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We show that the symmetry of reconstructed two-dimensional islands on reconstructed surfaces can deviate

from both the symmetry of the underlying substrate and the symmetry of the reconstruction. Only an analysis of

the symmetry of the combined system of the reconstruction on the substrate and the reconstruction on the island

can predict the symmetry of the island shapes (equilibrium shape or steady-state growth shape). We introduce a

general method for the symmetry analysis of the combined system which identifies all possible mutual shifts of

the reconstruction on island which obey a certain crystal symmetry.
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I. INTRODUCTION

For equilibrium crystal shapes there is a strict relationship

between the symmetry of the equilibrium shape of a crystal and

the point-group symmetry of the atoms in the crystal structure.

The symmetry of the equilibrium shape of a crystal obeys the

point-group symmetry of the crystal structure.1 Equilibrium

shapes of three-dimensional (3D) crystals2,3 were studied

using scanning electron microscopy, while equilibrium shapes

of two-dimensional (2D) islands were studied by scanning

tunneling microscopy (STM).4,5 Also for the shapes occurring

during the growth of a crystal (“growth shapes of crystals”)

it is often found that the symmetry of the shape is related

to the crystal structure. Usually the symmetry of islands at

surfaces is intuitively related to the symmetry of the substrate.

For instance, islands on a threefold symmetric (C3v) substrate

have threefold symmetry. This intuitive relation is often true,

but there are exceptions as noticed in our recent work.6 In

this study a threefold symmetric Si(111) substrate was used

to grow 2D Si or Ge islands whose crystal structure is also

threefold symmetric. Both substrate surface and island surface

were terminated by a threefold symmetric (
√

3 ×
√

3)R30◦

reconstruction of Bi. In spite of all these threefold symmetries

occurring, the symmetry of the shape of the resulting 2D

islands was observed to have a rhomb shape (for the case

of Ge islands) and an even more strange arrow shape in the

case of 2D Si islands. Due to the reconstruction present on

both substrate and the mutually shifted reconstruction on the

island, the threefold symmetry of the system is broken to a Cs

symmetry.

In this paper we will present a general analysis of the sym-

metry of reconstructed 2D islands on reconstructed surfaces.

We start with the analysis of the inner symmetry of the crystal

lattice of the system. The crystal lattice of the system consists

of that of the semi-infinite bulk lattice, plus the lattice of the

reconstructed surface layer, plus the lattice of the reconstructed

island layer, both extended infinitely parallel to the surface.

As a result of this we predict the symmetry of the shape of

the islands. It will be shown that the shape of the recon-

structed islands cannot be predicted from the symmetry of

the reconstructed substrate or the symmetry of the recon-

structed island alone. The analysis of the symmetry of the

combined system of reconstructed substrate and reconstructed

island is required in order to predict the symmetry of the

shapes of the 2D islands, either growth shapes or equilibrium

shapes. We identify for which mutual shifts between the

reconstructions on island and substrate a certain symmetry

of the combined system is obeyed. For these mutual shifts also

the shape of the 2D islands obeys the same symmetry.

II. RELATION BETWEEN INNER SYMMETRY OF THE

CRYSTAL AND THE SYMMETRY OF THE SHAPE OF

THE CRYSTAL

In the equilibrium case the inner symmetry of a crystal

(the symmetry of the crystal lattice) and the symmetry of the

equilibrium shape of the crystal are the same (Slattice = Sshape).1

Stated a bit differently, the point-group symmetry of the crystal

lattice is the same as the point-group symmetry of the crystal

shape. Therefore, if we know the symmetry of the crystal

structure (inner symmetry of the crystal), we are able to predict

the symmetry of the shape of the crystal.

For the case of crystal growth the relation between inner

symmetry and symmetry of the shape is not as clear. We

will see in the following that the symmetry of the shape of

the crystal can be higher or lower or the same as the inner

symmetry of the lattice. Therefore, it seems hopeless that

one can derive conclusions on the symmetry of the growth

shape from an analysis of the inner symmetry. However, in the

following we will specify the conditions under which inner

symmetry of a crystal and the symmetry of the shape of the

crystal are identical as in the equilibrium case. Under these

conditions straight conclusions about the symmetry of growth

shapes of crystals can be obtained from an analysis of the inner

symmetry of the crystal.

The case in which the growth shape of the crystal is lower

than the crystal symmetry occurs if crystal growth proceeds

under external conditions which have lower symmetry than the

crystal lattice. For instance, if the deposition of new material

occurs preferably from one side, this side of the crystal will

grow faster and the crystal shape will be influenced by this.

This is actually a special case of the Curie principle,7 which

states that a system with symmetry B under the influence

of an external perturbation of symmetry E has symmetry

B ∩ E. Another case in which a lower symmetry of the

growth shape occurs is if initially the island nucleus has an

unsymmetrical shape. The transient growth period which is

influenced by the shape of the nuclei turns into the steady
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state if the majority of the islands have adopted the shape

of larger islands. Here we consider the “steady-state growth

shape” after possible transients related to the nucleation have

died out. In the following we will exclude such asymmetric

external conditions or initial conditions. Under this condition

the crystal shape can have the same or higher symmetry as the

underlying crystal structure.

