homogeneous left-rotating cycloidal chiral spin-spiral with a wavelength of 51 Å and 36 Å, respectively, was found. The sign of the DMI, which determines the handedness of the magnetic structure, changes in the sequence of the 5d atoms Ir(+), Pt(−), Au(+). We use the full-potential linearized augmented plane wave method and perform self-consistent calculations of homogeneous spin spirals, calculating the DMI by treating the effect of spin-orbit interaction in the basis of the spin-spiral states in first-order perturbation theory. To gain insight into the DMI results of our ab initio calculations, we develop a minimal tight-binding model of three atoms and four orbitals that contains all essential features: the spin canting between the magnetic 3d atoms, the spin-orbit interaction at the 5d atoms, and the structure inversion asymmetry facilitated by the triangular geometry. We find that spin canting can lead to spin-orbit active eigenstates that split in energy due to the spin-orbit interaction at the 5d atom. We show that the sign and strength of the hybridization, the bonding or antibonding character between d orbitals of the magnetic and nonmagnetic sites, the bandwidth, and the energy difference between occupied and unoccupied states of different spin projection determine the sign and strength of the DMI. The key features observed in the trimer model are also found in the first-principles results.
536 _ _ |0 G:(DE-HGF)POF2-422
|a 422 - Spin-based and quantum information (POF2-422)
|c POF2-422
|f POF II
|x 0
542 _ _ |i 2014-08-18
|2 Crossref
|u http://link.aps.org/licenses/aps-default-license
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |0 P:(DE-Juel1)138253
|a Schena, Timo
|b 1
|u fzj
700 1 _ |0 P:(DE-Juel1)131065
|a Zimmermann, Bernd
|b 2
|u fzj
700 1 _ |0 P:(DE-Juel1)130848
|a Mokrousov, Yuriy
|b 3
|u fzj
700 1 _ |0 P:(DE-Juel1)130548
|a Blügel, Stefan
|b 4
|u fzj
700 1 _ |0 P:(DE-HGF)0
|a Shah, Vaishali
|b 5
700 1 _ |0 P:(DE-HGF)0
|a Salunke, H. G.
|b 6
773 1 8 |a 10.1103/physrevb.90.054412
|b American Physical Society (APS)
|d 2014-08-18
|n 5
|p 054412
|3 journal-article
|2 Crossref
|t Physical Review B
|v 90
|y 2014
|x 1098-0121
773 _ _ |a 10.1103/PhysRevB.90.054412
|g Vol. 90, no. 5, p. 054412
|0 PERI:(DE-600)2844160-6
|n 5
|p 054412
|t Physical review / B
|v 90
|y 2014
|x 1098-0121
856 4 _ |u https://juser.fz-juelich.de/record/156113/files/FZJ-2014-04987.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:156113
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)138253
|a Forschungszentrum Jülich GmbH
|b 1
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)131065
|a Forschungszentrum Jülich GmbH
|b 2
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)130848
|a Forschungszentrum Jülich GmbH
|b 3
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)130548
|a Forschungszentrum Jülich GmbH
|b 4
|k FZJ
913 2 _ |0 G:(DE-HGF)POF3-143
|1 G:(DE-HGF)POF3-140
|2 G:(DE-HGF)POF3-100
|a DE-HGF
|b POF III
|l Forschungsbereich Energie
|v Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|x 0
913 1 _ |0 G:(DE-HGF)POF2-422
|1 G:(DE-HGF)POF2-420
|2 G:(DE-HGF)POF2-400
|a DE-HGF
|b Schlüsseltechnologien
|v Spin-based and quantum information
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
|l Grundlagen zukünftiger Informationstechnologien
914 1 _ |y 2014
915 _ _ |0 StatID:(DE-HGF)0010
|2 StatID
|a JCR/ISI refereed
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0420
|2 StatID
|a Nationallizenz
915 _ _ |0 StatID:(DE-HGF)1020
|2 StatID
|a DBCoverage
|b Current Contents - Social and Behavioral Sciences
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
|a American Physical Society Transfer of Copyright Agreement
920 1 _ |0 I:(DE-Juel1)IAS-1-20090406
|k IAS-1
|l Quanten-Theorie der Materialien
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|k PGI-1
|l Quanten-Theorie der Materialien
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IAS-1-20090406
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 1 _ |a FullTexts
981 _ _ |a I:(DE-Juel1)PGI-1-20110106
999 C 5 |a 10.1038/nature05802
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1126/science.288.5472.1805
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.101.027201
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.108.197204
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.88.057201
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.78.140403
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.110.177204
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0953-8984/26/10/104202
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nnano.2013.102
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nmat3675
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.104.137203
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.96.167203
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/1367-2630/9/10/396
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nphys2045
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1126/science.1240573
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/0022-3697(58)90076-3
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRev.120.91
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/0304-8853(76)90069-X
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.44.1538
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.4028/www.scientific.net/MSF.59-60.439
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1143/JPSJ.53.3624
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 I. E. Dzyaloshinskii
|y 1965
|2 Crossref
|o I. E. Dzyaloshinskii 1965
999 C 5 |a 10.1038/416301a
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.69.212410
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.70.100404
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.73.104427
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/srep03054
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.jmmm.2011.03.007
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1080/10584587.2012.686823
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.87.054425
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.24.864
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.30.561
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 C. Herring
|y 1966
|2 Crossref
|t Magnetism
|o C. Herring Magnetism 1966
999 C 5 |a 10.1002/pssb.2221360119
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0953-8984/3/44/004
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.80.890
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1139/p80-159
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.physb.2009.06.070
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1166/jnn.2011.3926
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1007/s11051-011-0507-8
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.4710081
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.56.2728
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.81.208
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.77.1805
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRev.94.1498
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1098/rspa.1936.0075
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1098/rspa.1938.0066
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1023/A:1020070028021
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0953-8984/18/29/018
|9 -- missing cx lookup --
|2 Crossref


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21