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In our recent work on concentrated suspensions of uniformly porous colloidal spheres with excluded
volume interactions, a variety of short-time dynamic properties were calculated, except for the ro-
tational self-diffusion coefficient. This missing quantity is included in the present paper. Using a
precise hydrodynamic force multipole simulation method, the rotational self-diffusion coefficient is
evaluated for concentrated suspensions of permeable particles. Results are presented for particle vol-
ume fractions up to 45% and for a wide range of permeability values. From the simulation results and
earlier results for the first-order virial coefficient, we find that the rotational self-diffusion coefficient
of permeable spheres can be scaled to the corresponding coefficient of impermeable particles of the
same size. We also show that a similar scaling applies to the translational self-diffusion coefficient
considered earlier. From the scaling relations, accurate analytic approximations for the rotational
and translational self-diffusion coefficients in concentrated systems are obtained, useful to the ex-
perimental analysis of permeable-particle diffusion. The simulation results for rotational diffusion
of permeable particles are used to show that a generalized Stokes-Einstein-Debye relation between
rotational self-diffusion coefficient and high-frequency viscosity is not satisfied. © 2011 American
Institute of Physics. [doi:10.1063/1.3604813]

I. INTRODUCTION

The rotational and translational self-diffusion of in-
teracting colloidal and macromolecular particles suspended
in a low-molecular-weight solvent is the subject of ongo-
ing research both experimentally and theoretically.1, 2 Orig-
inally, self-diffusion in dilute systems was studied; how-
ever, the center of interest has shifted since to concentrated
dispersions where solvent-mediated many-particle hydrody-
namic interactions (HIs) are of central importance. An ex-
ample, of biological relevance, is self-diffusion of proteins
and other macromolecules in the crowded environment of a
cell.3

Two central quantities quantifying the configuration-
averaged influence of HIs on the suspension dynamics are
the concentration-dependent short-time rotational and trans-
lational self-diffusion coefficients Dr and Dt , respectively.
At zero particle concentration, these quantities reduce to the
single-particle diffusion coefficients Dr

0 and Dt
0. For solvent-

impermeable colloidal hard spheres with stick hydrodynamic
surface boundary conditions, the single-particle coefficients
are given by

Dr,hs
0 = kB T

8πη0a3
, (1)

a)Electronic mail: mekiel@ippt.gov.pl.

Dt,hs
0 = kB T

6πη0a
, (2)

with the Newtonian solvent shear viscosity η0, the Boltzmann
constant kB , temperature T , and hydrodynamic particle radius
a. The influence of the HIs at non-zero concentrations gives
rise to values for Dr and Dt smaller than their respective val-
ues Dr

0 and Dt
0 at infinite dilution. The short-time coefficients

describe self-diffusion on the time scale t � a2/Dt
0, but with

t large enough that solvent and particle velocity correlations
have decayed. On the colloidal short-time scale, the concen-
tration dependence of Dr and Dt is determined by averaging
the HIs with the equilibrium particle distribution.

Self-diffusion coefficients in colloidal suspensions have
been determined experimentally by a variety of techniques.
The mean-squared displacement (MSD) of partially solvent-
index matched suspensions of colloidal spheres4, 5 has been
measured as a function of time using dynamic light scattering
(DLS), with Dt determined from the initial slope of the MSD.

For the vast majority of systems where this special-
ized index-matching technique is not applicable, Dt may
be inferred, to decent accuracy according to theory and
simulation,6–8 from a first cumulant analysis of the scattered
light electric field autocorrelation function, probed at a scat-
tering wavenumber larger than the peak location of the static
structure factor where the structure factor attains the value
one.9–11 Translational long-time self-diffusion coefficients not
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considered in the present work can be determined using,
e.g., forced Rayleigh scattering,12, 13 fluorescence recovery
after photobleaching (FRAP),2 and fluorescence correlation
spectroscopy.14

