000015718 001__ 15718
000015718 005__ 20210129210631.0
000015718 0247_ $$2DOI$$a10.1103/PhysRevD.84.014503
000015718 0247_ $$2WOS$$aWOS:000292514400009
000015718 0247_ $$2Handle$$a2128/11142
000015718 037__ $$aPreJuSER-15718
000015718 041__ $$aeng
000015718 082__ $$a530
000015718 084__ $$2WoS$$aAstronomy & Astrophysics
000015718 084__ $$2WoS$$aPhysics, Particles & Fields
000015718 1001_ $$0P:(DE-HGF)0$$aAoki, Y.$$b0
000015718 245__ $$aContinuum Limit of B_K from 2+1 Flavor Domain Wall QCD
000015718 260__ $$a[S.l.]$$bSoc.$$c2011
000015718 264_1 $$2Crossref$$3online$$bAmerican Physical Society (APS)$$c2011-07-06
000015718 264_1 $$2Crossref$$3print$$bAmerican Physical Society (APS)$$c2011-07-01
000015718 300__ $$a014503
000015718 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000015718 3367_ $$2DataCite$$aOutput Types/Journal article
000015718 3367_ $$00$$2EndNote$$aJournal Article
000015718 3367_ $$2BibTeX$$aARTICLE
000015718 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000015718 3367_ $$2DRIVER$$aarticle
000015718 440_0 $$04923$$aPhysical Review D$$v84$$x1550-7998$$y1
000015718 500__ $$aThe calculations reported here were performed on the QCDOC computers [65-68] at Columbia University, Edinburgh University, and at Brookhaven National Laboratory (BNL), and Argonne Leadership Class Facility (ALCF) BlueGene/P resources at Argonne National Laboratory (ANL). At BNL, the QCDOC computers of the RIKEN-BNL Research Center and the USQCD Collaboration were used. The very large scale capability of the ALCF was critical for carrying out the challenging calculations reported here. The Edinburgh QCDOC system was funded by PPARC JIF Grant No. PPA/J/S/1998/00756 and operated through support from the Universities of Edinburgh, Southampton, and Wales Swansea, and from STFC Grant No. PP/E006965/1. Computations for this work were carried out in part on facilities of the USQCD Collaboration, which are funded by the Office of Science of the U.S. Department of Energy. We thank ANL, RIKEN, BNL, and the U.S. DOE, the University of Edinburgh and STFC for providing the facilities essential for the completion of this work. The software used includes: the CPS QCD codes (http://qcdoc.phys.columbia.edu/cps.html), supported in part by the U.S. DOE SciDAC program; the BAGEL [69] assembler kernel generator for many of the high-performance optimized kernels; and the UKHadron codes. The work of the Edinburgh authors was supported by PPARC Grants No. PP/D000238/1 and No. PP/C503154/1. P. A. B. acknowledges support from RCUK. T. B. and R. Z. were supported by the U.S. DOE under Grant No. DE-FG02-92ER40716. T. I. was supported in part by the Grant-in-Aid of the Japanese Ministry of Education (Grants No. 22540301, No. 20105002, and No. 20025010). C.J., T. I., C.St., and A. S. (BNL) were partially supported by the U.S. DOE under Contract No. DE-AC02-98CH10886. E. E. S is partly supported by DFG SFB/TR 55 and by the Research Executive Agency of the European Union under Grant No. PITN-GA-2009-238353 (ITN STRONGnet). N.C. and R. M. (Columbia University) were partially supported by the U.S. DOE under Contract No. DE-FG02-92ER40699. D. B. and C. T. S. (University of Southampton) were partially supported by U.K. STFC Grant No. PP/D000211/1 and by EU Contract No. MRTN-CT-2006-035482 (Flavianet). Y.A. is partially supported by JSPS KAKENHI 21540289. We thank Andrzej Buras for useful conversations.
000015718 520__ $$aWe determine the neutral kaon mixing matrix element B-K in the continuum limit with 2 + 1 flavors of domain wall fermions, using the Iwasaki gauge action at two different lattice spacings. These lattice fermions have near exact chiral symmetry and therefore avoid artificial lattice operator mixing. We introduce a significant improvement to the conventional nonperturbative renormalization (NPR) method in which the bare matrix elements are renormalized nonperturbatively in the regularization invariant momentum scheme (RI-MOM) and are then converted into the (MS) over bar scheme using continuum perturbation theory. In addition to RI-MOM, we introduce and implement four nonexceptional intermediate momentum schemes that suppress infrared nonperturbative uncertainties in the renormalization procedure. We compute the conversion factors relating the matrix elements in this family of regularization invariant symmetric momentum schemes (RI-SMOM) and (MS) over bar at one-loop order. Comparison of the results obtained using these different intermediate schemes allows for a more reliable estimate of the unknown higher-order contributions and hence for a correspondingly more robust estimate of the systematic error. We also apply a recently proposed approach in which twisted boundary conditions are used to control the Symanzik expansion for off-shell vertex functions leading to a better control of the renormalization in the continuum limit. We control chiral extrapolation errors by considering both the next-to-leading order SU(2) chiral effective theory, and an analytic mass expansion. We obtain B-K((MS) over bar)(3 GeV) = 0.529(5)(stat)(15)(chi)(2)(FV)(11)(NPR). This corresponds to (B) over cap ((RGI ) over bar)(K) = 0.749(7)(stat)(21)(chi)(3)(FV)(15)(NPR). Adding all sources of error in quadrature, we obtain (B) over cap ((RGI ) over bar)(K)0.749(27)(combined), with an overall combined error of 3.6%.