Generally the relation between the symmetry of a crystal

(without low-symmetry external conditions) and its physical

properties is stated in Neumann’s principle.8 If a crystal is

invariant under certain symmetry operations, any of its physi-

cal properties must also be invariant with respect to the same

symmetry operations. This means that the physical properties

obey the same (or higher) symmetry as the inner symmetry

of the crystal. The Neumann principle can be also stated in

terms of point-group symmetries: The symmetry of the crystal

is a subgroup of the symmetry of a certain physical property

(Scrystal ⊆ Sphysprop). To see that the symmetry of a physical

property can be higher than the crystal symmetry, consider,

for instance, a scalar physical property such as the temperature

(or density). The temperature has infinite symmetry (invariant

under all point-group symmetry operations). In our case the

growth shape of the crystal is the physical property under

study.

A wrong conclusion about the symmetry of the shape of

the crystal could be obtained if the term “symmetry of the

shape of a crystal” is not defined properly. The “macroscopic

definition” would be the following: If a symmetry operation

(for instance, mirror operation) is applied to the crystal and the

crystal looks “macroscopically” the same after the application

of the symmetry operation, then we can say that the crystal

obeys this symmetry “macroscopically.” On the other hand,

the crystal obeys a certain “microscopic” symmetry if also the

atomic structure (i.e., structure of the crystal faces) is the same

before and after the symmetry transformation.

A simple example for the difference between macroscopic

and microscopic symmetry is given by the minicrystal shown

in Fig. 1. Looking at the shape of this crystal from afar (not

seeing the atoms), it has a cubic shape, while when looking

at it at the atomic level, the symmetry is lower than the cubic

symmetry. In order to obtain correct and consistent conclusions

we will consider the microscopic symmetry of the shape in the

following.

For the case of growth shapes we will assume that the

growth speed of the crystal in a certain direction depends

FIG. 1. (Color online) This figure shows the difference between

macroscopic symmetry and microscopic symmetry. Looking at the

shape of this crystal from afar, it has a cubic shape, while when

looking at it on the atomic level, the symmetry is lower than the cubic

symmetry.

only on the local surface orientation (step orientation in

2D). This assumption was introduced by Frank9 and means

that the growth speed is given by the function v(θ ) in 2D,

which can be called the kinematic Wulff plot,10 in close

analogy to the equilibrium Wulff plot.11 Due to the one-to-

one correspondence between the equilibrium Wulff plot and

the kinetic Wulff plot, the inner symmetry of the crystal is

the same as the symmetry of the growth shape. If one would

consider the macroscopic shape, the predicted symmetry of

islands would be the same or higher than the one which we

predict here.

The formation of facets is not yet explained by this, and

a threefold internal symmetry could result in any threefold

symmetric crystal shape, for instance, also a cloverleaf shape.

A simplified explanation for the formation of facets is as

follows. If there are minima (cusps) in the function v(θ ), this

leads to the formation of facets (straight step edges in 2D),10

in close analogy to the formation of facets in the equilibrium

shape of crystals due to cusps in the surface free energy as a

function of the direction which is described in the Wulff plot.12

Going back to our case of an island on a substrate and

making the above-mentioned assumptions that (a) the outer

conditions are symmetric (i.e., have at least the inner symmetry

of the crystal), (b) we consider the steady-state growth shape

without initial transients related to the nucleation, (c) the

growth speeds depend only on the surface orientation by

the function v(θ ), and (d) when we consider the microscopic

structure, the following general statement can be made: The

point-group symmetry of the growth shape of an island is

identical to the point-group symmetry of the underlying crystal

structure. Therefore, in the following, we will analyze the inner

symmetry of the crystal structure of an island (plus substrate)

in order to predict the symmetry of the (growth) shape of the

islands.

III. SYMMETRY OF RECONSTRUCTED 2D ISLANDS

A surface reconstruction can be formed by the rearrange-

ment of the atoms of the top layer(s) and/or by different

atoms (adsorbed or deposited) on top of the surface. In

the horizontal direction the surface reconstruction unit cell

can have a size which is larger than the projection of the

bulk unit cell onto the surface. In the vertical direction the

surface reconstruction unit cell includes all layers which are

different from the bulk layers. The difference in the bulk

can be a different chemical nature of the atoms, a difference

in the atom positions, or a difference in the bond angles.

Regarding the relation of the reconstruction to the substrate,

we consider only commensurate reconstructions. This means

that any (atom) position within the reconstruction unit cell has

a well-defined relation to the substrate. In physics terms the

reconstruction atoms are bonded to the substrate, resulting in

a fixed relationship between both (e.g., on top or bridge site).

The symmetry of the reconstructed substrate (RS) is given by

the intersection Symm(RS) = Symm(R) ∩ Symm(S), with R

and S being the reconstruction and the substrate, respectively.

Now we will consider the symmetry of the combined system

(C) of reconstructed substrate (RS) and reconstructed 2D

island (RI ). The island is considered as pseudomorphic, i.e.,

the lattice structure of the substrate is continued in the one
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FIG. 2. (Color online) Cross section through the combined sys-

tem of reconstructed substrate and reconstructed island (three times

reconstruction on a simple cubic lattice). The substrate reconstruction

has a Cs mirror symmetry as well as an island reconstruction.

