001     156131
005     20240712100833.0
024 7 _ |a 10.1002/2014JD021779
|2 doi
024 7 _ |a WOS:000342914200001
|2 WOS
024 7 _ |a 2128/16100
|2 Handle
037 _ _ |a FZJ-2014-04992
082 _ _ |a 550
100 1 _ |a Kalisch, Silvio
|0 P:(DE-Juel1)142033
|b 0
|e Corresponding Author
|u fzj
245 _ _ |a Differences in gravity wave drag between realistic oblique and assumed vertical propagation
260 _ _ |a Washington, DC
|c 2014
|b Union
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1411638493_5228
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Gravity wave (GW) parametrizations for general circulation models (GCMs) restrict the propagation of GWs to the vertical direction. The influence of this vertical-only propagation assumption on the distribution of GW drag (GWD) has not yet been investigated. Thus, we present results of two global GW ray tracing simulations, one with full three-dimensional propagation (GWO) and a second one with vertical-only propagation (GWV) of GWs for January and July 2008. The Gravity wave Regional Or Global RAy Tracer (GROGRAT) was used to perform these simulations with a global homogeneous and isotropic launch distribution. Both simulations, GWO and GWV, are analyzed with respect to GWD in the zonal and meridional direction. The location of zonal GWD maxima changes. GWO shows in comparison to GWV a poleward shift of zonal GWD in both seasons with increased GWD at the summer stratopause. The meridional GWD is much stronger in the GWO case, spatially correlated with the zonal drag, and is generally poleward directed. These features in zonal and meridional drag are consistent with a general prevalence of poleward propagation of GWs. Additional simulations suggest that this is due to the Coriolis effect as well as wind filtering around the tropopause, allowing more GWs to propagate into the middle atmosphere. We infer how GWs of different horizontal wavelengths and phase speeds cause the main differences in GWD in the middle atmosphere. A simple test for GCMs is proposed to assess the effects of the altered meridional drag on the general circulation and the interaction with planetary waves
536 _ _ |a 234 - Composition and Dynamics of the Upper Troposphere and Stratosphere (POF2-234)
|0 G:(DE-HGF)POF2-234
|c POF2-234
|f POF II
|x 0
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |a Preusse, Peter
|0 P:(DE-Juel1)129143
|b 1
|u fzj
700 1 _ |a Ern, Manfred
|0 P:(DE-Juel1)129117
|b 2
|u fzj
700 1 _ |a Eckermann, Stephen D.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Riese, Martin
|0 P:(DE-Juel1)129145
|b 4
|u fzj
773 _ _ |a 10.1002/2014JD021779
|0 PERI:(DE-600)2016800-7
|n 17
|p 10,081-10,099
|t Journal of geophysical research / Atmospheres
|v 119
|y 2014
|x 0148-0227
856 4 _ |u https://juser.fz-juelich.de/record/156131/files/FZJ-2014-04992.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:156131
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB:Earth_Environment
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)142033
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129143
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129117
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129145
913 2 _ |a DE-HGF
|b POF III
|l Marine, Küsten- und Polare Systeme
|1 G:(DE-HGF)POF3-240
|0 G:(DE-HGF)POF3-244
|2 G:(DE-HGF)POF3-200
|v Atmosphäre und Klima
|x 0
913 1 _ |a DE-HGF
|b Erde und Umwelt
|l Atmosphäre und Klima
|1 G:(DE-HGF)POF2-230
|0 G:(DE-HGF)POF2-234
|2 G:(DE-HGF)POF2-200
|v Composition and Dynamics of the Upper Troposphere and Stratosphere
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
914 1 _ |y 2014
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR/ISI refereed
|0 StatID:(DE-HGF)0010
|2 StatID
915 _ _ |a Peer review
|0 StatID:(DE-HGF)0030
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1020
|2 StatID
|b Current Contents - Social and Behavioral Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-7-20101013
|k IEK-7
|l Stratosphäre
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-7-20101013
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)ICE-4-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21