Experimental studies of rotational colloidal self-diffusion
are based on techniques which can distinguish different par-
ticle orientations. Methods, which have been used for this
purpose, are depolarized dynamic light scattering (DDLS)
on optically anisotropic particles15 and nuclear magnetic
resonance.16 More recently developed techniques applicable
to a larger variety of systems include time-resolved phos-
phorescence anisotropy17, 18 and polarized FRAP (Refs. 19
and 20) measurements. The latter methods have been car-
ried out using fluorophore-labeled colloidal particles. Most
of the published experimental results deal with self-diffusion
properties of monodisperse colloidal systems. However, ex-
perimental and theoretical works have been also performed
on rotational diffusion in colloidal mixtures, in particular,
for binary systems where one component (the tracer) is very
dilute.17, 18, 20, 21 In addition, the DDLS measurements of the
rotational diffusion of tracer spheres in a polymeric solu-
tion have been used to infer viscoelastic properties from
a frequency-dependent generalized Stokes-Einstein-Debye
(GSED) relation.22

From a simulation method’s viewpoint, short-time ro-
tational self-diffusion in monodisperse colloidal systems of
non-permeable spheres with excluded volume interactions
was studied, e.g., using lattice-Boltzmann (LB),23 Stoke-
sian dynamics,24 and accelerated Stokesian dynamics (ASD)
simulations.7 Moreover, virial expansion results of varying
accuracy have been derived for the rotational self-diffusion
coefficient up to quadratic order in the concentration.15, 25–28

While there has been no theoretical work so far
on rotational self-diffusion in concentrated suspensions of
porous particles, other transport properties of porous parti-
cles have been studied, including the high-frequency shear
viscosity,29–32 and to first order in concentration the mean sed-
imentation velocity.33

In our earlier work on the short-time dynamics of con-
centrated suspensions of uniformly porous particles, a broad
spectrum of dynamic properties has been calculated, in-
cluding the hydrodynamic function8, 34 and sedimentation
coefficient,8 translational self-diffusion coefficient,8, 34 and
the high-frequency-limiting shear viscosity η∞.35, 36 These
simulation studies were amended by the derivation of easy-to-
use approximate analytic expressions of good accuracy, no-
tably a generalized Saito formula for the shear viscosity,36

and a spherical annulus model approximation for η∞,36 and
to first order in concentration also for Dt and Dr .37 Addi-
tionally, precise values for the first-order virial coefficients
of Dr and Dt corresponding to two-body HIs have been
obtained.37

In all these studies on permeable particles, the sol-
vent flow inside the spheres is described by the Debye-
Büche-Brinkman equation,38, 39 and the particles are assumed
to interact directly by excluded volume (i.e., hard-sphere
type) forces. Our simplified particle model is specified by
two parameters only, namely, the particle volume fraction
φ = (4π/3)na3, where n is the number concentration, and the

ratio, x, of the particle radius, a, to the hydrodynamic pen-
etration depth, κ−1, inside a permeable sphere. Large (low)
values of x correspond to weakly (strongly) permeable par-
ticles. Typical values for x in permeable-particle systems,
such as core-shell particles, are in the range of x ∼ 30 or
larger.40 While a specific intra-particle structure is ignored in
the model, it is generic in the sense that a more complex inter-
nal hydrodynamic structure can be approximately accounted
for in terms of a mean permeability. Porous-particle systems
of current interest include dendrimers,41–43 microgel parti-
cles ,44–46 core-shell particles,40, 47–49 and starlike polymers of
lower functionality.50

