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To obtain an effective many-body model of graphene and related materials from first principles we

calculate the partially screened frequency dependent Coulomb interaction. In graphene, the effective

on-site (Hubbard) interaction is U00 ¼ 9:3 eV in close vicinity to the critical value separating conducting

graphene from an insulating phase emphasizing the importance of nonlocal Coulomb terms. The nearest-

neighbor Coulomb interaction strength is computed to U01 ¼ 5:5 eV. In the long-wavelength limit, we

find the effective background dielectric constant of graphite to be � ¼ 2:5 in very good agreement with

experiment.
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The role of Coulomb interactions in graphene and re-
lated materials poses a long standing problem: experiments
reported ferromagnetic ordering in nanographene [1],
in disordered graphite samples [2], and at grain boundaries
in highly oriented pyrolytic graphite (HOPG) [3].
Ferromagnetism in pristine graphene, however, has been
excluded experimentally for temperatures down to 2 K [4].
Theoretically, the possibility of magnetism in defect
free graphene has been predicted: an antiferromagnetic
insulating ground state has been obtained for the local
Coulomb interactions exceeding a critical value UAFM *
ð4:5� 0:5Þt in quantum Monte Carlo (QMC) calculations
[5–7] and UAFM * 2:2t in Hartree-Fock theory [5,6],
where t � 2:8 eV is the nearest-neighbor hopping parame-
ter. A gapped spin liquid has been predicted for on-site
repulsion between USL ¼ 3:5t and UAFM [8]. Sizable non-
local Coulomb interactions can make the phase diagram
even richer and lead to a competition between spin- and
charge-density-wave phases [9,10] or topologically non-
trivial phases [11]. Doping of graphene might trigger fur-
ther instabilities [12,13]. In pristine graphene, the Coulomb
interaction remains long ranged and it is controversial
whether this might lead to strongly correlated electronic
phases like an insulator [9,14] or whether graphene is
rather weakly correlated. The local part of Coulomb inter-
action is also crucial for the theory of defect-induced
magnetism in graphene [15].

The central issue in this discussion is the effective
strength of the Coulomb interaction acting on the carbon
pz electrons, which has only been estimated very roughly
up to now [16]: The bare on-site Coulomb interaction in
benzene obtained from atomic carbon pz orbitals was
estimated to be 16.9 eV [17]. For polyacetylene, an analy-
sis of optical modulation spectroscopy experiments within
weak coupling perturbation theory yielded an effective
on-site Coulomb repulsion of 10 eV [18,19]. However, in
this regime weak coupling perturbation theory might be

inapplicable. For the long-wavelength limit, reflectance
measurements of graphite [20] yielded a dielectric constant
of � ¼ 2:4 due to screening by the high-energy � bands.
This would correspond to an effective fine structure con-

stant of � ¼ e2

�@vF
� 0:9 for bulk graphite, where @vF �

5:8 eV �A is the Fermi velocity [16]. For graphene, recent
inelastic x-ray scattering experiments [21] suggest a fully
screened dielectric constant of � � 15 corresponding to a
fine structure constant of � ¼ 0:14. At the same time, first-
principles GW calculations [22] give � � 4, in agreement
with the predictions of a simple Dirac model [16]. Recent
experimental data on charge density dependence of the
Fermi velocity [23] seem to be in agreement, rather, with
the second value. So, up to now the strength of Coulomb
interactions in graphene related materials has remained
unclear and controversial—both theoretically and experi-
mentally (for a review of correlation effects in graphene,
see Ref. [24]).
In this Letter, we determine the Coulomb interaction

strength in graphene and graphite within the constrained
random phase approximation (cRPA) [25]. We obtain
ab initio effective Coulomb interaction parameters that
should be used in a generalized Hubbard model of gra-
phene or graphite (see cRPA values in Table I). We find
that the on-site interactions in free standing graphene are
weaker than UAFM but close to the transition to the in-
sulating spin-liquid phase at USL ¼ 3:5t � 9:8 eV. Our
calculations stress the importance of nonlocal Coulomb
interactions in graphene. They put graphene in close prox-
imity to two quantum phase transition lines and at the same
time are possibly crucial for stabilizing a conducting state
of freely suspended graphene. In the long-wavelength
limit, we find bulk graphite having an effective background
dielectric constant � � 2:5, in agreement with the experi-
ments from Ref. [20]. For graphene in the long-wavelength
limit � is just one, as it should be for any two-dimensional
system as will be explained below.
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We start with constructing a generalized Hubbard model
for the graphene � bands,