However, due to a shift between both reconstructions (for the

translational domain shown here) these mirror planes are not identical

(shifted) and the combined system obeys no mirror symmetry. We say

that the mirror symmetry of the combined system is broken.

atomic layer higher island. The symmetry of the combined

system is given by the intersection of the symmetry elements

of both subsystems Symm(C) = Symm(RS) ∩ Symm(RI ).

A symmetry element which is contained in the intersection

is a symmetry element of the first and the second system.

In building this intersection we have to consider that the

symmetry element is defined by both its type (e.g., mirror

symmetry or twofold rotation symmetry) and its position (e.g.,

position of the mirror plane or position of the rotation axis).

In the following we analyze the inner symmetry of the com-

bined system of a reconstructed substrate and a reconstructed

pseudomorphic 2D island, which has an atomic step height

relative to the substrate as shown in Fig. 2.

Now we apply this general statement to the 1D example

in which a (3 × 1) reconstruction is present on the substrate,

as well as on the island (Fig. 2). At first sight one might

think that the symmetry of the combined system is simply that

of the (3 × 1) reconstruction. However, this is not generally

the case as shown in Fig. 2. The set of symmetry elements

on the substrate reconstruction [Symm(RS)] can be different

from the symmetry elements of the same reconstruction on the

island [Symm(RI )] due to a shift between both. We have to

remember that symmetry elements are only identical if they

are of the same type (e.g., mirror plane) and if their position is

identical. The positions of the two corresponding mirror planes

Csub
s and C isl

s are shifted as indicated in Fig. 2. Therefore, none

of the mirror planes in Fig. 2 is a mirror plane of the combined

system.

This effect, where the number of symmetry elements for

the combined system is lower than the number of symmetry

elements for each subsystem, we call symmetry breaking or

lowering of the symmetry of the combined system. In the

nomenclature used above, Symm(RS) �= Symm(RI ). RS and

RI have the same number of the same types of symmetry

elements, however, the positions of the symmetry elements

are shifted with respect to each other. For the intersection,

both types and positions of the symmetry elements have to be

considered. An equivalent to the intersection of two sets of

symmetry elements is the set of symmetry elements which

are common for the two subsystems (common symmetry

elements).

In a practical analysis of the inner symmetry of the

combined system, we consider infinite lattices of the island

reconstruction and the reconstruction of the substrate layer, as

indicated by the dashed lines in Fig. 2.

In the following we discuss several case studies of the

analysis of the symmetry of the combined system of recon-

structed substrate and island, and deduce predictions for the

island shapes. In particular, we will use the fact that, starting

from the symmetry analysis of the individual subsystems, the

symmetry of the combined system is obtained by the finding

which symmetry elements are common symmetry elements

for all subsystems. This is a simple way to analyze if the

symmetry of the combined system (reconstructed island plus

reconstructed substrate) is lower than the symmetry of each of

the two subsystems (“symmetry breaking”).

IV. EXAMPLES OF THE SYMMETRY ANALYSIS FOR

SPECIFIC SURFACES

A. Symmetry analysis for reconstructions on the simple cubic

(100) surface

The first case we discuss is the (100) surface of the simple

cubic lattice. The unit cell is indicated by a large red square and

the mirror planes (black lines) are indicated in Fig. 3(a), while

the fourfold rotation axes are shown as small red squares.

For the (100) surface of the simple cubic lattice, the lattice of

a one (or also N) atomic layer high island is not shifted relative

to the substrate. This makes the analysis simpler but is not

generally true for other cases. In the following we analyze the

symmetry of the combined system of reconstructed substrate

layer and island.

In the simplest case of a (1 × 1) reconstruction on the sub-

strate layer and island, the C4v symmetry of both subsystems is

also saved for the combined system. On the other hand, for any

reconstruction breaking the C4v symmetry of the substrate, the

symmetry of the combined system is broken (lowered) right

from the beginning. We do not consider these obvious cases

(a) (b)

FIG. 3. (Color online) (a) Top view on the (100) plane of the

simple cubic lattice. The unit cell is indicated in red and the atoms

are indicated as red balls. Also the symmetry elements are indicated.

(b) (2 × 2) reconstructed substrate layer (blue) and (2 × 2) recon-

structed island (red) obeying both a C4v symmetry but mutually

shifted horizontally by one (1 × 1) surface lattice constant [the

(1 × 1) unit cell is indicated by dashed lines in the upper left-hand

side]. The symmetry of the combined system is broken to C2v . No

common diagonal mirror planes exist (dashed lines).
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here, but only reconstructions which preserve the point-group

