000156285 001__ 156285
000156285 005__ 20240712101005.0
000156285 0247_ $$2Handle$$a2128/8038
000156285 0247_ $$2ISSN$$a1866-1793
000156285 020__ $$a978-3-89336-984-3
000156285 037__ $$aFZJ-2014-05076
000156285 041__ $$aEnglish
000156285 1001_ $$0P:(DE-Juel1)144192$$aHoppe, Charlotte Marinke$$b0$$eCorresponding Author$$gfemale$$ufzj
000156285 245__ $$aA Lagrangian transport core for the simulation of stratospheric trace species in a Chemistry Climate Model$$f2014-05-23
000156285 260__ $$aJülich$$bForschungszentrum Jülich GmbH Zentralbibliothek, Verlag$$c2014
000156285 300__ $$a112 S.
000156285 3367_ $$0PUB:(DE-HGF)11$$2PUB:(DE-HGF)$$aDissertation / PhD Thesis$$bphd$$mphd$$s156285
000156285 3367_ $$02$$2EndNote$$aThesis
000156285 3367_ $$2DRIVER$$adoctoralThesis
000156285 3367_ $$2BibTeX$$aPHDTHESIS
000156285 3367_ $$2DataCite$$aOutput Types/Dissertation
000156285 3367_ $$2ORCID$$aDISSERTATION
000156285 4900_ $$aSchriften des Forschungszentrums Jülich Reihe Energie & Umwelt / Energy & Environment$$v226
000156285 502__ $$aUniversität Wuppertal, Diss., 2014$$bDr.$$cUniversität Wuppertal$$d2014
000156285 520__ $$aLagrangian transport schemes have proven to be useful tools for modelling stratospherictrace gas transport since they are less diusive than classical Eulerian schemesand therefore especially well suited for maintaining steep tracer gradients as observedin the atmosphere. Here, the implementation of the full-Lagrangian transportcore of the Chemical Lagrangian Model of the Stratosphere (CLaMS) in the ECHAM/MESSy Atmospheric Chemistry model (EMAC) is presented. A ten-year time-slice simulation was performed to evaluate the coupled model system EMAC/CLaMS. Simulated zonal mean age of air distributions were compared to the age of air derived from airborne measurements, showing the expected characteristicsof the stratospheric circulation. Climatologies of long-lived tracers (CFC-11(CCl$_{3}$F), CFC-12 (CCl$_{2}$F$_{2}$), CH$_{4}$, N$_{2}$O) were calculated using the standard ux-formsemi-Lagrangian transport scheme (FFSL) in EMAC, as well as the new CLaMS Lagrangian transport scheme. The climatologies were compared both to each other and also to satellite measurements of trace gases. The dierences in the resulting tracer distributions are most pronounced in the regions of strong transport barriers, namely the edge of the tropical pipe, the tropopause, and the edge of the polarvortex. These regions were analysed in detail and show improved results using the Lagrangian transport scheme, with stronger gradients at the respective transport barriers. The analyses of various trace gases and age of air in the polar vortex regions shows that the CLaMS Lagrangian transport scheme produces a stronger, more realistic transport barrier at the edge of the polar vortex than the FFSL transportscheme of EMAC. Differences in simulated age of air are in the range of up to one year in the Arctic polar vortex in late winter/early spring. The newly coupled model system EMAC/CLaMS thus constitutes a suitable tool for future model studies, e.g. for the simulation of polar ozone depletion, based on a sophisticated stratospheric tracer transport.
000156285 536__ $$0G:(DE-HGF)POF2-234$$a234 - Composition and Dynamics of the Upper Troposphere and Stratosphere (POF2-234)$$cPOF2-234$$fPOF II$$x0
000156285 536__ $$0G:(DE-HGF)POF2-233$$a233 - Trace gas and aerosol processes in the troposphere (POF2-233)$$cPOF2-233$$fPOF II$$x1
000156285 650_7 $$0V:(DE-588b)4012494-0$$2GND$$aDissertation$$xDiss.
000156285 773__ $$y2014
000156285 8564_ $$uhttps://juser.fz-juelich.de/record/156285/files/FZJ-2014-05076.pdf$$yOpenAccess
000156285 8564_ $$uhttps://juser.fz-juelich.de/record/156285/files/FZJ-2014-05076.jpg?subformat=icon-144$$xicon-144$$yOpenAccess
000156285 8564_ $$uhttps://juser.fz-juelich.de/record/156285/files/FZJ-2014-05076.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000156285 8564_ $$uhttps://juser.fz-juelich.de/record/156285/files/FZJ-2014-05076.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000156285 909CO $$ooai:juser.fz-juelich.de:156285$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire
000156285 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000156285 9141_ $$y2014
000156285 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144192$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000156285 9132_ $$0G:(DE-HGF)POF3-243$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$aDE-HGF$$bPOF III$$lMarine, Küsten- und Polare Systeme$$vAtmosphäre und Klima$$x0
000156285 9131_ $$0G:(DE-HGF)POF2-234$$1G:(DE-HGF)POF2-230$$2G:(DE-HGF)POF2-200$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vComposition and Dynamics of the Upper Troposphere and Stratosphere$$x0
000156285 9131_ $$0G:(DE-HGF)POF2-233$$1G:(DE-HGF)POF2-230$$2G:(DE-HGF)POF2-200$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vTrace gas and aerosol processes in the troposphere$$x1
000156285 920__ $$lyes
000156285 9201_ $$0I:(DE-Juel1)IEK-8-20101013$$kIEK-8$$lTroposphäre$$x0
000156285 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x1
000156285 9801_ $$aFullTexts
000156285 980__ $$aphd
000156285 980__ $$aVDB
000156285 980__ $$aUNRESTRICTED
000156285 980__ $$aFullTexts
000156285 980__ $$aI:(DE-Juel1)IEK-8-20101013
000156285 980__ $$aI:(DE-Juel1)IEK-7-20101013
000156285 981__ $$aI:(DE-Juel1)ICE-3-20101013
000156285 981__ $$aI:(DE-Juel1)ICE-4-20101013
000156285 981__ $$aI:(DE-Juel1)ICE-3-20101013
000156285 981__ $$aI:(DE-Juel1)IEK-7-20101013