Ĥ0 ¼ �t
X

hi;ji;�
cyi;�cj;� � t0

X
hhi;jii;�

cyi;�cj;� þU00

X
i

ni;"ni;#

þ 1

2

X
i�j;�;�0

Uijni;�nj;�0 ; (1)

where ci;� annihilates an electron with spin � 2 f"; #g at
site i and ni;� ¼ cyi;�ci;�. The index i ¼ ði; A orBÞ labels
the sublattice (A, B) and the unit cell centered at position
Ri, Uij are the Coulomb interaction parameters. The

nearest-neighbor hopping is known to be t � 2:8 eV
[16,26] and the next-to-nearest-neighbor hopping t0 de-
pends on details of how the tight-binding parameters are
determined: 0:02t & t0 & 0:2t.

To obtain all parameters entering the Hamiltonian (1)
from first principles, we performed density functional the-
ory (DFT) and cRPA calculations. The DFT calculations
are carried out with the FLEUR code [27] using a general-
ized gradient approximation [28] for the exchange-
correlation energy functional. We use a linear momentum
cutoff of Gmax ¼ 4:5 bohr�1 for the plane waves and an
angular momentum cutoff of lmax ¼ 6 in the muffin-tin
spheres. The partially screened Coulomb matrix elements
are calculated in the cRPAwith the SPEX code [29,30] using
the mixed product basis [29,31,32] with cutoff values
G0

max ¼ 4 bohr�1 and Lmax ¼ 4.
The Hamiltonian (1) describes a system of C pz

electrons that interact via the effective interaction Uij,

which incorporates the screening effects of all other elec-
trons not contained in the Hamiltonian (1). The cRPA
approach offers an efficient way to calculate this interac-
tion [25], as the screening channels are individually acces-
sible. The two-dimensional symmetry of graphene clearly
separates the C pz from other bands and, thus, enables an
unequivocal elimination of the C pz screening from the
full RPA polarization function. Apart from the on-site
term the resulting effective interaction yields the off-site,

intraorbital, and interorbital terms as well as their
frequency dependence.
The fully screened long-wavelength dielectric constants

reported in Refs. [21–23] are different from the partially
screened cRPA dielectric constants obtained, here, in that
the former include also contributions to screening due to
transitions between the graphene � bands. Hence, using
the dielectric constants from Refs. [21–23] in a generalized
Hubbard model like Eq. (1) or in the context of investiga-
tions like Refs. [9,14] would lead to double counting of
screening terms arising from the � electrons.
We ensure the accuracy of the model parameters being

derived by carefully checking their dependence on the
calculation procedure (the type of Wannier construction
being used to define the C pz orbitals) and convergence
issues (Brillouin zone sampling and finite supercell height
h) as we explain in the online supporting material [33]. We
find that Wannier functions directly from the C pz projec-
tions [34] and 16� 16� 1 kmeshes for the BZ integration
yield accurate Coulomb interaction parameters.

For graphene at its equilibrium lattice constant of a0 ¼
2:47 �A, we obtain the Coulomb interaction parameters
given in Table I. The on-site Coulomb repulsion UA or B

