001     15675
005     20210129210628.0
024 7 _ |2 DOI
|a 10.1002/wcms.25
024 7 _ |2 WOS
|a WOS:000296004500004
024 7 _ |a altmetric:1558111
|2 altmetric
037 _ _ |a PreJuSER-15675
041 _ _ |a eng
100 1 _ |0 P:(DE-HGF)0
|a Lischka, H.
|b 0
245 _ _ |a Columbus - a program system for advanced multireference theory calculations
260 _ _ |c 2011
300 _ _ |a 191 - 199
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 0
|2 EndNote
|a Journal Article
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |2 DRIVER
|a article
440 _ 0 |0 24141
|a Wiley Interdisciplinary Reviews: Computational Molecular Science
|v 1
|y 2
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a The COLUMBUS Program System allows high-level quantum chemical calculations based on the multiconfiguration self-consistent field, multireference configuration interaction with singles and doubles, and the multireference averaged quadratic coupled cluster methods. The latter method includes size-consistency corrections at the multireference level. Nonrelativistic (NR) and spin-orbit calculations are available within multireference configuration interaction (MRCI). A prominent feature of COLUMBUS is the availability of analytic energy gradients and nonadiabatic coupling vectors for NR MRCI. This feature allows efficient optimization of stationary points and surface crossings (minima on the crossing seam). Typical applications are systematic surveys of energy surfaces in ground and excited states including bond breaking. Wave functions of practically any sophistication can be constructed limited primarily by the size of the CI expansion rather than by its complexity. A massively parallel CI step allows state-of-the art calculations with up to several billion configurations. Electrostatic embedding of point charges into the molecular Hamiltonian gives access to quantum mechanical/molecular mechanics calculations for all wave functions available in COLUMBUS. The analytic gradient modules allow on-the-fly nonadiabatic photodynamical simulations of interesting chemical and biological problems. Thus, COLUMBUS provides a wide range of highly sophisticated tools with which a large variety of interesting quantum chemical problems can be studied. (C) 2011 John Wiley & Sons, Ltd. WIREs Comput Mol Sci 2011 1 191-199 DOI: 10.1002/wcms.25
536 _ _ |0 G:(DE-Juel1)FUEK411
|2 G:(DE-HGF)
|x 0
|c FUEK411
|a Scientific Computing (FUEK411)
536 _ _ |0 G:(DE-HGF)POF2-411
|a 411 - Computational Science and Mathematical Methods (POF2-411)
|c POF2-411
|f POF II
|x 1
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |2 WoSType
|a J
700 1 _ |0 P:(DE-Juel1)132204
|a Müller, Th.
|b 1
|u FZJ
700 1 _ |0 P:(DE-HGF)0
|a Szalay, P.G.
|b 2
700 1 _ |0 P:(DE-HGF)0
|a Shavitt, I.
|b 3
700 1 _ |0 P:(DE-HGF)0
|a Pitzer, R.M.
|b 4
700 1 _ |0 P:(DE-HGF)0
|a Shepard, R.
|b 5
773 _ _ |0 PERI:(DE-600)2599565-0
|a 10.1002/wcms.25
|g Vol. 1, p. 191 - 199
|p 191 - 199
|q 1<191 - 199
|t Wiley Interdisciplinary Reviews: Computational Molecular Science
|v 1
|y 2011
856 7 _ |u http://dx.doi.org/10.1002/wcms.25
909 C O |o oai:juser.fz-juelich.de:15675
|p VDB
913 2 _ |0 G:(DE-HGF)POF3-511
|1 G:(DE-HGF)POF3-510
|2 G:(DE-HGF)POF3-500
|a DE-HGF
|b Key Technologies
|l Supercomputing & Big Data
|v Computational Science and Mathematical Methods
|x 0
913 1 _ |0 G:(DE-HGF)POF2-411
|1 G:(DE-HGF)POF2-410
|2 G:(DE-HGF)POF2-400
|a DE-HGF
|b Schlüsseltechnologien
|l Supercomputing
|v Computational Science and Mathematical Methods
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
914 1 _ |y 2011
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|g JSC
|k JSC
|l Jülich Supercomputing Centre
|x 0
970 _ _ |a VDB:(DE-Juel1)128872
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21