The present work complements our earlier analysis of
the short-time dynamics in concentrated suspensions of uni-
formly permeable spheres by giving simulation results and
a theoretical analysis of the short-time rotational diffusion
coefficient not considered so far at non-dilute concentra-
tions. On employing the multipole simulation method of a
very high accuracy51 encoded in the HYDROMULTIPOLE pro-
gram package,28 we calculate the short-time rotational self-
diffusion coefficient, Dr (x, φ), as a function of x and φ.
Our results cover the full range of porosities, with the vol-
ume fraction extending up to 0.45. In combination with re-
cently obtained tabulated values for the first-order virial coef-
ficients of Dr (x, φ) and Dt (x, φ),37 and precise HYDROMUL-
TIPOLE simulation results for Dt (x, φ) obtained earlier,8, 34

we show that both Dr (x, φ) and Dt (x, φ) can be scaled, in
the whole range of permeabilities and volume fractions, to the
self-diffusion coefficients Dhs

r (φ) = Dr (∞, φ) and Dhs
t (φ) =

Dt (∞, φ) of non-permeable hard spheres with stick bound-
ary conditions and the same size. From these scaling rela-
tions, accurate analytic expressions for Dr (x, φ) and Dt (x, φ)
are obtained. We expect these expressions to be useful in the
experimental data analysis of diffusion measurement on per-
meable particle systems. The present simulation results for
Dr (x, φ) and known results for η∞(x, φ) are used to show the
violation of a GSED relation between Dr (x, φ) and η∞(x, φ),
amending our earlier study of similar GSE relations in
Ref. 35.

The paper is organized as follows: Section II provides
the theoretical background on short-time self-diffusion of per-
meable particles. Furthermore, it includes our simulation re-
sults for rotational self-diffusion. The scaling relations allow-
ing to map permeable to non-permeable hard-sphere systems
are discussed in Sec. III. In Sec. IV, we complete the scal-
ing relations by providing simple expressions for the scaling
functions for non-permeable hard spheres. We also discuss
the special case of non-permeable hard spheres in comparison
to earlier simulations and experimental work. In Sec. V, we
demonstrate the violation of the GSED relation. In Sec. VI,
we explicitly write convenient expressions for Dr (x, φ) and
Dt (x, φ) which should prove useful in practical applications.
We conclude that with the present paper on self-diffusion in
combination with earlier simulation results for other dynamic
properties, such as the hydrodynamic function and viscosity,
and the development of accurate analytic approximations for
these properties,8, 35–37 we have obtained an essentially com-
plete description of the short-time dynamics of uniformly per-
meable particles with no-overlap interactions.
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TABLE I. Simulation results for the normalized short-time rotational self-
diffusion coefficient Dr (x, φ)/Dr

0(x).

φ \ x 5 10 20 30 50 100 ∞

0.05 0.995 0.987 0.980 0.977 0.973 0.970 0.967
0.15 0.983 0.958 0.934 0.922 0.911 0.901 0.888
0.25 0.968 0.925 0.881 0.860 0.839 0.820 0.796
0.35 0.951 0.886 0.820 0.788 0.757 0.729 0.690
0.45 0.932 0.842 0.753 0.711 0.669 0.629 0.576

II. SHORT-TIME ROTATIONAL SELF-DIFFUSION:
THEORY AND RESULTS

Like in our earlier work on the dynamics of permeable
particle systems,8, 34–37 we employ a model of uniformly per-
meable spheres of radius a, dispersed in a Newtonian fluid of
viscosity η0. The low-Reynolds number incompressible flow
inside and outside the spheres is described, respectively, by
the Stokes52, 53 and Debye-Bueche-Brinkman38, 39 equations,

η0∇2v(r) − η0κ
2χ (r)[v(r) − ui (r)] − ∇ p(r) = 0. (3)

Here, v and p are the fluid velocity and pressure, respectively,
and κ−1 is the hydrodynamic penetration depth. The charac-
teristic function, χ (r), is equal to one for the field point r
inside any of the spheres and zero outside. The skeleton of
a particle i, centered at ri , moves rigidly with the local ve-
locity ui (r) = Ui + ωi × (r − ri ), determined by the transla-
tional and rotational velocities Ui and ωi , respectively. The
fluid velocity and stress change continuously across a particle
surface.

