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Hydrodynamics of discrete-particle models of spherical colloids:
A multiparticle collision dynamics simulation study
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We investigate the hydrodynamic properties of a spherical colloid model, which is composed of a shell of
point particles by hybrid mesoscale simulations, which combine molecular dynamics simulations for the sphere
with the multiparticle collision dynamics approach for the fluid. Results are presented for the center-of-mass and
angular velocity correlation functions. The simulation results are compared with theoretical results for a rigid
colloid obtained as a solution of the Stokes equation with no-slip boundary conditions. Similarly, analytical results
of a point-particle model are presented, which account for the finite size of the simulated system. The simulation
results agree well with both approaches on appropriative time scales; specifically, the long-time correlations
are quantitatively reproduced. Moreover, a procedure is proposed to obtain the infinite-system-size diffusion
coefficient based on a combination of simulation results and analytical predictions. In addition, we present the
velocity field in the vicinity of the colloid and demonstrate its close agreement with the theoretical prediction. Our
studies show that a point-particle model of a sphere is very well suited to describe the hydrodynamic properties

of spherical colloids, with a significantly reduced numerical effort.
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I. INTRODUCTION

Molecular simulation of soft matter systems typically
involves a broad range of time and length scales, thus
posing substantial computational challenges and rendering
certain first-principle studies unfeasible. Coarse-grained ap-
proaches [1] are a common way to bridge and tackle such scale
separations. A reduction in the number of degrees of freedom
of a system allows for studies of larger systems and longer
times at the expense of the details of the model. Therefore,
the physical properties to be reproduce in a coarse-grained
representation must be chosen carefully. Static properties such
as structures [2,3], force on the coarse-grained sites [4—6],
or certain thermodynamic properties [7] can be adjusted by
designing a proper force field between the components of
the new, simplified representation of the system. Transport
properties, however, require a different treatment. Considering
biological systems as an example, the aqueous environment
plays a major role in their dynamical aspects and the
fluid-mediated interactions need to be correctly captured.
As a consequence, several mesoscale simulation techniques
emerged in the past few decades, which bridge the time scales
between the embedded entities and the fluid dynamics [8—12].
These mesoscale methods treat the fluid in a simplified way
and ensure the conservation of momentum and mass and
thus yield proper hydrodynamic behavior on large length
scales [13]. Among them, the multiparticle collision dynamics
(MPC) approach [10-12] is very well suited for simulations
of soft matter systems. Multiparticle collision dynamics is
a particle-based method, which naturally includes thermal
fluctuations and can efficiently be coupled to embedded
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particles whose dynamics is governed by Newton’s equations
of motion [11,12,14-16].

The properties of the MPC fluid itself have been studied
intensively and are well understood by now [10-13,13,15,17—
22]. Moreover, the equilibrium and nonequilibrium dynam-
ical properties of a broad spectrum of soft matter systems
embedded in the MPC fluid have been studied. Examples
cover polymers in solution [14,23-28], colloids [29-36],
proteins [37], vesicles [38], and red blood cells [39,40].

Colloids have been introduced as solid objects with
slip [15,30,31,34,36] or no-slip (stick) [21,31,32,34] boundary
conditions. Specifically, no-slip boundary conditions require
considerable effort. Usually, the so-called bounceback rule is
applied at the colloid surface [21,30,32], where velocities are
reverted upon collision in a comoving reference frame [34].
This requires the calculation of the MPC particle’s relative
position and velocity with respect to a colloid and, in addition,
phantom particles have to be taken into account [32]. Here
a simpler model may be more efficient without appreciable
deviation of physical properties.

In this paper we study the hydrodynamic properties of
such a simplified model of a spherical colloid. The colloid
is described as a spherical shell composed of point particles,
which are connected by suitable elastic bonds to maintain
its shape. Such an approach has already been proposed in
Ref. [41] in combination with lattice Boltzmann simulations.
Our simulations show that the translation and rotational
velocity correlation functions agree very well with those
of the solution of the Navier-Stokes equations for a solid
colloid. Hence, our discrete-shell colloidal model is very
well suited for simulations of colloidal particles. Our studies
not only are useful for spherical colloids, but will also be
valuable for extensions to other rigid structures such as cubes,
sheets, platelets, and nonconvex and irregular bodies [42—44]
embedded in a MPC fluid, which can be designed in a
similar fashion or be built using these elements as building
blocks.
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FIG. 1. (Color online) Spherical colloids composed of discrete
mass points with the surface densities (a) oa® = 0.53, (b) 0a® =
1.43, and (c) oa® = 3.2. For illustration, the bonds of a particle and
its nearest neighbors are highlighted in red. (d) Bonds in an equatorial
plane connecting diametrically opposed particles for ca® = 1.43.

The paper is organized as follows. The colloidal model and
the MPC approach are described in Sec. II. Results for the
translational and rotational velocity correlation functions are
presented in Sec. III and the respective diffusion coefficients
are determined. In Sec. IV the results of the discrete-shell
sphere are compared with correlations for a solid sphere. Flow
velocities and the flow field of a sedimenting colloid are shown
in Sec. V. Finally, Sec. VI summarizes our findings.

II. MODEL

A. Spherical colloid

The colloid is modeled as a set of N, point particles of
mass M distributed over a spherical shell of radius R, which
are tightly linked with each other to maintain a nearly rigid
shape (cf. Fig. 1). The actual number of points depends on the
radius of the colloid. Here a suitable number of points has to be
chosen in order to achieve proper hydrodynamic behavior. We
start out with a truncated icosahedron with a particle at every
vertex. Higher surface densities are constructed by dividing
the faces of the icosahedron of side length d into equilateral
triangles of side length d/n, where n is an integer (here we
use n = 4 and 6). The mass points added at the polyhedrons
are displaced radially from the center until they lie on a shell
of radius R.

