000015678 001__ 15678
000015678 005__ 20210129210629.0
000015678 0247_ $$2pmid$$apmid:21070061
000015678 0247_ $$2DOI$$a10.1021/jp108844g
000015678 0247_ $$2WOS$$aWOS:000284738500004
000015678 037__ $$aPreJuSER-15678
000015678 041__ $$aeng
000015678 082__ $$a530
000015678 084__ $$2WoS$$aChemistry, Physical
000015678 084__ $$2WoS$$aPhysics, Atomic, Molecular & Chemical
000015678 1001_ $$0P:(DE-HGF)0$$aRuckenbauer, M.$$b0
000015678 245__ $$aAzomethane: Nonadiabatic Photodynamical Simulations in Solution
000015678 260__ $$aWashington, DC$$bSoc.$$c2010
000015678 300__ $$a12585 - 12590
000015678 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000015678 3367_ $$2DataCite$$aOutput Types/Journal article
000015678 3367_ $$00$$2EndNote$$aJournal Article
000015678 3367_ $$2BibTeX$$aARTICLE
000015678 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000015678 3367_ $$2DRIVER$$aarticle
000015678 440_0 $$03693$$aJournal of Physical Chemistry A$$v114$$x1089-5639$$y48
000015678 500__ $$aThis work was supported by the Austrian Science Fund within the framework of the Special Research Programs F16 (Advanced Light Sources) and F41 (ViCoM) and Project P18411-N19. The authors are also thankful for the technical support and computer time at the VSC-Vienna Scientific Cluster (Project nos. 70019 and 70151) and at the Luna-Cluster of the Department of Scientific Computing, University of Vienna. Displays of molecular structures were made with VMD. VMD was developed with NTH support by the Theoretical and Computational Biophysics group at the Beckman Institute, University of Illinois at Urbana-Champaign (http://www.ks.uiuc.edu/Research/vmd/).
000015678 520__ $$aThe nonadiabatic deactivation of trans-azomethane starting from the nπ* state has been investigated in gas phase, water, and n-hexane using an on-the-fly surface-hopping method. A quantum mechanical/molecular mechanics (QM/MM) approach was used employing a flexible quantum chemical level for the description of electronically excited states and bond dissociation (generalized valence bond perfect-pairing complete active space). The solvent effect on the lifetime and structural parameters of azomethane was investigated in detail. The calculations show that the nonadiabatic deactivation is characterized by a CNNC torsion, mainly impeded by mechanic interaction with the solvent molecules. The similar characteristics of the dynamics in polar and nonpolar solvent indicate that solvent effects based on electrostatic interactions do not play a major role. Lifetimes increase by about 20 fs for both solvents with respect to the 113 fs found for the gas phase. The present subpicosecond dynamics also nicely show an example of the suppression of C-N dissociation by the solvent cage.
000015678 536__ $$0G:(DE-Juel1)FUEK411$$2G:(DE-HGF)$$aScientific Computing (FUEK411)$$cFUEK411$$x0
000015678 536__ $$0G:(DE-HGF)POF2-411$$a411 - Computational Science and Mathematical Methods (POF2-411)$$cPOF2-411$$fPOF II$$x1
000015678 588__ $$aDataset connected to Web of Science, Pubmed
000015678 650_2 $$2MeSH$$aAzo Compounds: chemistry
000015678 650_2 $$2MeSH$$aHexanes: chemistry
000015678 650_2 $$2MeSH$$aModels, Molecular
000015678 650_2 $$2MeSH$$aPhotochemistry
000015678 650_2 $$2MeSH$$aQuantum Theory
000015678 650_2 $$2MeSH$$aSolutions
000015678 650_2 $$2MeSH$$aSolvents: chemistry
000015678 650_2 $$2MeSH$$aWater: chemistry
000015678 650_7 $$00$$2NLM Chemicals$$aAzo Compounds
000015678 650_7 $$00$$2NLM Chemicals$$aHexanes
000015678 650_7 $$00$$2NLM Chemicals$$aSolutions
000015678 650_7 $$00$$2NLM Chemicals$$aSolvents
000015678 650_7 $$0110-54-3$$2NLM Chemicals$$an-hexane
000015678 650_7 $$0503-28-6$$2NLM Chemicals$$aazomethane
000015678 650_7 $$07732-18-5$$2NLM Chemicals$$aWater
000015678 650_7 $$2WoSType$$aJ
000015678 7001_ $$0P:(DE-HGF)0$$aBarbatti, M.$$b1
000015678 7001_ $$0P:(DE-HGF)0$$aSellner, B.$$b2
000015678 7001_ $$0P:(DE-Juel1)132204$$aMüller, Th.$$b3$$uFZJ
000015678 7001_ $$0P:(DE-HGF)0$$aLischka, H.$$b4
000015678 773__ $$0PERI:(DE-600)2006031-2$$a10.1021/jp108844g$$gVol. 114, p. 12585 - 12590$$p12585 - 12590$$q114<12585 - 12590$$tThe @journal of physical chemistry <Washington, DC> / A$$v114$$x1089-5639$$y2010
000015678 8567_ $$uhttp://dx.doi.org/10.1021/jp108844g
000015678 909CO $$ooai:juser.fz-juelich.de:15678$$pVDB
000015678 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000015678 9141_ $$y2010
000015678 9132_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000015678 9131_ $$0G:(DE-HGF)POF2-411$$1G:(DE-HGF)POF2-410$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lSupercomputing$$vComputational Science and Mathematical Methods$$x4
000015678 9201_ $$0I:(DE-Juel1)JSC-20090406$$gJSC$$kJSC$$lJülich Supercomputing Centre$$x0
000015678 970__ $$aVDB:(DE-Juel1)128875
000015678 980__ $$aVDB
000015678 980__ $$aConvertedRecord
000015678 980__ $$ajournal
000015678 980__ $$aI:(DE-Juel1)JSC-20090406
000015678 980__ $$aUNRESTRICTED