00 �
3:3t is below UAFM � ð4:5� 0:5Þt [5–7] but very close to
the critical value of USL ¼ 3:5t separating the zero gap
phase from a gapped spin-liquid one [8]. Comparing to the
phase diagram reported in Ref. [10] our results show that
the nearest-neighbor Coulomb interaction of U01 � 2:0t
taken together with the local Coulomb interaction puts
graphene in close proximity to, both, a spin-density wave
and a charge-density-wave transition line.
The ratio of the kinetic energy given by t to the Coulomb

interaction can, e.g., be changed by applying strain. Upon
expanding the graphene lattice the nearest-neighbor hop-
ping decreases faster than the Coulomb interaction pa-
rameters [Fig. 1(a)]. An expansion of the lattice by a few
percent leads to U00ðaÞ=tðaÞ> 3:5, i.e., an increase of the
ratio of local Coulomb interactions to the kinetic energy
beyond the critical value of USL=t ¼ 3:5. In this situation,
the nonlocal Coulomb interaction effects can be crucial. It
remains to be seen to which extent the long range nonlocal
Coulomb interaction screens the on-site repulsion [35]
and stabilizes the semimetallic phase or whether nonlocal
Coulomb terms drive the system towards other strongly
correlated possibly topologically nontrivial electronic
phases as suggested in Refs. [10,11].
We now consider the Coulomb interaction in graphite

and compare to graphene. In graphite, the two sublattices
are not equivalent. We define the atoms of sublattice A be
to directly above each other in adjacent layers and sub-
lattice B as the atoms above hollow sites of the layer
beneath. As Table I shows, the on-site interaction in gra-
phene and graphite is qualitatively similar with very little
difference between the two graphite sublattices. The ratio
of bare to cRPA nearest-neighbor Coulomb interaction is

TABLE I. On-site (UA
00, UB

00), nearest-neighbor (U01), next-
nearest-neighbor (UA

02, U
B
02), and third-nearest-neighbor (U03)

(intralayer) Coulomb interaction parameters for freestanding
graphene and graphite. In graphene UA

00 ¼ UB
00 and UA

02 ¼ UB
02

due to the sublattice symmetry. The bare and partially screened
(cRPA) parameters are given. The cRPA parameters should be
used in the effective Hamiltonian (1).

Graphene Graphite

Bare cRPA Bare cRPA

UA or B
00 (eV) 17.0 9.3 17.5, 17.7 8.0, 8.1

U01 (eV) 8.5 5.5 8.6 3.9

UA or B
02 (eV) 5.4 4.1 5.4, 5.4 2.4, 2.4

U03 (eV) 4.7 3.6 4.7 1.9
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Ubare
01 =UcRPA

01 ¼ 1:6 in graphene as compared to 2.2 in

graphite. The nonlocal screening by the � bands is con-
siderably more effective in graphite than in graphene.

This trend manifests clearly in the long-wavelength limit
as can be seen from the Coulomb interaction in reciprocal
space. To this end, we consider the Coulomb interaction
matrix elements in terms of the Bloch transformed C
pz-Wannier functions, jwnki. We calculate the ratio of
bare to cRPA screened interaction [36]

�ðkÞ ¼ hwnq1
wnq2þkjWbarejwnq1þkwnq2

i
hwnq1

wnq2þkjWcRPAjwnq1þkwnq2
i : (2)

For graphene, our cRPA calculations (Fig. 2) yield �ðkÞ �
2:4 for intermediate momentum transfer, k ¼ jkj * 1 �A�1,
and �ðkÞ ! 1 for k ! 0. The screening due to high-energy
states in graphene becomes essentially negligible in the
long-wavelength limit [37]. This is fundamentally different
for graphite where �ðkkÞ � 2 almost independently of the

momentum transfer and �ðk ¼ 0Þ � 2:5. Hence, graphite
should be less correlated than graphene.

In the long-wavelength limit, the simplest model to
address screening by high-energy bands in freestanding
graphene is to consider a film of thickness d and dielectric
constant �1. Transferring Ref. [38] to the geometry at hand
[39] we obtain

��1
1 ðkÞ ¼ 1

�1

�1 þ 1þ ð�1 � 1Þe�kd

�1 þ 1� ð�1 � 1Þe�kd
(3)

�k!0 1þ kd

�
1

2�1
� �1 þ 1=2

�
: (4)