000015718 536__ $$0G:(DE-Juel1)FUEK411$$2G:(DE-HGF)$$aScientific Computing (FUEK411)$$cFUEK411$$x0
000015718 536__ $$0G:(DE-HGF)POF2-411$$a411 - Computational Science and Mathematical Methods (POF2-411)$$cPOF2-411$$fPOF II$$x1
000015718 542__ $$2Crossref$$i2011-07-06$$uhttp://link.aps.org/licenses/aps-default-license
000015718 542__ $$2Crossref$$i2012-07-05$$uhttp://link.aps.org/licenses/aps-default-accepted-manuscript-license
000015718 588__ $$aDataset connected to Web of Science
000015718 650_7 $$2WoSType$$aJ
000015718 7001_ $$0P:(DE-HGF)0$$aArthur, R.$$b1
000015718 7001_ $$0P:(DE-HGF)0$$aBlum, T.$$b2
000015718 7001_ $$0P:(DE-HGF)0$$aBoyle, P.A.$$b3
000015718 7001_ $$0P:(DE-Juel1)143606$$aBrömmel, D.$$b4$$uFZJ
000015718 7001_ $$0P:(DE-HGF)0$$aChrist, N.H.$$b5
000015718 7001_ $$0P:(DE-HGF)0$$aDawson, C.$$b6
000015718 7001_ $$0P:(DE-HGF)0$$aIzubuchi, T.$$b7
000015718 7001_ $$0P:(DE-HGF)0$$aJung, C.$$b8
000015718 7001_ $$0P:(DE-HGF)0$$aKelly, C.$$b9
000015718 7001_ $$0P:(DE-HGF)0$$aKenway, R.D.$$b10
000015718 7001_ $$0P:(DE-HGF)0$$aLightman, M.$$b11
000015718 7001_ $$0P:(DE-HGF)0$$aMawhinney, R.D.$$b12
000015718 7001_ $$0P:(DE-HGF)0$$aOhta, S.$$b13
000015718 7001_ $$0P:(DE-HGF)0$$aSachrajda, C.T.$$b14
000015718 7001_ $$0P:(DE-HGF)0$$aScholz, E.E.$$b15
000015718 7001_ $$0P:(DE-HGF)0$$aSoni, A.$$b16
000015718 7001_ $$0P:(DE-HGF)0$$aSturm, C.$$b17
000015718 7001_ $$0P:(DE-HGF)0$$aWennekers, J.$$b18
000015718 7001_ $$0P:(DE-HGF)0$$aZhou, R.$$b19
000015718 77318 $$2Crossref$$3journal-article$$a10.1103/physrevd.84.014503$$b : American Physical Society (APS), 2011-07-06$$n1$$p014503$$tPhysical Review D$$v84$$x1550-7998$$y2011
000015718 773__ $$0PERI:(DE-600)2844732-3$$a10.1103/PhysRevD.84.014503$$gVol. 84, p. 014503$$n1$$p014503$$q84<014503$$tPhysical review / D$$v84$$x1550-7998$$y2011
000015718 8567_ $$uhttp://dx.doi.org/10.1103/PhysRevD.84.014503
000015718 8564_ $$uhttps://juser.fz-juelich.de/record/15718/files/PhysRevD.84.014503.pdf$$yOpenAccess
000015718 8564_ $$uhttps://juser.fz-juelich.de/record/15718/files/PhysRevD.84.014503.gif?subformat=icon$$xicon$$yOpenAccess
000015718 8564_ $$uhttps://juser.fz-juelich.de/record/15718/files/PhysRevD.84.014503.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000015718 8564_ $$uhttps://juser.fz-juelich.de/record/15718/files/PhysRevD.84.014503.jpg?subformat=icon-700$$xicon-700$$yOpenAccess
000015718 8564_ $$uhttps://juser.fz-juelich.de/record/15718/files/PhysRevD.84.014503.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000015718 909CO $$ooai:juser.fz-juelich.de:15718$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000015718 9141_ $$y2011
000015718 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000015718 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000015718 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000015718 9132_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000015718 9131_ $$0G:(DE-HGF)POF2-411$$1G:(DE-HGF)POF2-410$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lSupercomputing$$vComputational Science and Mathematical Methods$$x1
000015718 9201_ $$0I:(DE-Juel1)JSC-20090406$$gJSC$$kJSC$$lJülich Supercomputing Centre$$x0
000015718 970__ $$aVDB:(DE-Juel1)128941
000015718 980__ $$aVDB
000015718 980__ $$aConvertedRecord
000015718 980__ $$ajournal
000015718 980__ $$aI:(DE-Juel1)JSC-20090406
000015718 980__ $$aUNRESTRICTED
000015718 9801_ $$aFullTexts