The short-time rotational self-diffusion coefficient of a
quiescent, isotropic system is given in frame-invariant nota-
tion by 21, 28

Dr = kB T

3

〈
1

N

N∑
i=1

Trμrr
ii (X)

〉
, (4)

where X = {r1, · · · , rN } is the configuration of N � 1
sphere centers and Tr denotes the trace operation. The hydro-

dynamic mobility tensor, μrr
ii (X), linearly relates the torque

acting on a particle i to its rotational velocity, for zero forces
and torques exerted on the other particles. For the present
model system, the average 〈· · · 〉 is taken over an equilibrium
distribution of non-overlapping spheres, consistent with the
periodic boundary conditions used in our simulations. Our nu-
merical calculation of Dr (x, φ) makes use of Eq. (4).

The coefficient Dr is a function both of x and φ. At infi-
nite dilution, Eq. (4) reduces to 54, 55

Dr
0(x) = kB T

8πη0a3

[
1 + 3

x2
− 3 coth x

x

] . (5)

Note here that Dr
0(x) > Dr,hs

0 unless x = ∞.
We have calculated Dr (x, φ) to high precision us-

ing a hydrodynamic multipole method corrected for
lubrication28, 51, 56, 59 and encoded in the HYDROMULTIPOLE

program package extended to permeable spheres. The hy-
drodynamic particle structure enters into the HYDROMULTI-
POLE method only through a single-particle friction operator,
whose form is known for a variety of particle models, such
as solid spheres, drops, bubbles, and porous and core-shell
particles.54–57 The single-particle friction operator determines
the fluid flow perturbed by the particle immersed in a given
ambient flow. For a uniformly permeable particle, the exte-
rior and interior fluid flows can be found by this method with
a very high precision, extending in this way the results from
Ref. 58 obtained by another method. The details of our simu-
lation method are given elsewhere.8

The values for Dr presented in the following have been
determined from equilibrium configuration averages over typ-
ically N = 256 particles in a periodically replicated cubic
simulation box, using 100 initial random configurations for
each set of parameters. This gives a statistical relative er-
ror of less than 0.001. In our multipole expansion method
used for the rotational mobility tensor in Eq. (4), the multi-
pole order, L, was truncated usually at L = 3. To gain high-
precision data, extrapolations to L → 8 were made, leading
to an accuracy in Dr better than 1%. The calculated values
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x=30

x=50
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D
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(a) (b)

FIG. 1. Rotational (left) and translational (right) self-diffusion coefficients, Dr (x, φ)/Dr
0(x) and Dt (x, φ)/Dt

0(x), as functions of φ, for values of x as indicated.
Symbols: simulation results. Solid lines: interpolated rhs of Eqs. (13) and (14).
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for Dr (N ) using the periodic simulation box with N parti-
cles are not critically dependent on the system size, since
Dr (N = ∞) − Dr (N ) scales with the particle number such
as 1/N . This system size dependence is similar to that of
the high-frequency viscosity, η∞(x, φ), of permeable parti-
cles. The latter was calculated in earlier work.29, 36

Table I lists our high-precision simulation results for
Dr (x, φ), for volume fractions up to φ = 0.45. Values of the
inverse (reduced) penetration depth x are considered from a
very small value x ∼ 5, characteristic of highly permeable
particles, up to x = ∞ characteristic of dry particles with
stick surface boundary conditions.

III. SCALING SELF-DIFFUSION OF PERMEABLE TO
NON-PERMEABLE PARTICLES

From analyzing the numerical data for the rotational self-
diffusion coefficient in Table I, we have found an interesting
scaling of permeable to non-permeable spheres of the same
size. In addition, we found that a similar scaling is valid for
the translational self-diffusion coefficient. Therefore, results
for both quantities will be given in this section. We start from
a brief comparison of Dr (x, φ) to Dt (x, φ).

