000156365 001__ 156365
000156365 005__ 20240619083501.0
000156365 0247_ $$2doi$$a10.1038/ncomms6060
000156365 0247_ $$2WOS$$aWOS:000343976900003
000156365 0247_ $$2altmetric$$aaltmetric:3056610
000156365 0247_ $$2pmid$$apmid:25297898
000156365 0247_ $$2Handle$$a2128/24471
000156365 037__ $$aFZJ-2014-05117
000156365 041__ $$aEnglish
000156365 082__ $$a500
000156365 1001_ $$0P:(DE-HGF)0$$aKirchenbuechler, Inka$$b0
000156365 245__ $$aDirect visualization of flow-induced conformational transitions of single actin filaments in entangled solutions
000156365 260__ $$aLondon$$bNature Publishing Group$$c2014
000156365 3367_ $$2DRIVER$$aarticle
000156365 3367_ $$2DataCite$$aOutput Types/Journal article
000156365 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1412862689_26710
000156365 3367_ $$2BibTeX$$aARTICLE
000156365 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000156365 3367_ $$00$$2EndNote$$aJournal Article
000156365 520__ $$aWhile semi-flexible polymers and fibres are an important class of material due to their rich mechanical properties, it remains unclear how these properties relate to the microscopic conformation of the polymers. Actin filaments constitute an ideal model polymer system due to their micron-sized length and relatively high stiffness that allow imaging at the single filament level. Here we study the effect of entanglements on the conformational dynamics of actin filaments in shear flow. We directly measure the full three-dimensional conformation of single actin filaments, using confocal microscopy in combination with a counter-rotating cone-plate shear cell. We show that initially entangled filaments form disentangled orientationally ordered hairpins, confined in the flow-vorticity plane. In addition, shear flow causes stretching and shear alignment of the hairpin tails, while the filament length distribution remains unchanged. These observations explain the strain-softening and shear-thinning behaviour of entangled F-actin solutions, which aids the understanding of the flow behaviour of complex fluids containing semi-flexible polymers.
000156365 536__ $$0G:(DE-HGF)POF2-453$$a453 - Physics of the Cell (POF2-453)$$cPOF2-453$$fPOF II$$x0
000156365 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000156365 7001_ $$0P:(DE-Juel1)141638$$aGuu, Donald$$b1
000156365 7001_ $$0P:(DE-HGF)0$$aKurniawan, Nicholas A.$$b2
000156365 7001_ $$0P:(DE-HGF)0$$aKoenderink, Gijsje H.$$b3
000156365 7001_ $$0P:(DE-Juel1)130797$$aLettinga, M.P.$$b4$$eCorresponding Author$$ufzj
000156365 773__ $$0PERI:(DE-600)2553671-0$$a10.1038/ncomms6060$$gVol. 5, p. 5060 -$$p5060$$tNature Communications$$v5$$x2041-1723$$y2014
000156365 8564_ $$uhttps://juser.fz-juelich.de/record/156365/files/FZJ-2014-05117.pdf$$yOpenAccess
000156365 909CO $$ooai:juser.fz-juelich.de:156365$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000156365 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000156365 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)141638$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000156365 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130797$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000156365 9132_ $$0G:(DE-HGF)POF3-552$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bPOF III$$lKey Technologies$$vBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$x0
000156365 9131_ $$0G:(DE-HGF)POF2-453$$1G:(DE-HGF)POF2-450$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lBioSoft$$vPhysics of the Cell$$x0
000156365 9141_ $$y2014
000156365 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000156365 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000156365 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000156365 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000156365 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000156365 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000156365 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000156365 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000156365 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000156365 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000156365 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000156365 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000156365 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000156365 915__ $$0StatID:(DE-HGF)0040$$2StatID$$aPeer review unknown
000156365 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000156365 920__ $$lyes
000156365 9201_ $$0I:(DE-Juel1)ICS-7-20110106$$kICS-7$$lBiomechanik$$x0
000156365 9201_ $$0I:(DE-Juel1)ICS-3-20110106$$kICS-3$$lWeiche Materie$$x1
000156365 9801_ $$aFullTexts
000156365 980__ $$ajournal
000156365 980__ $$aVDB
000156365 980__ $$aUNRESTRICTED
000156365 980__ $$aI:(DE-Juel1)ICS-7-20110106
000156365 980__ $$aI:(DE-Juel1)ICS-3-20110106
000156365 981__ $$aI:(DE-Juel1)IBI-2-20200312
000156365 981__ $$aI:(DE-Juel1)ICS-3-20110106