000156208 001__ 156208
000156208 005__ 20210129214229.0
000156208 020__ $$a978-3-642-55067-6 (print)
000156208 020__ $$a978-3-642-55068-3 (electronic)
000156208 0247_ $$2doi$$a10.1007/128_2013_518
000156208 0247_ $$2ISSN$$a1436-5049
000156208 0247_ $$2ISSN$$a0340-1022
000156208 0247_ $$2WOS$$aWOS:000356811000008
000156208 037__ $$aFZJ-2014-05048
000156208 082__ $$a540
000156208 1001_ $$0P:(DE-Juel1)130644$$aFriedrich, Christoph$$b0$$eCorresponding Author$$ufzj
000156208 245__ $$aSpin Excitations in Solids from Many-Body Perturbation Theory
000156208 260__ $$aBerlin, Heidelberg$$bSpringer Berlin Heidelberg$$c2014
000156208 29510 $$aFirst Principles Approaches to Spectroscopic Properties of Complex Materials
000156208 300__ $$a259 - 301
000156208 3367_ $$0PUB:(DE-HGF)7$$2PUB:(DE-HGF)$$aContribution to a book$$bcontb$$mcontb$$s1412234975_5599
000156208 3367_ $$2DRIVER$$abookPart
000156208 3367_ $$2ORCID$$aBOOK_CHAPTER
000156208 3367_ $$07$$2EndNote$$aBook Section
000156208 3367_ $$2BibTeX$$aINBOOK
000156208 3367_ $$2DataCite$$aOutput Types/Book chapter
000156208 4900_ $$aTopics in Current Chemistry$$v347
000156208 520__ $$aCollective spin excitations form a fundamental class of excitations in magnetic materials. As their energy reaches down to only a few meV, they are present at all temperatures and substantially influence the properties of magnetic systems. To study the spin excitations in solids from first principles, we have developed a computational scheme based on many-body perturbation theory within the full-potential linearized augmented plane-wave (FLAPW) method. The main quantity of interest is the dynamical transverse spin susceptibility or magnetic response function, from which magnetic excitations, including single-particle spin-flip Stoner excitations and collective spin-wave modes as well as their lifetimes, can be obtained. In order to describe spin waves we include appropriate vertex corrections in the form of a multiple-scattering T matrix, which describes the coupling of electrons and holes with different spins. The electron–hole interaction incorporates the screening of the many-body system within the random-phase approximation. To reduce the numerical cost in evaluating the four-point T matrix, we exploit a transformation to maximally localized Wannier functions that takes advantage of the short spatial range of electronic correlation in the partially filled d or f orbitals of magnetic materials. The theory and the implementation are discussed in detail. In particular, we show how the magnetic response function can be evaluated for arbitrary k points. This enables the calculation of smooth dispersion curves, allowing one to study fine details in the k dependence of the spin-wave spectra. We also demonstrate how spatial and time-reversal symmetry can be exploited to accelerate substantially the computation of the four-point quantities. As an illustration, we present spin-wave spectra and dispersions for the elementary ferromagnet bcc Fe, B2-type tetragonal FeCo, and CrO2 calculated with our scheme. The results are in good agreement with available experimental data.
000156208 536__ $$0G:(DE-HGF)POF2-422$$a422 - Spin-based and quantum information (POF2-422)$$cPOF2-422$$fPOF II$$x0
000156208 588__ $$aDataset connected to CrossRef Book, juser.fz-juelich.de
000156208 7001_ $$0P:(DE-Juel1)130937$$aŞaşıoğlu, Ersoy$$b1$$ufzj
000156208 7001_ $$0P:(DE-Juel1)130855$$aMüller, Mathias Christian Thomas David$$b2$$ufzj
000156208 7001_ $$0P:(DE-Juel1)130940$$aSchindlmayr, Arno$$b3
000156208 7001_ $$0P:(DE-Juel1)130548$$aBlügel, Stefan$$b4$$ufzj
000156208 773__ $$a10.1007/128_2013_518$$y2014
000156208 8564_ $$uhttps://juser.fz-juelich.de/record/156208/files/FZJ-2014-05048.pdf$$yRestricted
000156208 909CO $$ooai:juser.fz-juelich.de:156208$$pVDB
000156208 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130644$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000156208 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130937$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000156208 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130855$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000156208 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130548$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000156208 9132_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bPOF III$$lForschungsbereich Energie$$vFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$x0
000156208 9131_ $$0G:(DE-HGF)POF2-422$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vSpin-based and quantum information$$x0
000156208 9141_ $$y2014
000156208 915__ $$0StatID:(DE-HGF)0040$$2StatID$$aPeer review unknown
000156208 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000156208 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000156208 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000156208 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000156208 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000156208 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000156208 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
000156208 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
000156208 980__ $$acontb
000156208 980__ $$aVDB
000156208 980__ $$aI:(DE-Juel1)IAS-1-20090406
000156208 980__ $$aI:(DE-Juel1)PGI-1-20110106
000156208 980__ $$aUNRESTRICTED
000156208 981__ $$aI:(DE-Juel1)PGI-1-20110106