symmetry of the substrate. When there is no mutual shift

present between the reconstructions on the island layer and

substrate layer, obviously, the symmetry of the combined

system is preserved. The fact that a C4v symmetry present on

the substrate layer reconstruction and island reconstruction is

not generally preserved for the combined system can be seen in

the example shown in Fig. 3(b). Here the (2 × 2) reconstruction

which obeys the C4v symmetry of the substrate (indicated by

arrows) is shifted horizontally by one (substrate) lattice unit on

the island (red) relative to the reconstruction of the substrate

layer (blue). Analyzing the symmetry of the combined system,

one can see that the diagonal mirror planes (dashed line) are no

more mirror planes for the combined system and the symmetry

of the combined system is broken to C2v . This means that the

symmetry of the shape of the islands will be lowered to a

C2v symmetry. Therefore, in general, on a simple cubic (100)

surface a C4v symmetric (2 × 2) surface reconstruction can

break the C4v of the substrate. The symmetry will be lowered

to a C2v symmetry if the reconstructions are shifted in one

direction (horizontally or vertically) by one substrate lattice

unit. For the case where there is no phase shift between the

island and substrate (2 × 2) reconstruction (or the same shifts

in both directions), the C4v symmetry will be preserved for the

combined system and therefore also for the island shape. In

total, for half of the four possible shifts of the reconstructions

the symmetry is broken to a C2v symmetry while for the

other half the C4v symmetry is retained. This analysis can be

extended to the general case of a (2N × 2N ) reconstruction.

Only for no shift or a simultaneous shift in both horizontal

and vertical directions by N substrate lattice units is the C4v

symmetry retained. For all other cases of shifts by integer

values of the substrate lattice constant the symmetry is broken.

B. Symmetry analysis for reconstructions on the

fcc(100) surface

The next case which we will consider is the fcc (100)

surface. which is shown in Fig. 4(a) as a ball model and obeys

C4v symmetry. For this crystal surface the upper (island) layer

is shifted inherently relative to the one atomic layer lower

(substrate) layer by a/
√

2 (a is the surface lattice constant)

along the diagonal of the surface unit cell, as indicated in

Fig. 4(a).

While we performed the symmetry analysis in the previous

case explicitly by analysis of particular mirror planes, we

present now another method which is often easier to apply

in particular for more complicated cases. We are searching for

symmetry elements which are common symmetry elements

for both subsystem island and substrate layers. Common

symmetry elements are symmetry elements which have the

same type (e.g., C4) and the same position (e.g., rotation axis

or mirror plane for the case of mirror symmetry). In order

to find the point-group symmetry of the combined system,

one has to find all common symmetry elements and identify

the point-group symmetry of the common symmetry elements

from this.

In Fig. 4(b), a (2 × 2) surface reconstruction unit cell

which obeys the C4v symmetry of the substrate is indicated

schematically by arrows. In order to facilitate the search for

FIG. 4. (Color online) Top view on a ball model of the fcc

(100) plane. The surface unit cells of the substrate and island are

indicated by blue and red squares, respectively. Adjacent layers are

inherently shifted by a/
√

2 along the diagonals of the surface unit cell.

(b) Symmetry diagram for the C4 symmetry element for the case of

a (2 × 2) reconstruction. The C4 symmetry elements are marked as

small squares on the substrate layer (blue) and the island (red). The

(1 × 1) unit cell is marked by dashed lines in the lower left-hand

corner. Due to the intrinsic lateral shift between the subsequent atomic

layers, no common C4 symmetry element exists and the C4v symmetry

is broken for the combined reconstructed system, to a Cs symmetry,

with a mirror plane shown as a dashed line.

common symmetry elements of both subsystem island and

substrate layers, we use symmetry diagrams such as the one

shown in Fig. 4(b) for the C4 symmetry element. Here the

positions (rotation axes) for the C4 symmetry elements on the

substrate layer reconstruction (blue) and island reconstruction

(red) are indicated by small squares. The larger squares show

the (2 × 2) unit-cell boundaries. Due to the inherent noninteger

mutual shift between the surface lattices of two adjacent (100)

layers, also the island reconstruction is shifted by a/
√

2 along

the diagonal of the surface unit cell relative to the substrate

layer reconstruction. As a result of this there exist no common

C4 symmetry elements of substrate layer reconstruction and

island reconstruction, as can be seen in Fig. 4(b), and the

C4 symmetry is always broken. However, as can be also

seen from the symmetry diagram, there exist common mirror

planes along a direction indicated in Fig. 4(b) by a dashed

line. The mirror planes which were present in the other

three directions on island reconstruction or the substrate layer

reconstruction are no longer mirror planes of the combined

system. There exist two possible domains for this mutual shift

of the reconstructions between the island layer and substrate

layer with a Cs mirror plane along one of the two diagonal

mirror planes. It turns out that for any (N × N ) (N > 1)

reconstruction on the fcc (100) surface, the symmetry of the

combined system is reduced to Cs and correspondingly the

shape of the 2D islands will have Cs symmetry.

The symmetry analysis presented in this section is incom-

plete and has several drawbacks. Each translational domain

has to be considered separately. In order to avoid tedious

studies for all possible cases, we will present in the following a

general method of the analysis of common symmetry elements.

We will evaluate all symmetry elements and determine if a

certain symmetry is preserved by the combined system of a

reconstructed substrate plus a reconstructed island. Therefore,

the general analysis does not only predict if a symmetry is
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FIG. 5. (Color online) Possible relative lateral shifts of two Bravais lattices which preserve a certain symmetry for the combined system.

