001     156156
005     20210129214223.0
020 _ _ |a 978-3-319-11519-1 (print)
020 _ _ |a 978-3-319-11520-7 (electronic)
024 7 _ |a 10.1007/978-3-319-11520-7_51
|2 doi
024 7 _ |a 1611-3349
|2 ISSN
024 7 _ |a 0302-9743
|2 ISSN
037 _ _ |a FZJ-2014-05014
082 _ _ |a 004
100 1 _ |a Steffen, Bernhard
|0 P:(DE-Juel1)132269
|b 0
|e Corresponding Author
|u fzj
111 2 _ |a 11th International Conference on Cellular Automata for Research and Industry
|g ACRI
|c Krakow
|d 2014-09-22 - 2014-09-24
|w Poland
245 _ _ |a Multiscale Simulation of Pedestrians for Faster Than Real Time Modeling in Large Events
260 _ _ |a Cham
|c 2014
|b Springer International Publishing
295 1 0 |a Cellular Automata
300 _ _ |a 492 - 500
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1422019348_25055
|2 PUB:(DE-HGF)
336 7 _ |a Contribution to a book
|0 PUB:(DE-HGF)7
|2 PUB:(DE-HGF)
|m contb
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a INPROCEEDINGS
|2 BibTeX
490 0 _ |a Lecture Notes in Computer Science
|v 8751
520 _ _ |a The Hermes project [1] demonstrated the usefulness of on site faster than real time simulations of probable evacuation scenarios for security personnel. However, the hardware needed was prohibitively expensive [2]. The present paper shows that a multiscale approach can perform the simulation in a fraction of time without loss of useful information. The main problem is the correct passing of agents from a coarse scale model to a fine scale model, here from a CA model to a force based model. This will be achieved by inserting agents into the force based model at positions and speeds optimized for smooth walking either by a priori information or using Voronoi cells. Connecting a Queue model to a continuous model has already been done successfully [3].We also show that a slightly modified CA method can address the problem, too, at even less computational cost, with some possible loss of accuracy.
536 _ _ |a 411 - Computational Science and Mathematical Methods (POF2-411)
|0 G:(DE-HGF)POF2-411
|c POF2-411
|f POF II
|x 0
588 _ _ |a Dataset connected to CrossRef Book, juser.fz-juelich.de
700 1 _ |a Chraibi, Mohcine
|0 P:(DE-Juel1)132077
|b 1
|u fzj
773 _ _ |a 10.1007/978-3-319-11520-7_51
856 4 _ |u https://juser.fz-juelich.de/record/156156/files/FZJ-2014-05014.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:156156
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)132269
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)132077
913 2 _ |a DE-HGF
|b Key Technologies
|l Supercomputing & Big Data
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 0
913 1 _ |a DE-HGF
|b Schlüsseltechnologien
|l Supercomputing
|1 G:(DE-HGF)POF2-410
|0 G:(DE-HGF)POF2-411
|2 G:(DE-HGF)POF2-400
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
914 1 _ |y 2014
915 _ _ |a No Peer review
|0 StatID:(DE-HGF)0020
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a contb
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21