000156131 001__ 156131
000156131 005__ 20240712100833.0
000156131 0247_ $$2doi$$a10.1002/2014JD021779
000156131 0247_ $$2WOS$$aWOS:000342914200001
000156131 0247_ $$2Handle$$a2128/16100
000156131 037__ $$aFZJ-2014-04992
000156131 082__ $$a550
000156131 1001_ $$0P:(DE-Juel1)142033$$aKalisch, Silvio$$b0$$eCorresponding Author$$ufzj
000156131 245__ $$aDifferences in gravity wave drag between realistic oblique and assumed vertical propagation
000156131 260__ $$aWashington, DC$$bUnion$$c2014
000156131 3367_ $$2DRIVER$$aarticle
000156131 3367_ $$2DataCite$$aOutput Types/Journal article
000156131 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1411638493_5228
000156131 3367_ $$2BibTeX$$aARTICLE
000156131 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000156131 3367_ $$00$$2EndNote$$aJournal Article
000156131 520__ $$aGravity wave (GW) parametrizations for general circulation models (GCMs) restrict the propagation of GWs to the vertical direction. The influence of this vertical-only propagation assumption on the distribution of GW drag (GWD) has not yet been investigated. Thus, we present results of two global GW ray tracing simulations, one with full three-dimensional propagation (GWO) and a second one with vertical-only propagation (GWV) of GWs for January and July 2008. The Gravity wave Regional Or Global RAy Tracer (GROGRAT) was used to perform these simulations with a global homogeneous and isotropic launch distribution. Both simulations, GWO and GWV, are analyzed with respect to GWD in the zonal and meridional direction. The location of zonal GWD maxima changes. GWO shows in comparison to GWV a poleward shift of zonal GWD in both seasons with increased GWD at the summer stratopause. The meridional GWD is much stronger in the GWO case, spatially correlated with the zonal drag, and is generally poleward directed. These features in zonal and meridional drag are consistent with a general prevalence of poleward propagation of GWs. Additional simulations suggest that this is due to the Coriolis effect as well as wind filtering around the tropopause, allowing more GWs to propagate into the middle atmosphere. We infer how GWs of different horizontal wavelengths and phase speeds cause the main differences in GWD in the middle atmosphere. A simple test for GCMs is proposed to assess the effects of the altered meridional drag on the general circulation and the interaction with planetary waves
000156131 536__ $$0G:(DE-HGF)POF2-234$$a234 - Composition and Dynamics of the Upper Troposphere and Stratosphere (POF2-234)$$cPOF2-234$$fPOF II$$x0
000156131 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000156131 7001_ $$0P:(DE-Juel1)129143$$aPreusse, Peter$$b1$$ufzj
000156131 7001_ $$0P:(DE-Juel1)129117$$aErn, Manfred$$b2$$ufzj
000156131 7001_ $$0P:(DE-HGF)0$$aEckermann, Stephen D.$$b3
000156131 7001_ $$0P:(DE-Juel1)129145$$aRiese, Martin$$b4$$ufzj
000156131 773__ $$0PERI:(DE-600)2016800-7$$a10.1002/2014JD021779$$n17$$p10,081-10,099$$tJournal of geophysical research / Atmospheres$$v119$$x0148-0227$$y2014
000156131 8564_ $$uhttps://juser.fz-juelich.de/record/156131/files/FZJ-2014-04992.pdf$$yOpenAccess
000156131 8767_ $$92014-09-12$$d2014-10-14$$ePage charges$$jZahlung erfolgt$$zUSD 1.125,-
000156131 909CO $$ooai:juser.fz-juelich.de:156131$$pdnbdelivery$$popenCost$$pVDB$$pVDB:Earth_Environment$$pdriver$$pOpenAPC$$popen_access$$popenaire
000156131 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142033$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000156131 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129143$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000156131 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129117$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000156131 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129145$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000156131 9132_ $$0G:(DE-HGF)POF3-244$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$aDE-HGF$$bPOF III$$lMarine, Küsten- und Polare Systeme$$vAtmosphäre und Klima$$x0
000156131 9131_ $$0G:(DE-HGF)POF2-234$$1G:(DE-HGF)POF2-230$$2G:(DE-HGF)POF2-200$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vComposition and Dynamics of the Upper Troposphere and Stratosphere$$x0
000156131 9141_ $$y2014
000156131 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000156131 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000156131 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000156131 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000156131 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000156131 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000156131 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000156131 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer review
000156131 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000156131 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000156131 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000156131 915__ $$0StatID:(DE-HGF)1020$$2StatID$$aDBCoverage$$bCurrent Contents - Social and Behavioral Sciences
000156131 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000156131 920__ $$lyes
000156131 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x0
000156131 9801_ $$aFullTexts
000156131 980__ $$ajournal
000156131 980__ $$aVDB
000156131 980__ $$aUNRESTRICTED
000156131 980__ $$aI:(DE-Juel1)IEK-7-20101013
000156131 980__ $$aAPC
000156131 981__ $$aI:(DE-Juel1)ICE-4-20101013