This symmetry is indicated for each shift by the respective symbol (e.g., C2v). In the left-hand part of the rows, the shifts which preserve the

symmetry of the individual lattices are shown. Toward the right-hand side of each row, shifts with lower symmetry are shown. The symmetry

elements are marked by symbols of their symmetry. The two lattices can be identified with the substrate layer reconstruction and the island

reconstruction, respectively.

preserved or broken, but is also able to predict to which lower

symmetry the symmetry is broken in specific cases.

V. GENERAL METHOD OF SYMMETRY ANALYSIS

Here we present an outline of a general method of symmetry

analysis before we apply it to examples. The task is to identify

all possible cases of combined systems with a reconstruction

on the substrate layer (RS) and the same reconstruction,

mutually shifted, on the island layer (RI ), which obey a certain

inner crystal symmetry of the combined system. The symmetry

of a combined system is naturally given by the intersection

of the symmetry elements of both subsystems C = RI ∩ RS

(or stated differently by the common symmetry elements). A
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TABLE I. Shifts between two reconstruction unit cells which

preserve the indicated symmetry for the combined system. Zero shift

means any shift which is a multiple of the basis vectors. The basis

vectors a and b are indicated in Fig. 5. For any other shifts the

symmetry is lost, i.e., only identity (I) is the symmetry element of

the combined system. This table defines the shift vectors �Vrec in

Eq. (1).

Lattice Symmetry Mutual lateral shifts

Oblique C2 0, 1

2
�a, 1

2
�b, 1

2
(�a + �b)

Rectangle C2v 0, 1

2
�a, 1

2
�b, 1

2
(�a + �b)

Cs α�a, α�b
Centered rectangle C2v 0, 1

2
(�a + �b), 1

2
(�b − �a)

C2 0, 1

2
�a, 1

2
�b

Cs α(�a + �b), α(�b − �a)

Square C4v 0, 1

2
(�a + �b)

C2v 0, 1

2
�a, 1

2
�b

Cs α�a, α�b, α(�a + �b), α(�b − �a)

Hexagon C6v 0

C3v 0, 1

3
(�a + �b), 2

3
(�a + �b)

C2v 0, 1

2
�a, 1

2
�b, 1

2
(�a + �b)

Cs α�a, α�b, α(�a + �b), α(�b − �a), α(2�a − �b),

α(2�b − �a)

brute force way is to analyze the symmetry of all possible

combined systems (all translational domains) individually. In

the following we describe a method which we think is a “more

simple” and general way to accomplish the task given above

in order to predict the symmetry of island shapes. This general

method consists of three steps.

In the first step of our general method we consider

the symmetry properties of the reconstruction Bravais lat-

tice (without basis). Generally the surface reconstruction

lattice has to be one of the five 2D Bravais lattices,13 which

are mentioned in Fig. 5, together with their symmetry elements

marked by the respective symbols. For clarity we left out the

mirror planes explicitly. Implicitly they are included in the

C2v , C3v , C4v , and C6v symbols. For instance, the C2v symbol

includes a C2 rotation axis at the center of the symbol as well as

two mirror planes (horizontal and vertical) through the center

of the symbol. In the following we use a shorthand notation in

which, for example, the term “C2v symmetry element” means

all symmetry elements included in that group, i.e., the C2

rotation, the horizontal and the vertical Cs mirror planes, and

the identity operation.

Now we consider two Bravais lattices of the same type

shifted relative to each other. In the second step of our

symmetry analysis we identify the shifts of the Bravais

lattices for which each symmetry element of the shifted lattice

lies on top of the same type of symmetry element of the

unshifted lattice, as shown in the left-hand part of Fig. 5.

This condition for the shifts between the two lattices can also

be stated differently: Each symmetry element is a common

symmetry element of both (shifted and unshifted) lattices,

or the intersection of the symmetry elements contains all

symmetry elements of the individual lattices. In these cases the

symmetry of the combined system is the same as the symmetry

of the individual lattices. By restricting the following analysis

only to these few (allowed) shifts we can avoid tedious case

studies of all possible mutual translational domains.

For other the shifts toward the right-hand side in Fig. 5

the symmetry of the combined system does not preserve

the symmetry of the original lattice. However, here one can

analyze to which symmetry the symmetry of the combined

system is reduced (broken). For some shifts a symmetry

element of the red lattice falls on top of a symmetry element

of the blue lattice. If the symmetry elements which lie on top

of each other are of the same type, these common symmetry

elements are then symmetry elements of the combined system.

If the symmetry elements which lie on top of each other are of

a different type, the symmetry of the combined system at this

point is reduced to the intersection of the respective symmetries

of the two (blue and red) subsystems. For instance, for the

square Bravais lattice, the vertical shift of the blue lattice by

half a surface lattice constant results in a situation in which a

C2v symmetry element (which is shorthand for all symmetry

elements of the C2v symmetry group) of the blue lattice falls

on top of a C4v symmetry element of the red lattice and vice

versa. The symmetry of the combined system at these positions

is then the intersection of C2v and C4v which is C2v . This means

that in this case the symmetry of the combined system of both

lattices is reduced (broken) to C2v . Or stated differently: The

C2v symmetry element (no longer the C4v symmetry element)

is a common symmetry element of both lattices when they are

mutually shifted as described.