The mass points are connected with their nearest neighbors
and with the diametrically opposite point particle via the
harmonic potential

K
UOEE G r0)?, (1)

where r = |r| is the distance between two particles and r the
respective difference vector. Here ry depends on the particular
pair and is determined by the above described construction
principle. The dynamics of a colloid particle is described by
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Newton’s equations of motion, which are solved by the velocity
Verlet algorithm [45,46]. In addition, we perform simulations
of a hard-sphere colloid of radius R with no-slip boundary
conditions.

B. Multiparticle collision dynamics fluid

The MPC fluid is composed of N point particles of mass
m with the positions r; and velocities v; ( = 1,...,N). The
algorithm comprises two steps: a streaming and a collision
step. In the streaming step, the particles move ballistically
during a time increment /s, which is called collision time,
hence

ri(t +h) =ri(t) + hv;(1). @

In the collision step, the simulation box is divided into
cubic cells of side length a and the particle velocities in
a collision cell are changed by a momentum-conserving
stochastic process. Various collision rules have been proposed
by now [10,32,47]. Here we use two different variants: a
non-angular-momentum-conserving method, often referred
to as stochastic rotation dynamics (SRD), and an angular-
momentum-conserving approach as described in Ref. [32]
based on Gaussian-distributed random velocities [47]. This
allows us to analyze the influence of angular momentum
conservation on (some) colloid correlation functions. We
would like to point out that there are also angular-momentum-
conserving variants of the SRD approach [48,49].

1. Non-angular-momentum-conserving MPC

In this approach the velocity of the particle i is updated
according to

vi(t + h) = v;(1) + [R(e) — E][v; (1) — vem ()], (3)

where
1 &
Vem (1) = 3 ; V(1) 4

is the velocity of the center of mass of the N, particles in the
cell that contains particle i, R(«) is a rotation matrix for the
rotation by the angle «, and E is the unit matrix [47,50].
The rotation angle « is fixed, while the rotation axis is
randomly oriented for each cell and collision. In addition,
a random shift of the collision lattice is applied at every
collision step in order to guarantee Galilean invariance [17].
The viscosity can be accurately predicted in terms of «, N,
and i [11,12,17,19,20,22,48].

2. Angular-momentum-conserving MPC

In the simulation of the hard-sphere colloid, an angular-
momentum-conserving variant of MPC is used. Here the
collision rule is [32,47]

N,
1 £

vi(t+h) =vem () + v; - N Z v-rf
C j=1

N,
+mI Y S [rsex (v; =) xrie, (5)

j=1
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where II is the moment-of-inertia tensor and r; . is the relative
particle position with respect to the center-of-mass position
rem. of all the particles in the cell, ie., rj, =r; —rcm.
The velocities v} are chosen from a Maxwell-Boltzmann
distribution of zero mean and variance kg T /m.

C. Colloid fluid coupling
1. Non-angular-momentum-conserving MPC

The coupling between the MPC fluid and the colloid is
established in the collision step, where the point particles of
the sphere are treated similarly to fluid particles, however with
a different mass M [14,16,24]. Hence, the velocities of the
colloid point particles after collision are determined according
to Eq. (3), but with the center-of-mass velocity

P A
SN mvi () + Yp, MV (1)
mN,. + MN? ’

Vem () = (6)
Here N/ is the number of colloid point particles in the partic-
ular collision cell. The velocities Vk(t) are the velocities after
streaming, which are not necessarily equal to those following
from the previous collision step due to particle propagation by
molecular dynamics simulations in the collision-time interval.
Similarly, in cells with colloid point particles, Eq. (6) is applied
for the calculation of the velocity of a fluid particle.

The fluid particles freely penetrate the sphere surface. The
collisional coupling already suffices to drag internal fluid
particles along with the moving colloid. We even satisfactorily
achieve no-slip boundary conditions, as will be demonstrated
in Sec. V.

A local Maxwellian thermostat, referred to as the Maxwell-
Boltzmann scaling method, is used to maintain the temperature
of the system at the desired value [50]. Thereby, the relative
velocities Av; and AV, of all particles in a particular collision
cell, with respect to the center-of-mass velocity of that cell,
after a collision are scaled by a suitable factor. The scaling fac-
tor itself is given by [2E/(Y1, mAv? + ZQZI MAVH]'/2,
where E is taken from the distribution function of the kinetic
energy, which is divided by the actual cell relative kinetic
energy.

2. Angular-momentum-conserving MPC

The hard-sphere colloid moves ballistically during the
collision-time interval . The coupling between the MPC fluid
and the hard-sphere colloid is achieved in two ways. After
the colloid translation and rotation, the bounceback rule is
applied for the streaming fluid particles [34,51]. Hence, here
fluid particles are prevented from penetrating into the sphere
volume. Moreover, phantom particles are taken into account in
the collision step to minimize slip, which are located within a
layer of thickness v/3a underneath the sphere surface [32,52].

D. Parameters

Three-dimensional periodic boundary conditions are ap-
plied for the MPC fluid, with a cubic simulation box of side
length L = 90a, if not otherwise stated. We choose the average
number of fluid particles per collision cell (N.) = 10 and the
collision angle as « = 130°. The collision times 4 = 0.17y and
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0.021, are considered, where t) = \/ma?/kpT is the time unit

of the MPC fluid, which yields the viscosities n//mkpT /a* =
8.7 and 41.2, where kg is Boltzmann’s constant and 7" the
temperature. In the simulation we set a =1, m =1, and
kgT = 1.

