001     15795
005     20200402210030.0
024 7 _ |2 pmid
|a pmid:21315064
024 7 _ |2 DOI
|a 10.1016/j.bbrc.2011.02.022
024 7 _ |2 WOS
|a WOS:000288616200013
037 _ _ |a PreJuSER-15795
041 _ _ |a eng
082 _ _ |a 570
084 _ _ |2 WoS
|a Biochemistry & Molecular Biology
084 _ _ |2 WoS
|a Biophysics
100 1 _ |a Eekhoff, A.
|b 0
|0 P:(DE-HGF)0
245 _ _ |a Glomerular podocytes: A study of mechanical properties and mechano-chemical signaling
260 _ _ |a Orlando, Fla.
|b Academic Press
|c 2011
300 _ _ |a 229 - 233
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Biochemical and Biophysical Research Communications
|x 0006-291X
|0 787
|y 2
|v 406
500 _ _ |a We thank Drs. Ben Fabry, Rudolf Merkel, Gerold Diez, James Smith, and Anna Klemm for helpful comments, Tim Feichtmeier for the cyclic stretch experiments on human umbilical cord fibroblasts, Andrea Zang for helping with OMTC, and Wolfgang Rubner for building a new cell stretcher. This work was supported by grants from Bayerisch-Franzosisches Hochschulzentrum, Deutscher Akademischer Austausch Dienst, Bavaria California Technology Center, and Deutsche Forschungsgemeinschaft.
520 _ _ |a Kidney glomeruli function as filters, allowing the passage of small solutes and waste products into the urinary tract, while retaining essential proteins and macromolecules in the blood stream. These structures are under constant mechanical stress due to fluid pressure, driving filtration across the barrier. We mechanically stimulated adherent wildtype podocytes using the methods of magnetic tweezer and twisting as well as cell stretching. Attaching collagen IV-coated or poly-l-lysine-coated magnetic beads to cell receptors allowed for the determination of cellular stiffness. Angiotensin II-treated podocytes showed slightly higher stiffness than untreated cells, the cell fluidity (i.e. internal dynamics) remained similar, and showed an increase with force. The bead detachment (a measure of the binding strength) was higher in angiotensin II-treated compared to untreated podocytes. Magnetic twisting confirmed that angiotensin II treatment of podocytes increases and CDTA treatment decreases cell stiffness. However, treatment with both angiotensin II and CDTA increased the cell stiffness only slightly compared to solely CDTA-treated cells. Exposing podocytes to cyclic, uniaxial stretch showed an earlier onset of ERK(1/2) phosphorylation compared to MEF (control) cells. These results indicate that angiotensin II might free intracellularly stored calcium and affects actomyosin contraction, and that mechanical stimulation influences cell signaling.
536 _ _ |a BioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung
|c P45
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK505
|x 0
588 _ _ |a Dataset connected to Web of Science, Pubmed
650 _ 2 |2 MeSH
|a Angiotensin II: pharmacology
650 _ 2 |2 MeSH
|a Angiotensin II: physiology
650 _ 2 |2 MeSH
|a Animals
650 _ 2 |2 MeSH
|a Cell Adhesion
650 _ 2 |2 MeSH
|a Cytoskeleton: physiology
650 _ 2 |2 MeSH
|a Kidney Glomerulus: cytology
650 _ 2 |2 MeSH
|a Mechanical Processes
650 _ 2 |2 MeSH
|a Mechanotransduction, Cellular
650 _ 2 |2 MeSH
|a Mice
650 _ 2 |2 MeSH
|a Mitogen-Activated Protein Kinase 1: metabolism
650 _ 2 |2 MeSH
|a Mitogen-Activated Protein Kinase 3: metabolism
650 _ 2 |2 MeSH
|a Podocytes: drug effects
650 _ 2 |2 MeSH
|a Podocytes: physiology
650 _ 7 |0 11128-99-7
|2 NLM Chemicals
|a Angiotensin II
650 _ 7 |0 EC 2.7.11.24
|2 NLM Chemicals
|a Mitogen-Activated Protein Kinase 1
650 _ 7 |0 EC 2.7.11.24
|2 NLM Chemicals
|a Mitogen-Activated Protein Kinase 3
650 _ 7 |a J
|2 WoSType
653 2 0 |2 Author
|a Podocytes
653 2 0 |2 Author
|a Cell mechanics and signaling
653 2 0 |2 Author
|a Magnetic tweezer
653 2 0 |2 Author
|a Magnetic twisting cytometry
653 2 0 |2 Author
|a Cell stretcher
653 2 0 |2 Author
|a Actin cytoskeleton
653 2 0 |2 Author
|a AT1 receptor
653 2 0 |2 Author
|a Angiotensin II
653 2 0 |2 Author
|a Calcium
700 1 _ |a Bonakdar, N.
|b 1
|0 P:(DE-HGF)0
700 1 _ |a Alonso, J.L.
|b 2
|0 P:(DE-HGF)0
700 1 _ |a Hoffmann, B.
|b 3
|u FZJ
|0 P:(DE-Juel1)VDB27696
700 1 _ |a Goldmann, W.H.
|b 4
|u FZJ
|0 P:(DE-Juel1)VDB86495
773 _ _ |a 10.1016/j.bbrc.2011.02.022
|g Vol. 406, p. 229 - 233
|p 229 - 233
|q 406<229 - 233
|0 PERI:(DE-600)1461396-7
|t Biochemical and biophysical research communications
|v 406
|y 2011
|x 0006-291X
856 7 _ |u http://dx.doi.org/10.1016/j.bbrc.2011.02.022
909 C O |o oai:juser.fz-juelich.de:15795
|p VDB
913 1 _ |k P45
|v BioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung
|l Biologische Informationsverarbeitung
|b Schlüsseltechnologien
|0 G:(DE-Juel1)FUEK505
|x 0
913 2 _ |a DE-HGF
|b Key Technologies
|l BioSoft Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-552
|2 G:(DE-HGF)POF3-500
|v Engineering Cell Function
|x 0
914 1 _ |y 2011
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |k ICS-7
|l Biomechanik
|g ICS
|0 I:(DE-Juel1)ICS-7-20110106
|x 0
970 _ _ |a VDB:(DE-Juel1)129109
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)ICS-7-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBI-2-20200312


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21