The most interesting example arises for the hexagonal

Bravais lattice, which has one C6v symmetry element per

unit cell. If the second lattice is shifted horizontally by one

third of the horizontal extension of the unit-cell length, a

C6v symmetry element of the unshifted (red) lattice always

falls on top of a C3v symmetry element of the shifted (blue)

lattice. The symmetry of the combined system at this point

is the intersection between C3v and C6v , which is C3v .

Arbitrary shifts along directions shown as black arrows in

Fig. 5 reduce the symmetry of the combined system to the

symmetry of a mirror plane (Cs). For all other shifts the

symmetry of the combined system is reduced to identity.

The results for the mutual shifts between two Bravais lattices

shown in Fig. 5 are summarized more quantitatively in

Table I.

All mutual shifts between the two Bravais lattices which

preserve a certain symmetry can be written as a shift vector
�Vrec, which can be expressed as

�Vrec = β�a + γ �b, (1)

where �a and �b are the unit-cell vectors of the reconstruction

lattice, defined in Fig. 5, and (for a certain symmetry) the

coefficients β and γ have to be taken from Table I as

single numbers (or including the parameter α for the mirror

planes). Considering a specific lattice and a specific symmetry,

the corresponding line in Table I gives all possible shift

vectors �Vrec.

For the case when the reconstruction has a basis (inner

structure) which has a lower symmetry than the Bravais lattice,

the symmetry of the combined system of Bravais lattice

and basis has to be considered in steps 1 and 2, instead of
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the Bravais lattice alone. Here again the common symmetry

elements of the combined system of Bravais lattice and basis

are given by the intersection of both. In this case certain

symmetry elements have to be removed from Fig. 5, which

results in less possible mutual shifts, and also some entries in

Table I have to be removed in this case.

In Fig. 6 two examples are shown. In Fig. 6(a) a C3v

symmetry of the basis was assumed, which breaks the C6v

point-group symmetry of the Bravais lattice to a C3v point-

group symmetry. In Fig. 6(a) the shifts of two lattices which

preserve the C3v symmetry for the combined system of two

reconstructed lattices (or break the symmetry to Cs) are shown.

Due to this basis there are no C6v and C2v symmetry elements,

and in Table I for the hexagonal lattice the first (C6v) and third

(C2v) row have to be neglected. Figure 6(b) corresponds to the

inclusion of a (
√

3 ×
√

3) basis and will be discussed later.

In the third step we consider if the mutual shifts
�Vrec between the two Bravais lattices identified in

step 2 are compatible with the bulk structure of the crystal. On

first sight this seems to be a trivial condition which is always

fulfilled (as in Fig. 2). However, the stacking sequence of the

atomic layers can induce a definite shift between subsequent

layers and thus between the surface reconstructions on island

and substrate. An example of this is the (111) plane of the

diamond structure. For simplicity we would like to discuss the

generic situation for an easier 1D model shown in Fig. 7. Here

it is easily seen that the (bulk) lattice structure shifts laterally

by one half lattice unit when going from one layer to the next.

This case we call it a “shift of the bulk lattice” due to a step

edge.

If we consider for this case the combined system of the

mutually shifted reconstructions identified in step 2, there

exist cases in which the corresponding bulk structures (below

the island reconstruction and the substrate reconstruction)

do not coincide. An example for such a case is shown in

Fig. 7(a). The bulk structure is shown in gray and in the

left-hand part a one atomic layer high island with a times

three reconstruction on top is also shown (also in gray). As

can be seen, this reconstruction has two mirror planes per

unit cell, indicated by black dashed-dotted lines. The same

(laterally not shifted, �Vrec = 0) reconstruction is shown in

blue in Fig. 7(a), moved one layer lower. For this allowed

shift between the two reconstruction lattices identified in step

2, the corresponding bulk lattices do not coincide. Since this is

a natural condition which has to be fulfilled by the combined

system, we have to exclude this mutual shift from the set of

systems which maintain the symmetry of the reconstruction

lattice.

For the other case possible from the analysis in step 2

( �Vrec = 1/2�a), shown in Fig. 7(b), the two reconstruction

lattices are laterally shifted while maintaining the same mirror

planes (gray and red). In this case the two bulk lattices below

the island and below the substrate coincide. In general, it has

to be considered if the mutual shifts of the reconstructions

identified in step 2 [Eq. (1)] are consistent with a valid

translational shift of the bulk lattice, i.e., leading an identical

bulk lattice below the island and substrate. The possible

translational vectors of the bulk parallel to the surface can

be expressed by the (1 × 1) surface lattice vectors �a0 and
�b0 as n�a0 + m�b0, with n and m being integers. Additionally,

however, the lateral shift of the bulk crystal lattice at a step

edge ( �Vstep) also has to be considered. The possible lateral

shifts between the bulk lattices below the island relative to the

one below the substrate (leading an identical bulk lattice below

island and substrate) can be expressed as follows:

�Vbulk = �Vstep + n�a0 + m�b0. (2)

Only if a shift vector found in Eq. (1) is equal to an allowed

bulk shift vector given in Eq. (2), this shift found in step 2 is

also a valid bulk shift vector. In order to verify if, for a certain

shift vector �Vrec found in step 2, a bulk shift vector exists which

satisfies the condition

�Vbulk = �Vrec, (3)

the relation between the (1 × 1) surface lattice vectors and the

reconstruction lattice vectors has to be known. This relation

is given by the matrix notation as �a = R̂�a0 and �b = R̂�b0,

with R̂ being the transformation matrix describing the relation

between the substrate lattice and the reconstruction lattice. In

Ref. 14 a set of unique rules is given to define the unit-cell

vectors of the substrate and reconstruction overlayers.