The time step At = 0.002¢, is applied for the integration
of Newton’s equations of motion of the point particles of
mass M = 10m comprising a colloid. The latter mass has been
shown to lead to an adequate fluid-particle coupling, necessary
for the appearance of hydrodynamic behavior [53]. We select
a large spring constant K = 5000k T /a? to closely maintain
a spherical shape. The radius of the sphere is set to R = 3a
and the three surface densities ca® = 0.53, 1.43, and 3.2 are
considered. The latter corresponds to Ny = 60, 162, and 362
surface particles (cf. Fig. 1). We expect that the radius R = 3a
is large enough to yield results that are only marginally affected
by the underlying discrete fluid simulation approach [31].

Eight independent simulation runs of typically 5600¢, were
performed for every system, where tp = 6rnR3/kgT is the
diffusion time of a hard-sphere colloid. This corresponds to
2.5 x 107 MPC collisions for systems with # = 0.1%,.

The systems are efficiently simulated by a combination of a
GPU and a CPU [54]. Thereby, the fluid dynamics is managed
by a GPU-based code and the colloid dynamics is integrated
by a CPU.

For the simulation of the hard-sphere colloid via the
angular-momentum-conserving MPC fluid, the collision time
step is 1 = 0.0425¢,. We assume a buoyant colloid, hence its
total mass is M. = 4rm(N.)R?/3a>. To determine the vis-
cosity of the fluid, we performed nonequilibrium simulations
with a sinusoidal force profile applied in the x direction of
the Cartesian reference frame. Explicitly, the force on a fluid
particle is

fix = F cos(qriy), (7

with the wave vector g = 27 /L. As discussed in Ref. [45], the
appearing velocity profile u, is related to the fluid viscosity
according to

N¢
Ux(ry) = #fx(h)- ®)

Using the value F/(kzT/a) =5 x 107, which yields suffi-
ciently small velocities |u,|/+/kgT /m < 0.01 to be in the lin-
ear response regime, we obtain the viscosity n//mkpT /a* =
7.8. Comparing this value with the theoretical prediction for
this MPC algorithm [48], we find that the above value extracted
from the simulation is approximately 10% smaller.

III. DYNAMICS OF THE POINT-PARTICLE SPHERE

A. Center-of-mass displacement

Center-of-mass mean square displacements of the discrete-
particle colloids are presented in Fig. 2 for the various surface
densities. In the asymptotic limit of long times, we find
linearly increasing mean square displacements. The various
colloidal masses are reflected at short times, where we find a
strong ballistic dynamics for the largest density (mass) and a
somewhat smaller initial slope for the smallest surface density.
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FIG. 2. (Color online) Mean square displacements of the center
of mass of spheres with the surface particle densities oa? = 0.53,
1.43, and 3.2 (top to bottom), i.e., Ny = 60, 162, and 362, and
the collision time step & = 0.1#,. The straight line represents the
asymptotic linear dependence 6 D¢, with D values given in Table I;
tp = 6mnR3/kpT.

The translational diffusion coefficients extracted from the
asymptotic linear time dependence of the finite-size system
are presented in Table I. They are normalized by the diffusion
coefficient DY = kT /67nR of a hard sphere with no-slip
boundary conditions. The diffusion coefficients exhibit a
moderate dependence on the surface density, with larger Dy
for lower densities. There is also a small difference between
the diffusion-coefficient ratios for the two collision time steps.
Overall, however, the values agree well.

As is well known, the translational diffusion coefficient
is strongly influenced by finite-size effects. This is reflected
by the fact that the diffusion-coefficient ratios of Table I are
considerably smaller than unity. We will address this issue in
Sec. III D in more detail.

B. Translational velocity autocorrelation function

The center-of-mass velocity autocorrelation function
(VACF) of a colloid

Cr(1) = (V(1)- V(0)), )

with
V = Ly Vi 10
- ﬁ i ( )

S =1

TABLE I. Center-of-mass diffusion coefficients extracted from
the mean square displacements of Fig. 2 for the collision times ; =
O.IIO and ]’lz = 0.0210; Dg = kBT/67TT]R

oa® Dy, /DY Dy 1,/ DY
0.53 0.86 0.94
1.43 0.84 0.87
32 0.81 0.8
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its center-of-mass velocity and V; the velocity of the colloid
surface particle i, shows several regimes [13,36,55]. As
indicated in Fig. 2, inertia effects play a role at short times
and hydrodynamic correlations over the length scale of the
colloid have buildup only for times larger than the viscous
time scale

2R)

T, = . (11)
vV

Here v = n/p is the kinematic viscosity and p = m(N.)/a’
the fluid mass density. For the collision time steps & = 0.1¢
and 0.02¢,, the viscous times are 7,,/t) ~ 4l and 9 or 7, /tp =
1072 and 4 x 10~*, respectively. Moreover, sound propagation
affects the correlation function because the MPC fluid is
compressible [13]. This complicates the disentanglement of
the various contributions to the correlation function.

1. Short-time collisional regime

Within the molecular-chaos assumption, i.e., in the absence
of hydrodynamic correlations, a center-of-mass VACF of a
sphere can be determined analytically as shown in Appendix A.
The result is

3kgT

TR -, (12)

Cr(t) =

with

21— cosay NS
=—-(l —cosa) ————,
H=3 m(No) + kM
as previously discussed for polymers [23] (for a MPC fluid see
Refs. [53,56]). Here k denotes the (average) number of colloid
surface mass points in a collision cell. Equation (12) can be
written as

13)

Cr(t) = Cr(0)e "™, (14)
with the relaxation time
h
Toe=———"-. (15)
In(1 — p)

Since the initial velocities are independent, i.e., the molecular-
chaos assumption applies, we expect that the decay of the
correlation function after one step is described by Eq. (14).
The extent to which agreement is obtained for longer times
depends on the collision time step [53]. For the considered
small time steps, we expect agreement for the first step only.

