000156530 001__ 156530
000156530 005__ 20220930130033.0
000156530 0247_ $$2doi$$a10.3389/fnana.2014.00115
000156530 0247_ $$2Handle$$a2128/8022
000156530 0247_ $$2WOS$$aWOS:000344069100001
000156530 037__ $$aFZJ-2014-05244
000156530 041__ $$aEnglish
000156530 082__ $$a610
000156530 1001_ $$0P:(DE-Juel1)158019$$aButz, Markus$$b0$$eCorresponding Author$$ufzj
000156530 245__ $$aHomeostatic structural plasticity can account for topology changes following deafferentation and focal stroke
000156530 260__ $$aLausanne$$bFrontiers Research Foundation$$c2014
000156530 3367_ $$2DRIVER$$aarticle
000156530 3367_ $$2DataCite$$aOutput Types/Journal article
000156530 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1570522453_2022
000156530 3367_ $$2BibTeX$$aARTICLE
000156530 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000156530 3367_ $$00$$2EndNote$$aJournal Article
000156530 520__ $$aAfter brain lesions caused by tumors or stroke, or after lasting loss of input (deafferentation), inter- and intra-regional brain networks respond with complex changes in topology. Not only areas directly affected by the lesion but also regions remote from the lesion may alter their connectivity—a phenomenon known as diaschisis. Changes in network topology after brain lesions can lead to cognitive decline and increasing functional disability. However, the principles governing changes in network topology are poorly understood. Here, we investigated whether homeostatic structural plasticity can account for changes in network topology after deafferentation and brain lesions. Homeostatic structural plasticity postulates that neurons aim to maintain a desired level of electrical activity by deleting synapses when neuronal activity is too high and by providing new synaptic contacts when activity is too low. Using our Model of Structural Plasticity, we explored how local changes in connectivity induced by a focal loss of input affected global network topology. In accordance with experimental and clinical data, we found that after partial deafferentation, the network as a whole became more random, although it maintained its small-world topology, while deafferentated neurons increased their betweenness centrality as they rewired and returned to the homeostatic range of activity. Furthermore, deafferentated neurons increased their global but decreased their local efficiency and got longer tailed degree distributions, indicating the emergence of hub neurons. Together, our results suggest that homeostatic structural plasticity may be an important driving force for lesion-induced network reorganization and that the increase in betweenness centrality of deafferentated areas may hold as a biomarker for brain repair.
000156530 536__ $$0G:(DE-HGF)POF2-411$$a411 - Computational Science and Mathematical Methods (POF2-411)$$cPOF2-411$$fPOF II$$x0
000156530 536__ $$0G:(DE-Juel1)HGF-SMHB-2013-2017$$aSMHB - Supercomputing and Modelling for the Human Brain (HGF-SMHB-2013-2017)$$cHGF-SMHB-2013-2017$$fSMHB$$x1
000156530 536__ $$0G:(DE-Juel1)Helmholtz-SLNS$$aSLNS - SimLab Neuroscience (Helmholtz-SLNS)$$cHelmholtz-SLNS$$x2
000156530 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000156530 7001_ $$0P:(DE-HGF)0$$aSteenbuck, Ines D.$$b1
000156530 7001_ $$0P:(DE-HGF)0$$avan Ooyen, Arjen$$b2
000156530 770__ $$aQuantitative analysis of neuroanatomy
000156530 773__ $$0PERI:(DE-600)2452969-2$$a10.3389/fnana.2014.00115$$gVol. 8$$p115$$tFrontiers in neuroanatomy$$v8$$x1662-5129$$y2014
000156530 8564_ $$uhttp://journal.frontiersin.org/Journal/10.3389/fnana.2014.00115/abstract
000156530 8564_ $$uhttps://juser.fz-juelich.de/record/156530/files/FZJ-2014-05244.pdf$$yOpenAccess
000156530 8767_ $$92014-10-14$$d2014-10-14$$eAPC$$jZahlung erfolgt
000156530 909CO $$ooai:juser.fz-juelich.de:156530$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000156530 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)158019$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000156530 9132_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data $$vComputational Science and Mathematical Methods$$x0
000156530 9131_ $$0G:(DE-HGF)POF2-411$$1G:(DE-HGF)POF2-410$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lSupercomputing$$vComputational Science and Mathematical Methods$$x0
000156530 9141_ $$y2014
000156530 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000156530 915__ $$0StatID:(DE-HGF)0040$$2StatID$$aPeer review unknown
000156530 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000156530 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000156530 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000156530 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000156530 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000156530 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000156530 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000156530 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000156530 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000156530 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000156530 920__ $$lyes
000156530 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000156530 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x1
000156530 980__ $$ajournal
000156530 980__ $$aVDB
000156530 980__ $$aI:(DE-Juel1)JSC-20090406
000156530 980__ $$aI:(DE-82)080012_20140620
000156530 980__ $$aAPC
000156530 980__ $$aUNRESTRICTED
000156530 9801_ $$aAPC
000156530 9801_ $$aFullTexts