In our 1D example in Fig. 7, the relation between substrate

and reconstruction reduces to �a = R̂�a0 = 3�a0, and the “shift”

FIG. 6. (Color online) Examples for the inclusion of a basis of lower (C3v) symmetry into the symmetry considerations for a hexagonal

Bravais lattice. (a) The sixfold rotation symmetry at the corners of the unit cell of the hexagonal Bravais lattice is broken to a C3v symmetry

due to the presence of the C3v symmetric basis. The shifts of two lattices which preserve the C3v symmetry for the combined system of two

reconstructed lattices (or break the symmetry to a Cs symmetry) are shown. (b) The inclusion of a (
√

3 ×
√

3)30◦ reconstruction as a basis is

shown. This basis has two C3 symmetry elements inside the unit cell.
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FIG. 7. (Color online) (a) Side view on a surface in which the

bulk lattice shifts by one half lattice unit at every step edge. For the

reconstruction on the bulk layer (left-hand side) and the (unshifted)

reconstruction on the one atomic layer lower substrate layer (right-

hand side), the mirror planes (gray and blue dashed-dotted lines)

are identical. However, this shift (zero) does not lead to the same

bulk structure below the island reconstruction (gray) and below the

one layer lower substrate reconstruction (blue). Of course, the same

bulk structure is an obvious condition for an allowed shift. (b) For a

lateral shift of half a reconstruction unit-cell vector the mirror planes

(gray and red) coincide as in (a). However, in this case also the bulk

structures below the island and substrate layer coincide.

of the bulk crystal parallel to the surface at a step edge is
�Vstep = 1/2�a0. For the shift �Vrec = 0 found in step 2 and shown

in Fig. 7(a), the comparison results in

�Vrec = 0 �= �Vbulk = �Vstep + n�a0 = 1/2�a0 + n�a0. (4)

There exists no integer value of n for which the condition
�Vrec = �Vbulk can be satisfied. Therefore, this shift found in

step 2 does not satisfy the “bulk condition.” For the other

shift found in step 2 [ �Vrec = 1/2�a, shown in Fig. 7(b)] the

comparison results in

�Vrec = 1/2�a = 3/2�a0 = �Vbulk = �Vstep + n�a0 = 1/2�a0 + 1�a0.

(5)

Therefore, here the “bulk condition” is satisfied with n = 1,

and this shift, which is identified in step 2, results in “the same

bulk” below the island and below the one atomic step lower

substrate layer. Generally it has to be checked in step 3 if the

possible shift vectors ( �Vrec) identified in step 2 correspond also

to valid bulk translational shift vectors ( �Vbulk).

As a summary of our general method of the symmetry

analysis, we list the three steps below:

(1) Identify the point-group symmetry elements of the

reconstruction Bravais lattice (plus reconstruction basis).

(2) Identify possible mutual shifts of the reconstruction

lattices ( �Vrec) for which the combined system has common

symmetry elements.

(3) Analyze which shifts identified in step 2 correspond

also to valid bulk translational shift vectors, i.e., �Vrec = �Vbulk.

The cases of possible shifts found in step 2 which do not lead

to a valid bulk translational shift vector have to be excluded.

Then all possible mutual shifts of the island reconstruction

relative to the substrate reconstruction which obey a certain

symmetry for the combined system have been found without

involving many case studies. If for a certain symmetry no cases

(shifts) are left which fulfill the above-mentioned conditions,

the combined system does not obey this symmetry and we say

this symmetry is broken. For the 1D case treated here explicitly

as an example, the general method of symmetry analysis is no

simplification, however, in the following examples the general

method saves tedious case studies of many translational

domains.

A. General symmetry analysis of the diamond structure

(N × N) reconstructed (111) surfaces

Now we apply our general method of symmetry analysis

to the case of a (N × N ) reconstruction on the diamond

lattice (111) surface. Here we consider only one of the

three possible 120◦ rotated domains of the reconstruction.

The Bravais lattice of this reconstruction is the hexagonal

lattice, and we assume that the basis of the reconstruction

obeys the same C3v symmetry as the diamond structure (i.e.,

lower symmetry than the Bravais lattice). The positions of

the C3v symmetry elements in the reconstruction unit cell

are known from the symmetry to be at the corners of the

unit cell and at the centers of the triangular half unit cells,

indicated by triangles in the unit cell shown in blue in Fig. 8(a)

(step 1 with a lower symmetry basis included). Step 2 of our

analysis shows us that there are only three possible independent

shifts between the reconstruction unit cells which preserve

the C3v symmetry for the combined system, i.e., lead to

a lattice of common C3v symmetry elements. These three

independent shifts of the reconstruction unit cell are indicated

in Table I and are shown in Fig. 8(a) as full blue (zero shift,
�Vrec = 0), dashed red [ �Vrec = 1/3(�a0 + �b0)], and dotted green

lines [ �Vrec = 2/3(�a0 + �b0)], with the reconstruction unit-cell

vectors as defined in Fig. 8(a).