Figure 3 confirms the expected behavior for the first
collision. A priori, it is not evident how many surface points are
in a collision cell. For the lowest density, there is approximately
one point in a cell, i.e., k = 1. The slower decay for the other
densities is related to a higher surface particle concentration
in a cell. By inverting Eq. (15), we extract an effective
mass M, = kM in terms of the measured time t.(h). The
corresponding values M, are listed in Table II. It is interesting
to note that M, is roughly proportional to o when oa® > 1, as
expected.

To confirm our theoretical considerations, we performed
Brownian MPC simulations, i.e., MPC simulations without
momentum conservation [23]. Here the buildup of hydrody-
namic correlations is suppressed by assigning a fluid phantom
particle to every colloid point particle, where the phantom
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FIG. 3. (Color online) Short-time center-of-mass velocity auto-
correlation functions for the surface particle densities oa” = 0.53
(bullets), 1.43 (squares), and 3.2 (triangles) (cf. Fig. 1). The
line corresponds to the exponential decay (14) with 7, calculated
according to Eq. (15) for k = 1.

particles velocity is taken from a Gaussian distributed with
zero mean and variance kg7 /M. As expected, the obtained
correlation functions decay exponentially according to the
theoretical prediction (14).

Already for the second collision step (t = 2h), we observe
considerable deviations from an exponential decay in Fig. 3,
which is related to the buildup of hydrodynamic correlations,
i.e., correlations build up rather fast. The initial exponential
decay of the VACF of a solid colloid is typically described by
Enskog kinetic theory [31,34,36,55,57-61], with the relaxation
time [34]

;= i,/zyrkBTmqu)R2 (16)
3M.a3

for a colloidal with no-slip boundary conditions and mass
M. > m.Therelaxation time tg & 1f;is much longer than the
relaxation time 7, = 0.126¢, for o = 0.53a> [Eq. (15)]. Thus,
the initial decay is not described by Enskog friction. A suitable
expression describing the correlation function over the initial
time interval (several collisions) remains to be theoretically
derived.

2. Hydrodynamic regime

a. Theoretical consideration: Hard-sphere colloid. Hy-
drodynamic interactions imply particular correlations in the
dynamics of a colloidal particle, which can be captured by the

TABLEII. Collisional decay times 7. and effective masses M, =
kM for h; = 0.1¢y and h, = 0.02#,. The decay time of an individual

particle of mass M = 10m is 7., = 0.13¢.

0'612 Te,hy /[0 Me,h1 /m Tc,hz/t() Me,hz/m
0.53 0.13 10.7 0.027 10.7
1.43 0.18 15.5 0.035 15
3.2 0.3 29.2 0.058 27
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generalized Langevin equation

M.V(t) = —/ y(t —)V(s)ds + T (1), (17)
0

with the memory function y(¢) and the white-noise random
force I'(¢) [62—65]. The VACF is then given by

3 kB T o0 eii wt
Crt) = ——dw, (18)
27 J_o Y (@) —iwM,
with  the frequency-dependent friction  coefficient

y(w) [36,66,67]. A purely hydrodynamic expression for
y(w) can be obtained from the Navier-Stokes equations with
proper boundary conditions on the sphere surface, i.e., the
fluid is considered as a continuum and hydrodynamics applies
down to infinitely small length and time scales [62,68]. (The
latter does not apply for the MPC fluid [13].) This yields for
no-slip boundary conditions [66,67,69]
47 ,(14+x)(9 —9i¢ —2¢%) + x*(1 —i¢)

V)= R =i — (L + 0 — 22

19)
with the abbreviations x = R/—iwp/n, { = wR/¢, ¢ =

V2 —idwn/3p, and c the velocity of sound.

b. Theoretical consideration: Point-particle colloid. Alter-
natively, an approximate theoretical expression for the transla-
tional VACF can be obtained by a fluctuating hydrodynamics
approach in analogy to the treatment of a polymer [70]. For
the coupling of the sphere to the fluid, we assume no-slip
boundary conditions, i.e., the velocities of the surface particles
are equal to the local fluid velocity. The fluid velocity field
itself is given by the solution of the linearized Landau-
Lifshitz Navier-Stokes equations [13,70,71]. Neglecting the
hydrodynamic coupling between internal degrees of freedom,
the center-of-mass velocity of our sphere of point particles is
then given by

1 X
v = i;vR(R,-,r), (20)

where v®(R;,t) is the random fluid velocity induced by the
thermal fluctuations in the fluid (a white-noise force density)
at the position R; of a sphere-surface particle and time z.
The correlation function of the random velocity within the
linearized Landau-Lifshitz Navier-Stokes equations has been
calculated in Ref. [13], which yields [13,70]

1 kgT

Cr() = == D SMRE k. + 0" k0] 1)
s k

for a finite periodic simulation box of volume V, with the
wave-vector components kg = 2mwng/L, ng € Z, k # 0, and
B € {x,y,z}. Here S denotes the structure factor

Ns N
S(k) = Ni DO ek R, (22)

Soi=1 j=1

where the sum is performed over the discrete sphere-surface
particles. In the exponent of Eq. (22), we neglect the time
dependence because the dynamics of the colloid is by far
slower than that of the fluid particles. The terms Q7 and Q* are
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FIG. 4. (Color online) Colloid center-of-mass VACF (blue dots)
compared with the analytical results for a neutrally buoyant hard-
sphere colloid according to Eq. (18) (green dashed line) and the
analytical result (21) (red solid line) for the surface density ca® =
0.53 and (a) h = 0.1ty and (b) & = 0.02¢y. Here Cr(t) is normalized
by the value C%(0) = 3kzT /M., of a neutrally buoyant hard-sphere
colloid.

