000015795 001__ 15795
000015795 005__ 20200402210030.0
000015795 0247_ $$2pmid$$apmid:21315064
000015795 0247_ $$2DOI$$a10.1016/j.bbrc.2011.02.022
000015795 0247_ $$2WOS$$aWOS:000288616200013
000015795 037__ $$aPreJuSER-15795
000015795 041__ $$aeng
000015795 082__ $$a570
000015795 084__ $$2WoS$$aBiochemistry & Molecular Biology
000015795 084__ $$2WoS$$aBiophysics
000015795 1001_ $$0P:(DE-HGF)0$$aEekhoff, A.$$b0
000015795 245__ $$aGlomerular podocytes: A study of mechanical properties and mechano-chemical signaling
000015795 260__ $$aOrlando, Fla.$$bAcademic Press$$c2011
000015795 300__ $$a229 - 233
000015795 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000015795 3367_ $$2DataCite$$aOutput Types/Journal article
000015795 3367_ $$00$$2EndNote$$aJournal Article
000015795 3367_ $$2BibTeX$$aARTICLE
000015795 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000015795 3367_ $$2DRIVER$$aarticle
000015795 440_0 $$0787$$aBiochemical and Biophysical Research Communications$$v406$$x0006-291X$$y2
000015795 500__ $$aWe thank Drs. Ben Fabry, Rudolf Merkel, Gerold Diez, James Smith, and Anna Klemm for helpful comments, Tim Feichtmeier for the cyclic stretch experiments on human umbilical cord fibroblasts, Andrea Zang for helping with OMTC, and Wolfgang Rubner for building a new cell stretcher. This work was supported by grants from Bayerisch-Franzosisches Hochschulzentrum, Deutscher Akademischer Austausch Dienst, Bavaria California Technology Center, and Deutsche Forschungsgemeinschaft.
000015795 520__ $$aKidney glomeruli function as filters, allowing the passage of small solutes and waste products into the urinary tract, while retaining essential proteins and macromolecules in the blood stream. These structures are under constant mechanical stress due to fluid pressure, driving filtration across the barrier. We mechanically stimulated adherent wildtype podocytes using the methods of magnetic tweezer and twisting as well as cell stretching. Attaching collagen IV-coated or poly-l-lysine-coated magnetic beads to cell receptors allowed for the determination of cellular stiffness. Angiotensin II-treated podocytes showed slightly higher stiffness than untreated cells, the cell fluidity (i.e. internal dynamics) remained similar, and showed an increase with force. The bead detachment (a measure of the binding strength) was higher in angiotensin II-treated compared to untreated podocytes. Magnetic twisting confirmed that angiotensin II treatment of podocytes increases and CDTA treatment decreases cell stiffness. However, treatment with both angiotensin II and CDTA increased the cell stiffness only slightly compared to solely CDTA-treated cells. Exposing podocytes to cyclic, uniaxial stretch showed an earlier onset of ERK(1/2) phosphorylation compared to MEF (control) cells. These results indicate that angiotensin II might free intracellularly stored calcium and affects actomyosin contraction, and that mechanical stimulation influences cell signaling.
000015795 536__ $$0G:(DE-Juel1)FUEK505$$2G:(DE-HGF)$$aBioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung$$cP45$$x0
000015795 588__ $$aDataset connected to Web of Science, Pubmed
000015795 650_2 $$2MeSH$$aAngiotensin II: pharmacology
000015795 650_2 $$2MeSH$$aAngiotensin II: physiology
000015795 650_2 $$2MeSH$$aAnimals
000015795 650_2 $$2MeSH$$aCell Adhesion
000015795 650_2 $$2MeSH$$aCytoskeleton: physiology
000015795 650_2 $$2MeSH$$aKidney Glomerulus: cytology
000015795 650_2 $$2MeSH$$aMechanical Processes
000015795 650_2 $$2MeSH$$aMechanotransduction, Cellular
000015795 650_2 $$2MeSH$$aMice
000015795 650_2 $$2MeSH$$aMitogen-Activated Protein Kinase 1: metabolism
000015795 650_2 $$2MeSH$$aMitogen-Activated Protein Kinase 3: metabolism
000015795 650_2 $$2MeSH$$aPodocytes: drug effects
000015795 650_2 $$2MeSH$$aPodocytes: physiology
000015795 650_7 $$011128-99-7$$2NLM Chemicals$$aAngiotensin II
000015795 650_7 $$0EC 2.7.11.24$$2NLM Chemicals$$aMitogen-Activated Protein Kinase 1
000015795 650_7 $$0EC 2.7.11.24$$2NLM Chemicals$$aMitogen-Activated Protein Kinase 3
000015795 650_7 $$2WoSType$$aJ
000015795 65320 $$2Author$$aPodocytes
000015795 65320 $$2Author$$aCell mechanics and signaling
000015795 65320 $$2Author$$aMagnetic tweezer
000015795 65320 $$2Author$$aMagnetic twisting cytometry
000015795 65320 $$2Author$$aCell stretcher
000015795 65320 $$2Author$$aActin cytoskeleton
000015795 65320 $$2Author$$aAT1 receptor
000015795 65320 $$2Author$$aAngiotensin II
000015795 65320 $$2Author$$aCalcium
000015795 7001_ $$0P:(DE-HGF)0$$aBonakdar, N.$$b1
000015795 7001_ $$0P:(DE-HGF)0$$aAlonso, J.L.$$b2
000015795 7001_ $$0P:(DE-Juel1)VDB27696$$aHoffmann, B.$$b3$$uFZJ
000015795 7001_ $$0P:(DE-Juel1)VDB86495$$aGoldmann, W.H.$$b4$$uFZJ
000015795 773__ $$0PERI:(DE-600)1461396-7$$a10.1016/j.bbrc.2011.02.022$$gVol. 406, p. 229 - 233$$p229 - 233$$q406<229 - 233$$tBiochemical and biophysical research communications$$v406$$x0006-291X$$y2011
000015795 8567_ $$uhttp://dx.doi.org/10.1016/j.bbrc.2011.02.022
000015795 909CO $$ooai:juser.fz-juelich.de:15795$$pVDB
000015795 9131_ $$0G:(DE-Juel1)FUEK505$$bSchlüsseltechnologien$$kP45$$lBiologische Informationsverarbeitung$$vBioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung$$x0
000015795 9132_ $$0G:(DE-HGF)POF3-552$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lBioSoft Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vEngineering Cell Function$$x0
000015795 9141_ $$y2011
000015795 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000015795 9201_ $$0I:(DE-Juel1)ICS-7-20110106$$gICS$$kICS-7$$lBiomechanik$$x0
000015795 970__ $$aVDB:(DE-Juel1)129109
000015795 980__ $$aVDB
000015795 980__ $$aConvertedRecord
000015795 980__ $$ajournal
000015795 980__ $$aI:(DE-Juel1)ICS-7-20110106
000015795 980__ $$aUNRESTRICTED
000015795 981__ $$aI:(DE-Juel1)IBI-2-20200312