The simulation results for Dr (x, φ) from Table I are de-
picted in the left panel of Fig. 1 using symbols. For compar-
ison, the right panel of Fig. 1 shows the corresponding sim-
ulation results for Dt (x, φ) taken from Ref. 8. For permeable
particles, the fluid is allowed to penetrate so that the strength
of the HIs is decreasing with increasing permeability, i.e., de-
creasing x. This is the reason for the larger values of Dr and
Dt at larger permeabilities. Our results show that the effect of
HIs on Dr is weaker than on Dt , i.e., for a given x and φ, the
reduction of the self-diffusion coefficient relative the infinite
dilution value is smaller for rotational diffusion.

The numerical results for Dr (x, φ) and Dt (x, φ) plotted
in Fig. 1 have significantly different slopes at small volume
fractions φ. On the other hand, these slopes are well repro-
duced by the first-order virial coefficients, λr (x) and λt (x),

TABLE II. First-order virial terms, λr (x) and λt (x), of the rotational and
translational self-diffusion coefficients (Ref. 37).

x 5 10 20 30 50 100 ∞

λr −0.097 −0.236 −0.376 −0.442 −0.505 −0.561 −0.631
λt −0.569 −1.060 −1.416 −1.550 −1.661 −1.746 −1.832

defined by the following relations:

Dr (x, φ)

Dr
0(x)

= 1 + λr (x)φ + O(φ2) (6)

Dt (x, φ)

Dt
0(x)

= 1 + λt (x)φ + O(φ2) , (7)

evaluated in Ref. 37 and listed in Table II. The single-particle
rotational diffusion coefficient, Dr

0(x), has been already given
in Eq. (5), and the translational one has the form given in38, 39

Dt
0(x) = kB T

6πη0a

(
1 + 1

x coth x − 1
+ 3

2 x2

)
. (8)

Therefore, the idea is to introduce the following scaling
functions:

ur (x, φ) =
(

Dr (x, φ)

Dr
0(x)

− 1

)
1

λr (x)
, (9)

ut (x, φ) =
(

Dt (x, φ)

Dt
0(x)

− 1

)
1

λt (x)
. (10)

For all values of x ≥ 5, the functions ur (x, φ) and ut (x, φ) do
practically not depend on x , i.e., they are permeability inde-
pendent. Indeed, as shown in Fig. 2, the curves for ur and ut

as functions of φ collapse on the corresponding curves for the
non-permeable solid spheres, i.e.,

ur (x, φ) ≈ ur (∞, φ) , (11)

ut (x, φ) ≈ ur (∞, φ) , (12)

with a relative error less than 3% for x ≥ 10.
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FIG. 2. The functions ur (x, φ) and ut (x, φ) are practically independent of x . Symbols: simulation results for the indicated values of x . Solid lines: spline fit
interpolations of ur (∞, φ) and ut (∞, x).
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Therefore, the short-time self-diffusion coefficients in
suspensions of permeable particles are well approximated by
the following expressions:

Dr (x, φ)

Dr
0(x)

≈ 1 + λr (x)ur (∞, φ) , (13)

Dt (x, φ)

Dt
0(x)

≈ 1 + λt (x)ut (∞, φ) . (14)

In Fig. 1, the solid, continuous lines are not just mere
fits to the simulation data, but represent the expressions in
Eqs. (13) and (14), i.e., the outcome of the interesting scal-
ing behavior of the short-time self-diffusion of permeable
particles. The error made in using Eqs. (13) and (14) in-
stead of the precise simulation values, is at most 1% for
rotational and 3% for translational self-diffusion. To com-
plete the analysis, we need to specify the scaling functions
for the non-permeable solid spheres. This will be done in
Sec. IV.

IV. SELF-DIFFUSION COEFFICIENTS OF
NON-PERMEABLE SPHERES

We will now use the existing data for non-permeable hard
spheres to construct simple approximate expressions for the
scaling functions ur (∞, φ) and ut (∞, φ).

We start with a comparison between our present simula-
tion results for Dhs

r (φ) = Dr (∞, φ) and Dhs
t (φ) = Dt (∞, φ)

for vanishing permeability, and a selection out of a large body
of published experimental (see, e.g., Refs. 4,6,15,16, and 18)
and simulation (see, e.g., Refs. 7, 23, 24, 29, 60–62, and 63)
data on impermeable hard spheres.