the hydrodynamic tensors for the transversal and longitudinal
hydrodynamic modes [13]; they are explicitly provided in
Appendix B. As for the above solid-colloid description, this
approach applies above a minimum length scale only, since
again the continuum solution of the Navier-Stoks equations is
used, which does not apply to the MPC fluid below a minimum
length scale [13].

c. Simulation results. Figure 4 shows VACF:s for the surface
density o = 0.53/a? and two collision time steps. The correla-
tion functions decay nonexponentially and exhibit a long-time
tail. At r = 0, the simulations yield the equipartition value
C7(0) =3kpT/N;M. Since the MPC fluid is compressible,
we find a first signature of sound propagation at# /7, ~ 0.2 and
t/t, =~ 1 for h = 0.1fy and 0.02¢,, respectively, corresponding
to the time required for sound to cover the diameter of a colloid.
Thereby, the backtracking effect is more pronounced for
h = 0.02fy, where the correlation function assumes negative
values [13]. Further sound undulations are visible in Fig. 4(a)
for t/7, 2 2, in accord with the time required for sound to

~

traverse the simulation box, i.e., t;, &~ L/c.
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FIG. 5. (Color online) Colloid center-of-mass VACFs for the
surface densities oa”® = 0.53 (red line), 1.43 (green line), and 3.2
(blue line) and & = 0.1¢.

The simulation results of Fig. 4(a) are well described by
the theoretical expressions (18) and (21) above ¢/1, ~ 0.4.
The expression (21) even reproduces the long-time sound
undulations. Both theoretical curves turn into the long-time tail
Cr(t) = kgT /4p(mrvt)>? [13] for ¢/, > 10, which is solely
determined by fluid properties. However, the backtracking
effect is not reproduced well. For very short times, an improved
MPC-related analytical expression has to be derived.

Figure 5 compares correlation functions for various surface
densities. There is a slight but systematic increase of Cr(t)
with o for 7/1, 2 0.4 due to inertia effects of the colloids of
different mass. For the lowest surface density, inertia seems to
be of minor importance.

In order to elucidate the influence of the mass M of a point
particle and their concentration on the correlation function,
we present in Fig. 6 results for the surface densities o =
0.53/a* with M = 60.3m and o = 3.2/a*> with M = 10m,
which correspond to a total colloid mass of 3620m. Similarly,
we compare simulations for systems with o = 3.2/a® and
M = 1.66m to those with & = 0.53/a* and M = 10m, which
correspond to a total mass of 600m. The VACFs for the systems
with the same total colloid mass agree with each other above
a certain time. The difference between the curves for the low-
and high-mass systems is expected, as indicated in Fig. 5, and
is in qualitative agreement with the theoretical expression (18).
For shorter times, however, the VACF of the high-mass
simulations deviates slightly, which could be a sound effect,
or due to a different coupling with the MPC solvent.

C. Angular velocity autocorrelation function
1. Theoretical consideration: Hard-sphere colloid

The angular velocity autocorrelation function (AVACF) is
defined as

Cr(1) = (R() - (0)) (23)

in terms of the angular velocity 2, which is obtained from the
relation

Q) =T"'L. (24)
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t't
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FIG. 6. (Color online) Colloid center-of mass VACFs for the
surface densities ca? = 0.53 (blue line) and 3.2 (red line) and the
point-particle masses M /m = 60.3 and 10 (solid line), respectively,
as well as M/m =10 and 1.66 (dashed line), respectively. This
corresponds to the total mass of the colloids 3620m (solid line) and
600m (dashed line).

The moment of inertia tensor I, with its magnitude / = |I], and
the angular momentum L are calculated in a reference frame
located at the center of mass of the sphere.

As the translational velocity autocorrelation function, Cg
exhibits an initial collisional regime, which decays in the same
way as Cr(t) [cf. Egs. (14) and (15) and Fig. 3]. An analytical
expression for the AVACF of a colloid immersed in a fluid
has been derived in Refs. [72,73]. In terms of the Laplace
transformation, it is given by

I Y YA 7O
CR(t)—%/e (s—{— 7 ) ds

for a colloid with stick boundary conditions, with the rotational
friction coefficient

(25)

2
pRs/n ) 26)

3(1++/pR%s/n)

2. Simulation results

yr(s) = 8nnR3(1 +

Figure 7 shows simulation results for the two applied
collision time steps, i.e., AVACFs for two viscosities. Evi-
dently, the curves for the two collision-step sizes agree very
well up to /1, &~ 2. For longer times, statistical fluctuations
imply deviations. This stresses the fact that only transverse
hydrodynamic modes play a role in the rotational behavior of
a sphere.

The analytical expression (25) is compared with simulation
results for various surface densities in Fig. 8. The agreement
is good for the lower surface densities. For the highest density,
we find a somewhat stronger decay of the AVACF at longer
times. In any case, the correlation functions seem to follow the
long-time tail power-law decay ¢~/2. At short times, we find
deviations from the theoretical result, which are related to the
initial nonhydrodynamic decay of the correlation function.

PHYSICAL REVIEW E 90, 033314 (2014)

FIG. 7. (Color online) Angular velocity autocorrelation func-
tions of a spherical colloid for the viscosities n//mkgT /a* = 8.7
(h = 0.1¢y, red line) and 41.2 (h = 0.021, blue line). The particle
surface density is o/a®> = 0.53. The black line corresponds to the
analytical expression (25).

