001     156208
005     20210129214229.0
020 _ _ |a 978-3-642-55067-6 (print)
020 _ _ |a 978-3-642-55068-3 (electronic)
024 7 _ |a 10.1007/128_2013_518
|2 doi
024 7 _ |a 1436-5049
|2 ISSN
024 7 _ |a 0340-1022
|2 ISSN
024 7 _ |a WOS:000356811000008
|2 WOS
037 _ _ |a FZJ-2014-05048
082 _ _ |a 540
100 1 _ |a Friedrich, Christoph
|0 P:(DE-Juel1)130644
|b 0
|e Corresponding Author
|u fzj
245 _ _ |a Spin Excitations in Solids from Many-Body Perturbation Theory
260 _ _ |a Berlin, Heidelberg
|c 2014
|b Springer Berlin Heidelberg
295 1 0 |a First Principles Approaches to Spectroscopic Properties of Complex Materials
300 _ _ |a 259 - 301
336 7 _ |a Contribution to a book
|b contb
|m contb
|0 PUB:(DE-HGF)7
|s 1412234975_5599
|2 PUB:(DE-HGF)
336 7 _ |a bookPart
|2 DRIVER
336 7 _ |a BOOK_CHAPTER
|2 ORCID
336 7 _ |a Book Section
|0 7
|2 EndNote
336 7 _ |a INBOOK
|2 BibTeX
336 7 _ |a Output Types/Book chapter
|2 DataCite
490 0 _ |a Topics in Current Chemistry
|v 347
520 _ _ |a Collective spin excitations form a fundamental class of excitations in magnetic materials. As their energy reaches down to only a few meV, they are present at all temperatures and substantially influence the properties of magnetic systems. To study the spin excitations in solids from first principles, we have developed a computational scheme based on many-body perturbation theory within the full-potential linearized augmented plane-wave (FLAPW) method. The main quantity of interest is the dynamical transverse spin susceptibility or magnetic response function, from which magnetic excitations, including single-particle spin-flip Stoner excitations and collective spin-wave modes as well as their lifetimes, can be obtained. In order to describe spin waves we include appropriate vertex corrections in the form of a multiple-scattering T matrix, which describes the coupling of electrons and holes with different spins. The electron–hole interaction incorporates the screening of the many-body system within the random-phase approximation. To reduce the numerical cost in evaluating the four-point T matrix, we exploit a transformation to maximally localized Wannier functions that takes advantage of the short spatial range of electronic correlation in the partially filled d or f orbitals of magnetic materials. The theory and the implementation are discussed in detail. In particular, we show how the magnetic response function can be evaluated for arbitrary k points. This enables the calculation of smooth dispersion curves, allowing one to study fine details in the k dependence of the spin-wave spectra. We also demonstrate how spatial and time-reversal symmetry can be exploited to accelerate substantially the computation of the four-point quantities. As an illustration, we present spin-wave spectra and dispersions for the elementary ferromagnet bcc Fe, B2-type tetragonal FeCo, and CrO2 calculated with our scheme. The results are in good agreement with available experimental data.
536 _ _ |a 422 - Spin-based and quantum information (POF2-422)
|0 G:(DE-HGF)POF2-422
|c POF2-422
|f POF II
|x 0
588 _ _ |a Dataset connected to CrossRef Book, juser.fz-juelich.de
700 1 _ |a Şaşıoğlu, Ersoy
|0 P:(DE-Juel1)130937
|b 1
|u fzj
700 1 _ |a Müller, Mathias Christian Thomas David
|0 P:(DE-Juel1)130855
|b 2
|u fzj
700 1 _ |a Schindlmayr, Arno
|0 P:(DE-Juel1)130940
|b 3
700 1 _ |a Blügel, Stefan
|0 P:(DE-Juel1)130548
|b 4
|u fzj
773 _ _ |a 10.1007/128_2013_518
|y 2014
856 4 _ |u https://juser.fz-juelich.de/record/156208/files/FZJ-2014-05048.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:156208
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)130644
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)130937
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)130855
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)130548
913 2 _ |a DE-HGF
|b POF III
|l Forschungsbereich Energie
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-143
|2 G:(DE-HGF)POF3-100
|v Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|x 0
913 1 _ |a DE-HGF
|b Schlüsseltechnologien
|1 G:(DE-HGF)POF2-420
|0 G:(DE-HGF)POF2-422
|2 G:(DE-HGF)POF2-400
|v Spin-based and quantum information
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
|l Grundlagen zukünftiger Informationstechnologien
914 1 _ |y 2014
915 _ _ |a Peer review unknown
|0 StatID:(DE-HGF)0040
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
920 1 _ |0 I:(DE-Juel1)IAS-1-20090406
|k IAS-1
|l Quanten-Theorie der Materialien
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|k PGI-1
|l Quanten-Theorie der Materialien
|x 1
980 _ _ |a contb
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IAS-1-20090406
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)PGI-1-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21