Related to this comparison, we note first that numeri-
cal results of varying precision have been published for the
first and second virial coefficients of the rotational15, 25–27 and
translational26, 27, 64 self-diffusion coefficients. High-precision

second-order virial expansion results,

Dhs
r

Dr,hs
0

= 1 − 0.631φ − 0.726φ2 + O(φ3) , (15)

Dhs
t

Dt,hs
0

= 1 − 1.8315φ − 0.219φ2 + O(φ3) , (16)

have been obtained by Cichocki et al.28 using the multipole
expansion with a lubrication correction for the three-body HIs
contributions.

Regarding rotational diffusion, Fig. 3(a) shows the com-
parison of our data with Lattice-Boltzmann23 and ASD
(Ref. 7) simulation results, and DDLS experimental data15

for optically anisotropic fluorinated polymer particles. The
rotational diffusion coefficient as a function of φ has a con-
cave shape, different from that for Dt which is weakly con-
vex. Our simulation data for non-permeable particles agree
well with the ASD result. The LB data at large φ are some-
what smaller. The key message conveyed by Fig. 3(a) is
that the second-order virial result for Dhs

r (φ) in Eq. (15) de-
scribes the simulation and experimental data remarkably well
for all volume fractions up to the freezing transition value
0.49,7, 23 indicating that higher-order virial coefficients are
small or mutually cancel out. Therefore, for constructing a
simple approximation for ur (∞, φ) from Eq. (9), it is suffi-
cient to take as Dr (∞, x) the second-order virial expansion
in Eq. (15). In this way, the rotational scaling function is
approximated by

ur (∞, φ) ≈ φ + 1.151φ2 , (17)

with an accuracy of 1.5% or better relative to our simulation
data.

In Fig. 3(b), we compare our simulation data for
Dhs

t (φ)/Dt,hs
0 with ASD simulation7 and force multipole cal-

culation results,60 and with DLS experimental data.6 The fig-
ure shows that the translational second-order virial expression
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FIG. 3. (a) Rotational and (b) translational self-diffusion coefficients of non-permeable hard spheres with stick boundary conditions, as functions of φ. Com-
pared in (a) are our HYDROMULTIPOLE data (labeled HYDRO) for Dhs

r /Dhs
0 with ASD (Ref. 7) and LB (Ref. 23) simulation results, and DDLS experimental

data (Ref. 15) for optically anisotropic particles. In (b), we compare the HYDROMULTIPOLE data for Dhs
t (φ)/Dt,hs

0 with ASD simulation results (Ref. 7), force
multipole calculations by Ladd (Ref. 60), and DLS experimental data by Segre et al. (Ref. 6). Solid lines: second-order virial expansion results, in (a) according
to Eq. (15), and in (b) according to Eq. (16).
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in Eq. (16) for Dhs
t noticeably underestimates the simulation

and experimental data when φ is larger than 0.3.
For this reason, we need a more precise expression for

Dt (∞, φ) than the second-order virial expansion in Eq. (16).
We have found that our simulation data are approximated with
a 0.4% accuracy by the following expression for the scaling
function ut (∞, φ), defined in Eq. (10),

ut (∞, φ) ≈ φ + 0.12φ2 − 0.65φ3 . (18)

The term φ + 0.12φ2 follows from the virial expansion in
Eq. (16), and the coefficient of the third-order term, −0.65φ3,
has been obtained by fitting to the numerical data for
ut (∞, φ) − φ − 0.12φ2, in the range 0 ≤ φ ≤ 0.45.