D. Diffusion coefficient

The Green-Kubo relation

Dy = l/ Ca(t)dt (27)
0

3
yields the diffusion coefficient from the correlation function
for translation A = T and rotation A = R. In general, the
translational diffusion coefficient comprises local frictional
and hydrodynamic D¥ contributions, i.e.,
Dy

Dr = — + DI,

T Ns T
Without hydrodynamic correlations, the total friction co-
efficient of a sphere is the sum of the contributions of
the individual point particles. Hence, Dy/N; is the overall

(28)

(¢} _
= 10 -
G-

FIG. 8. (Color online) Angular velocity autocorrelation func-
tions of a spherical colloid for the surface densities o0a® = 0.53 (red
line), 1.43 (green line), and 3.2 (blue line) and the MPC collision time
h = 0.1ty. The black line indicates the analytical expression (25).
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TABLE III. Rotational diffusion coefficients and hydrodynamic
radii for a sphere of radius R = 3a for various surface densities
o and the collision time steps h; = 0.17, and h, = 0.02¢; Dg =
kpT/8mnR>.

Ua2 Dthl/D(I)? RH,hl/a DR_;,Z/D% Rthz/a
0.53 0.94 3.1 1.06 3.0
1.43 0.71 34 0.75 3.3
32 0.5 3.8 0.53 3.7

diffusion coefficient by local friction, with the diffusion
coefficient Dy of an individual surface mass point.

The hydrodynamic radius of a colloid follows from the
translational and rotational diffusion coefficients via the
relations

kgT
"= , 29
T 67T7’}RH ( )
kgT
Dp= ——r. (30)
8 Ry,

Table III presents rotational diffusion coefficients and the cor-
responding hydrodynamic radii for various surface densities.
They are normalized by the rotational diffusion coefficient
DY = kpT /87 nR? of a hard sphere.

The translational diffusion coefficient depends on system
size L, whereas the decay of the rotational correlation function
is fast enough such that Dy is essentially independent of L.
In order to determine diffusion coefficients in the asymptotic
limit of an infinite box size, we performed simulations for
the system sizes L = 30a, 50a, and 90a. The autocorrelation
functions are shown in Fig. 9. With increasing system
size, the sound modes at t; = L/c of the VACF shift to
longer times, whereas the short-time behavior (¢/7, < 0.1) is
unaffected by the system size. The analytical expression (21)
qualitatively captures the time dependence for small box sizes
and quantitatively describes the VACF above ¢/1, =~ 0.4 for
the largest considered box size L = 90a.

No sound effects are present in the AVACF and the
correlation function is nearly independent of system size. The
analytical expression (25) describes the simulation data well
above t/t, = 0.1. The diffusion coefficients determined by
the integrals (27) are displayed in Table IV. The diffusion
coefficient Dy clearly increases with increasing system size,
whereas Dy is constant.

Assuming pointlike particles, the long-range hydrodynamic
correction for the diffusion coefficient in a periodic system can
be calculated analytically, which yields [74,75]

kgT
6mnL’

DI (L) = D¥(c0) —2.837 31)
where D! (00) is the hydrodynamic part of the translational
diffusion coefficient of the infinite system. Table IV lists the
diffusion coefficients Dy obtained from integration of the
correlation functions (27). With the numerically determined
diffusion coefficient Dy//kgpTa?/m = 0.02 of a MPC parti-
cle of mass M = 10m, we obtain the respective coefficients
DX . A fit of the expression (31) to the finite-size D (L)
values of Table IV yields the value D¥ (c0) = 0.88DY. and the

PHYSICAL REVIEW E 90, 033314 (2014)

(a)

FIG. 9. (Color online) (a) Center-of-mass velocity autocorrela-
tion functions and (b) angular velocity autocorrelation functions for
the box sizes L/a = 30 (red line), 50 (green line), and 90 (blue line).
The surface density is ca? = 1.43 and h = 0.1¢;. The dashed lines
in (a) are calculate via Eq. (21) and the smooth black line in (b) is
calculated by Eq. (25).

hydrodynamic radius Ry = 3.4a. This value agrees very well
with R}, extracted from the rotational diffusion coefficient.
Alternatively, D? (00) can be obtained directly from the
VACF [70]. As shown in Fig. 9, the colloid center-of-mass
velocity autocorrelation function can be described quantita-
tively by the theoretical expression (21) above a certain time
scale. To obtain the infinite-system-size correlation function,
we suggest to replace the (oscillating) tail of the finite-size
simulation result by the infinite-system analytical expression

TABLE IV. Translational D7 and rotational Dy diffusion coeffi-
cients and the respective hydrodynamic radii Ry and R}, for various
simulation box sizes L, 0 = 1.43a?, and h = 0.1¢,. The D}’ are the
hydrodynamic contributions to the translational diffusion coefficients
[cf. Eq. (28)].

L/a Dy /DY D /DY Ry/a Dy/D% Ry /a
30 0.64 0.58 5.2 0.7 3.4
50 0.79 0.73 4.1 0.7 3.4
90 0.84 0.78 3.8 0.7 34
o0 0.94 0.88 3.4 0.7 34
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and integrate the combined correlation function to obtain the
asymptotic value D (co). This yields the diffusion coefficient
D#(00) = 0.91D} and the hydrodynamic radius Ry = 3.3a.
This value closely agrees with that presented in Table IV
obtained by extrapolation.

The obtained hydrodynamic radii are all larger than the
colloid size R. This is partly due to the hydrodynamic radius
of the surface particles themselves. The diffusion coefficient
Do//kgTa?/m = 0.02 of a surface particle corresponds to
the hydrodynamic radius rg/a =~ 0.3 [76], when we assume
no-slip boundary conditions. Thus, Ry /a = 3.3 or 3.4 is close
to the sum of the sphere radius and the hydrodynamic radius
of a surface particle.