Our cRPA calculations confirm this expectation (see
Fig. 2). Equation (3) turns out to describe the partially

screened Coulomb interaction well for k ¼ jkj< 1 �A�1

with d ¼ 2:8 �A and �1 ¼ 2:4 proving the applicability of
this classical model at long wavelengths.
Integrating out the graphene � bands and other high-

energy states leads to frequency dependent effective
Coulomb matrix elements. For graphene and graphite,
the effective Coulomb interaction is significantly fre-
quency dependent above ! * 5 eV (Fig. 3). Within the
energy range of the Dirac spectrum, however (� 2 eV), the
Coulomb interaction can be well considered in the static
limit.
In conclusion, the strength of Coulomb interactions in

graphene and graphite is accurately determined by first-
principles calculations. The local Coulomb interaction in
graphene isUA or B

00 ¼ 9:3 eV � 3:3t, which is very close to

FIG. 1 (color online). Effect of lattice expansion on the
strength of Coulomb interactions obtained with h ¼ 21:2 �A.
(a) On-site U00ðaÞ=U00ða0Þ and nearest-neighbor U01ðaÞ=
U01ða0Þ Coulomb interaction as well as nearest-neighbor hop-
ping tðaÞ=tða0Þ as a function of isotropic strain (1� a=a0). a is
the lattice constant. The parameters are given relative to their
values at the equilibrium lattice constant a0 ¼ 2:47 �A. The solid
lines are linear fits serving as a guide to the eye. (b) Ratios of
on-site U00ðaÞ=tðaÞ and nearest-neighbor U01ðaÞ=tðaÞ Coulomb
interaction to the nearest-neighbor hopping. The dashed line
indicates the phase boundary at USL=t ¼ 3:5 separating the
zero gap phase from a gapped spin-liquid one [8].

FIG. 2 (color online). Static cRPA dielectric functions �ðkÞ of
graphene and graphite as function of (in-plane) momentum
transfer k ¼ ðkx; kyÞ. (a) Color coded (gray scale) �ðkÞ for

graphene. The most pronounced effect is the decrease of �ðkÞ
for k ! 0. There is a small directional modulation at intermedi-
ate momentum transfer k ¼ jkj * 1 �A�1. (b) cRPA dielectric
functions �ðkÞ of graphene and graphite as function of k ¼ jkj.
Equation (3) fits well the background dielectric screening for
freestanding graphene in the limit of k ! 0. For graphite, two
values of the perpendicular momentum transfer are considered:
kz ¼ 0 and kz ¼ 0:5ð2�=cÞ with c ¼ 3:3 �A being the graphite
interlayer spacing.
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FIG. 3 (color online). Frequency dependence of the on-site and
nearest-neighbor interaction obtained from cRPA for graphene
(h ¼ 21:2 �A) and graphite. For graphite U00ð!Þ ¼ UA

00ð!Þ is

shown, which is virtually the same as UB
00ð!Þ. jUA

00ð!Þ �
UB

00ð!Þj< 0:15 eV for !< 20 eV.

PRL 106, 236805 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending
10 JUNE 2011

236805-3



the critical value USL ¼ 3:5t for the transition to a gapped
spin liquid. By straining graphene, the system can be driven
across this critical value. Moreover, we find large nonlocal
Coulomb interactions (e.g., U01 ¼ 5:5 eV � 2:0t). By
means of a dielectric substrate below graphene the screen-
ing of the long range tails of the Coulomb interaction can be
tuned, while the local Coulomb interaction terms are
expected to be much less affected by the dielectric environ-
ment. Hence, also the ratio of local to nonlocal Coulomb
interactions can be tuned. It remains to be seen which
additional many-body instabilities might be triggered in
this way or to which extent the conducting state of free
standing graphene can be stabilized by nonlocal Coulomb
terms. This issue deserves future attention. Very likely, our
finding of large nonlocal Coulomb interaction U01 in gra-
phene generalizes to other two-dimensional materials.
In narrow impurity bands or edge states of graphene, the
Coulomb interaction might in any case present the domi-
nating energy scale and, thus, trigger many-body instabil-
ities including magnetism.
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Blügel, and A. Schindlmayr, Phys. Rev. B 81, 125102
(2010).
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