V. GENERALIZED STOKES-EINSTEIN-DEBYE
RELATION

We proceed with the discussion of a generalized short-
time GSED relation. Having obtained in this paper precise
numerical data for Dr (x, φ) and taking values of η∞(x, φ)
tabulated in Ref. 36, we are in position to test the validity of
the following short-time GSED relation,

Dr (x, φ)

Dr
0(x)

η∞(x, φ)

η0

?≈ 1 , (19)

between the rotational self-diffusion coefficient and the high-
frequency viscosity of permeable particles. The validity of
generalized Stokes-Einstein relations, such as the present one,
is an important issue in microrheological studies where one
tries to infer rheological properties more easily from diffusion
measurements. The GSED relation in Eq. (19) was shown
before to be violated for suspensions of non-permeable neu-
tral and charged particles.18, 65 Here, we ask the same validity
question for permeable particle systems.

In Fig. 4, the GSED relation is examined for different val-
ues of x . If valid, all curves should collapse on a single hori-
zontal line of unit height. One notices from the figure that the
GSED relation is significantly violated for x ≥ 30, and vol-
ume fractions φ > 0.15 where the particles are significantly
correlated. Thus, a rotating particle experiences its neighbor-
hood not just as a structureless medium characterized by the
viscosity η∞(x, φ). The GSED relation is, therefore, signifi-
cantly violated for non-dilute suspensions, unless the perme-
ability is unrealistically large.

The GSED relation for rotational diffusion is more
strongly violated than its translational counterpart. As shown
in Ref. 35, (Dt/Dt

0) × (η∞/η0) increases practically linearly
in φ, even for non-permeable particles, whereas in Fig. 4, a
pronounced nonlinear increase is observed. The GSED test
for the rotation of porous particles presented in this paper
complements earlier GSE performance tests35 of different
short-time diffusion properties. Of all considered GSE rela-
tions, only the one for the cage diffusion coefficient can claim
a certain validity when applied to neutral porous particles.35

However, also this relation becomes invalid when the particles
are significantly charged.7
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FIG. 4. The generalized Stokes-Einstein-Debye relation between Dr (x, φ)
and high-frequency viscosity η∞(x, φ) is not satisfied. Solid lines are inter-
polating spline fits to our simulation results (symbols).

VI. CONCLUSIONS

Using the HYDROMULTIPOLE simulation method, the
short-time rotational self-diffusion coefficient, Dr (x, φ), of
uniformly permeable spheres was calculated to high precision
as a function of permeability and volume fraction.

An interesting scaling relation was found between
Dr (x, φ) and the corresponding coefficient, Dr (∞, φ), of
non-permeable, solid spheres of the same size, where the per-
meability enters only through the first-order rotational virial
coefficient. A similar scaling was found for translational self-
diffusion.

The combination of the scaling relations with accurate
second-order and third-order concentration expansion results
in Eqs. (17)–(18) for Dr (∞, φ) and Dt (∞, φ), respectively,
has led us to the expressions,

Dr (x, φ)

Dr
0(x)

≈ 1 + λr (x)φ (1 + 1.151φ) , (20)

Dt (x, φ)

Dt
0(x)

≈ 1 + λt (x)φ (1 + 0.12φ − 0.65φ2) , (21)

for the permeability-dependent self-diffusion coefficients. In
combination with Table II for λr and λt , these are convenient
expressions useful in diffusion measurement analysis of per-
meable particle systems. The accuracy of these expressions is
better than 1.5% for rotational and 3.5% for translational self-
diffusion, for the whole range of volume fractions φ ≤ 0.45
provided x ≥ 5.

We expect the expressions to be useful in the experimen-
tal analysis of self-diffusion, to gain a quick estimate of the
mean porosity in concentrated systems. Moreover, they can
serve as short-time inputs into theoretical methods of calculat-
ing frequency-dependent and long-time diffusion properties,
such as in mode-coupling and dynamic density functional the-
ory methods. We also used the simulation results for Dr (x, φ),
and our recent results for η∞(x, φ) to show that the general-
ized Stokes-Einstein-Debye relation is significantly violated
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for non-dilute suspensions, unless the permeability is unreal-
istically large.

Dispersions of spherical particles with more complex in-
ternal hydrodynamic structure, such as core-shell particles,
and different direct interactions, will be the subject of a fu-
ture study.
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