IV. CORRELATION FUNCTIONS OF A SOLID COLLOID

Figure 10 shows the VACF and AVACF for a neutrally
buoyant hard-sphere colloid and the colloid composed of
discrete point particles in the MPC solvent. The viscosities of
the two systems are different. However, we scale the time by

(@)

FIG. 10. (Color online) (a) Center-of-mass velocity autocorrela-
tion functions and (b) rotational velocity autocorrelation functions for
a neutrally buoyant hard sphere (blue dots) and a sphere composed
of discrete point particles (green line) with the surface particle
density o = 1.43a?. The dashed line (red) represents the theoretical
expressions (18) and (25), respectively. The inset in (a) shows
the nonexponential short-time behavior of the hard-sphere colloid
correlation function.

PHYSICAL REVIEW E 90, 033314 (2014)

7,,, which removes the dependence on the viscosity, at least for
long times. Evidently, the long-time behavior of both colloids
is identical. However, we observe distinct model-specific
differences for short times. Specifically, the sound contribu-
tions are somewhat different for the translational correlation
function and there are even more pronounced differences for
shorter times. The correlation functions obtained from simu-
lation compare very well with the theoretical expressions (18)
and (25) for an infinitely large system above ¢/t, =~ 0.5 and
t/t, ~ 1072 for translation and rotation, respectively [see also
Fig. 4(a)]. Finite-system-size effects appear for the Cr above
t/t, ~ 2 [see Fig. 10(a)].

The inset of Fig. 10(a) shows the close agreement between
the simulation data and the analytical expression (18) for short
times. There is no evidence for an exponentially Enskog-type
decaying correlation function. The VACF is distinct from
an exponential function. The close agreement between the
theory and simulation results suggests that due to our choice
of boundary conditions at the colloid surface, i.e., taking
into account phantom particles, hydrodynamics dominates the
colloid dynamics even at very small time scales of a few MPC
collisions [52]. We like to mention that both simulation and
theory yield the equipartition value Cr(0) = 3kpT /M, in the
static limit.

V. SEDIMENTATION

Finally, we study the fluid flow field around a sedimenting
colloid composed of discrete point particles in the presence
of an applied constant force f. A backflow of the fluid is
introduced by a force on the fluid particles such that the total
center-of-mass velocity of the system is zero [77]. Figure 11
shows the fluid velocity field in the vicinity of the sphere
witho = 1.43/a” and h = 0.1¢, at the Reynolds number Re =
uR/v ~ 0.25, where u is the average sedimentation velocity.
The reference frame is fixed at the colloid center, hence fluid
flows in the negative z direction, i.e., we subtract the average
drift velocity of the colloid from the fluid velocity field. Due to
the symmetry, we use cylindrical coordinates with the cylinder

0
z/R

FIG. 11. (Color online) Fluid velocity field in the rest frame of a
sedimenting colloid composed of discrete particles with the surface
density 0a? = 1.43 and h = 0.1#. Arrows indicate the direction of
the velocity field v. The magnitude of the field |v| is color coded.
Cylindrical coordinates are used, with the cylinder axis along the z
axis of the Cartesian reference frame (sedimentation direction) and
the radial coordinate r.
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FIG. 12. (Color online) Comparison of the fluid velocity compo-
nent v, obtained from simulation (symbols) and calculated according
to Eq. (32) (lines) along the sedimentation direction z (blue squares)
and along the radial direction r (red circles). For the two system sizes
L = 80 (open symbols) and L = 50 (closed symbols), we obtain
the hydrodynamic radii Ry = 3.075a and 3.25a, respectively. The
system parameters are ca®> = 1.43 and h = 0.1#y. The velocities are
scaled by the value uy = f/6mnR.

axis along the z axis of the Cartesian reference frame and the
radial coordinate r.

The strength of the velocity field along the sedimentation
and radial directions are displayed in Fig. 12 for two sizes of
the periodic system. The numerical results are compared with
the analytical expression

3 u+fm-f) 1 _su—3%u-¥)

v=u— "Ry v —r

7 | (32)

for the flow field around a sphere with no-slip boundary condi-
tions in the Stokes regime [71]. Here u is the fluid velocity at
infinity, r is the position vector from the center of the colloid,
and # = r/|r|. We assume that the flow fieldisu = f/6nnRy
atinfinity such that Ry is the only fit parameter in Eq. (32). For
the two considered system sizes L = 80a and 50a, we obtain
the hydrodynamic radii Ry = 3.075a and 3.25a, respectively,
which are slightly smaller than the values extracted from the
translational and rotational correlation functions. The simula-
tion data agree well with the theoretical expression. In partic-
ular, the flow velocity in the colloid interior is very close to
zero and the no-slip boundary condition is very well satisfied.

VI. CONCLUSION

We have investigated the hydrodynamic properties of a colloid,
which is modeled as a spherical shell of point particles
immersed in a MPC fluid. We have analyzed the short-time
MPC-collision-dominated regime and the long-time behavior.
The simulation results can be well described by two analytical
models: a hard-sphere neutrally buoyed colloid and a colloid
comprised of mass points. In particular, we find a long-time
tail of the translational velocity correlation function, which is
solely determined by the fluid properties. Studies for various
surfaces-particle densities suggest that approximately a single

PHYSICAL REVIEW E 90, 033314 (2014)

surface point particle per collision cell provides excellent
agreement with theoretical descriptions. For the colloid with
radius R = 3a, this corresponds to the surface density oa® ~
0.53. Larger densities may giverise to additional inertia effects.

