001     156276
005     20210129214231.0
024 7 _ |a 10.1103/PhysRevLett.113.096601
|2 doi
024 7 _ |a 0031-9007
|2 ISSN
024 7 _ |a 1079-7114
|2 ISSN
024 7 _ |a WOS:000341270600008
|2 WOS
024 7 _ |a 2128/9114
|2 Handle
024 7 _ |a altmetric:2624361
|2 altmetric
037 _ _ |a FZJ-2014-05067
041 _ _ |a English
082 _ _ |a 550
100 1 _ |a Olbrich, P.
|0 P:(DE-HGF)0
|b 0
|e Corresponding Author
245 _ _ |a Room-Temperature High-Frequency Transport of Dirac Fermions in Epitaxially Grown $Sb_2Te_3$- and $Bi_2Te_3$-Based Topological Insulators
260 _ _ |a College Park, Md.
|c 2014
|b APS
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1412600715_6118
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a We report on the observation of photogalvanic effects in epitaxially grown Sb2Te3 and Bi2Te3 three-dimensional (3D) topological insulators (TI). We show that asymmetric scattering of Dirac fermions driven back and forth by the terahertz electric field results in a dc electric current. Because of the “symmetry filtration” the dc current is generated by the surface electrons only and provides an optoelectronic access to probe the electron transport in TI, surface domains orientation, and details of electron scattering in 3D TI even at room temperature.
536 _ _ |a 422 - Spin-based and quantum information (POF2-422)
|0 G:(DE-HGF)POF2-422
|c POF2-422
|f POF II
|x 0
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |a Golub, L. E.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Herrmann, T.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Danilov, S. N.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Plank, H.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Bel’kov, V. V.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Mussler, G.
|0 P:(DE-Juel1)128617
|b 6
|u fzj
700 1 _ |a Weyrich, Ch.
|0 P:(DE-Juel1)145705
|b 7
|u fzj
700 1 _ |a Schneider, Claus Michael
|0 P:(DE-Juel1)130948
|b 8
|u fzj
700 1 _ |a Kampmeier, J.
|0 P:(DE-Juel1)145467
|b 9
|u fzj
700 1 _ |a Grützmacher, D.
|0 P:(DE-Juel1)125588
|b 10
|u fzj
700 1 _ |a Plucinski, L.
|0 P:(DE-Juel1)130895
|b 11
|u fzj
700 1 _ |a Eschbach, M.
|0 P:(DE-Juel1)145534
|b 12
|u fzj
700 1 _ |a Ganichev, S. D.
|0 P:(DE-HGF)0
|b 13
773 _ _ |a 10.1103/PhysRevLett.113.096601
|g Vol. 113, no. 9, p. 096601
|0 PERI:(DE-600)1472655-5
|n 9
|p 096601
|t Physical review letters
|v 113
|y 2014
|x 1079-7114
856 4 _ |u http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.113.096601
856 4 _ |u https://juser.fz-juelich.de/record/156276/files/FZJ-2014-05067.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:156276
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)128617
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)145705
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)130948
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)145467
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)125588
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)130895
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)145534
913 2 _ |a DE-HGF
|b POF III
|l Key Technologies
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-522
|2 G:(DE-HGF)POF3-500
|v Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|x 0
913 1 _ |a DE-HGF
|b Schlüsseltechnologien
|1 G:(DE-HGF)POF2-420
|0 G:(DE-HGF)POF2-422
|2 G:(DE-HGF)POF2-400
|v Spin-based and quantum information
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
|l Grundlagen zukünftiger Informationstechnologien
914 1 _ |y 2014
915 _ _ |a JCR/ISI refereed
|0 StatID:(DE-HGF)0010
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1020
|2 StatID
|b Current Contents - Social and Behavioral Sciences
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-6-20110106
|k PGI-6
|l Elektronische Eigenschaften
|x 1
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 2
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a I:(DE-Juel1)PGI-6-20110106
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
981 _ _ |a I:(DE-Juel1)PGI-6-20110106
981 _ _ |a I:(DE-Juel1)PGI-9-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21