We have applied two strategies to extract a diffusion
coefficient in the asymptotic limit of an infinitely large
system. First, we performed simulations for various system
sizes and extrapolated the hydrodynamic contribution of the
diffusion coefficient to infinitely large systems. Second, we
integrated the velocity autocorrelation function, where the
long-time behavior is replaced by an analytical expression.
Both procedures yield the same diffusion coefficient.

By comparing the correlation functions for translation
and rotation motion of the discrete-point-particle model with
those of a solid, neutrally buoyant colloid, we conclude that
the discrete model describes the hydrodynamic properties of
colloids surprisingly well. This is supported by the flow profile
around such a sedimenting colloid, where we find essentially a
zero fluid velocity inside the colloid and very good agreement
with theoretical predictions of the flow velocities outside the
colloid.

The simulations of the discrete-point-particle colloid have
been performed with a non-angular-momentum-conserving
MPC algorithm: the stochastic rotation algorithm [11].
In contrast, the simulations of the neutrally buoyant
hard-sphere colloid have been performed with an angular-
momentum-conserving MPC approach [32,48]. (For angular-
momentum-conserving SRD simulations see Refs. [48,49].)
The agreement between the simulation results for the velocity
correlation functions (cf. Fig. 10) suggests that the lack or
presence of angular momentum conservation has very little
or no effect on the colloid dynamics for the no-slip boundary
condition.

In summary, the discrete-particle model provides a valuable
alternative to a solid colloid as far as hydrodynamic aspects are
concerned, with considerably reduced numerical effort. This
is particularly interesting for more complex structures such as
coarse-grained protein models with mobile domains [78].
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APPENDIX A: VELOCITY CORRELATION FUNCTION

Here we calculate the colloid center-of-mass velocity
autocorrelation function after one collision step. Thereby, we
utilize the following relations.

(i) Since the dynamics of the colloid is force free between
collisions, V(t) = V(t — h), i.e., the colloid center-of-mass
velocity after a collision V(¢ — h) is equal to that after the
subsequent streaming step V(7).

(i1) Both the colloid-surface particles and the MPC particles
are in thermal equilibrium at any time. Hence,

(i) - Vi(1)) = 0,

N N 3kgT
(Vi(0)- Vi) = Aj

(AL)

8. (A2)
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The colloid center-of-mass VACF is
(V(h) - V(0))

<V<h) : f/(h))

~Yi1,1

N

1‘*”

= (V(0)%) +

”N

i=1 j=

> ({IR@) = EILVi(h) — vem (W]} - V (b)),
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e ZZ Vi(h) - V()

(A3)

with the collision rule (3) and v.,, from Eq. (6). Averaging over the random orientation of the rotation axis and insertion of

Eq. (A1) yields for the last term of Eq. (A3)

2 A . 2 N A
g[cos(a) — IK[Vi(h) — vem (W] -V j(h)) = 5 Leos(e) — 1] |:<Vi(h) Vi) —

where the sum with the index k runs over the colloid-surface
particles in the collision cell of particle i. Utilization of
Eq. (A2) finally gives

3kT
(V(h)-V(0)) = va.

), (AS5)

with

m(Ne)

m(N) + M(N/)’ (A0

2
w= 5(1 —cosa)

The latter particularly applies for a single colloid-surface
particle in a collision cell, i.e., for NP = 1. Note that we
assumed that every collision cell contains the same amount
of fluid and colloid-surface particles in the derivation of
Eq. (A5).InEq. (A6) we replaced that number by the respective
average number. To be more precise, the average in Eq. (A3)
should also include an average over the respective particle
numbers, which would be a Poisson distribution for the fluid
particles [19]. During subsequent collisions, hydrodynamic
correlations build up. However, if we neglect these correla-
tions, i.e., assume that the molecular chaos assumption applies,
the velocity correlation function after the time ¢ is

3kgT

1 — )",
MNJ( w)

(V()- V() =

(AT)

APPENDIX B: HYDRODYNAMIC TENSOR

The solution for the fluid velocity field wv(k,z) in
Fourier space of the linearized Landau-Lifshitz Navier-Stokes

S M(Vh) - Z(h»] A
mN; + MN;
[
equations is given by
v(k,t)=/Q(k,t—t/)f(t/)dt’, (BI)

with the hydrodynamic tensor Q(k,r —¢’) and the volume
force density f(¢) [13,70]. The tensor itself is composed of a
transverse Q7 and a longitudinal Q” part, where Q(k,t) =
Q" (k,1) + Q" (k,1) = Q" (k,1)(E — P) + Q" (k,1)P, with P
the projection operator with the components Pgg = kgkg' / k?
and E the unit tensor. Explicitly, the transverse part Q7 is
given by

Q" (k.t) = %e—“"”@(t), (B2)
where ©(¢) is the Heaviside function, v = /o denotes the
kinematic viscosity, and p is the mass density. For the MPC
fluid, the viscosity n = n* + n¢ is composed of a kinetic n*
and collisional ¢ contribution [22]. The longitudinal part Q*
reads

2‘72

1
L _ —k*9t/2
k,it)=— Q) — | ——
Q" (k,1) ¢ [008( ) 12

sin(Qt)j| 1)

(B3)

for 4c?/k*9? > 1, where Q = k*U\/4c2/k*D2 —1/2, D =

ii/p = (n+n*/3)/p, and

252

0t k,t) = %e—kzﬂ’ﬂ[cosh(m) — 5 sinh(At):|

D
k292 — 4c¢
X O(t) (B4)

for 4¢2/1212 < 1, where A = k25/T — 4c2/ k2922 [13].
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