The substrate (1 × 1) unit cell vectors are introduced in

Fig. 8(b) as �a0 = 1/2(01̄1) and �b0 = 1/2(1̄01). The unit

vectors of the (M × M) reconstruction are related to the

substrate (1 × 1) unit cell vectors by the reconstruction matrix

M̂ as
[

a

b

]

=
[

M 0

0 M

] [

a0

b0

]

, (6)

i.e., �a = M �a0 and �b = M �b0.

In the following (step 3 of our analysis), we analyze the

lateral shift of the substrate lattice induced by an atomic step

on the (111) surface of the diamond structure. A perspective

view of the upper two bilayers (red and blue) of the diamond

(111) lattice is shown in Fig. 8(c). In each bilayer there exist

three inequivalent atomic positions (numbered 1, 2, and 3).

As can be seen from the figure, equivalent atomic positions in

the two bilayers are shifted laterally by 1/3(�a0 + �b0). Stated

a bit differently, the projections of two mutual (111) double

layers onto the (111) plane superimpose onto each other if

they are shifted by 1/3(�a0 + �b0), or as we stated before more

loosely: The “shift of the bulk lattice” at an atomic step edge

is �Vstep = 1/3(�a0 + �b0).

In the following we analyze which of the three mutual shifts

of the reconstruction lattices are in accord with an allowed bulk
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FIG. 8. (Color online) (a) Symmetry analysis of a reconstructed

diamond lattice (111) surface. A reconstruction unit cell with C3v

symmetry is shown by blue lines. There are only three independent

shifts possible (including zero shift) which result in common C3v

symmetry elements, shown in blue, red, and green. These shifts

preserve the original diamond lattice of symmetry elements. The

reconstruction unit-cell vectors are indicated. (b) Top view to

the unreconstructed diamond lattice (111) surface surface. The

substrate surface unit-cell vectors are indicated. The upper bilayer

is shown in red, and the lower in blue. (c) Perspective view to

the first and second bilayer of the diamond lattice. There exist

three inequivalent atomic positions in each bilayer (1, 2, and 3).

A bilayer high step leads to a lateral shift in the atomic arrangement

of �Vstep = 1/3(�a0 + �b0).

translational shift. There exist N2 possible shifts (translational

domains) between the reconstruction on the island and the

reconstruction on the substrate. The possible independent bulk

shift vectors are

�Vbulk = �Vstep + n�a0 + m�b0 = 1/3(�a0 + �b0) + n�a0 + m�b0,

(7)

with n,m = 0,1, . . . ,M − 1. Now we have to analyze which

of the three previously determined reconstruction shift vectors
�Vrec are consistent with an allowed bulk shift vector, i.e.,
�Vbulk = �Vrec. The three previously mentioned reconstruction

shift vectors can be written in terms of �a0 and �b0 as

�V 1
rec = 0, �V 2

rec = M

3
(�a0 + �b0), �V 3

rec = 2M

3
(�a0 + �b0).

(8)

A valid shift vector also has to be consistent with a bulk shift

vector given in Eq. (7). For the case where the reconstruction is

a multiple of three (i.e., M = 3N ), the bulk condition Eq. (7)

cannot be fulfilled for any of the three �Vrec given in Eq. (8).

Therefore, the C3 symmetry is always broken for a (3N × 3N )

reconstruction. Only Cs mirror symmetries survive for shifts

in directions indicated in Fig. 6(a).

For the cases of (3N ± 1 × 3N ± 1) reconstructions the

C3v symmetry can be saved for one of the shifts in Eq. (8). A

bit loosely explained, one of the shifts of the reconstruction

unit cell between substrate and island �V 2
rec or �V 3

rec can be

“compensated” by a corresponding shift of the bulk lattice

due to an atomic step. In the case of a (3N ± 1 × 3N ± 1)

reconstruction, the reconstruction on the island can be shifted

relative to the reconstruction of the substrate in (3N ± 1)2

different translational domains. Only for one of these is the

C3v symmetry retained.

B. Application of the symmetry analysis to the diamond

structure (111) (
√

3 ×
√

3) surfaces

Now we analyze the
√

3 reconstructions on the diamond

(111) surface which are rotated by 30◦ relative to the substrate

lattice (Fig. 9). (Also here we consider only one of the

three 120◦ rotated domains of the reconstruction.) These

reconstructions occur, for instance, frequently upon adsorption

of metals or semimetals on Si(111) or Ge (111) surfaces.15

In Fig. 9 two examples are shown: A (
√

3 ×
√

3)R30◦

reconstruction unit cell (red shaded area on the left-hand

side) and a (2
√

3 × 2
√

3)R30◦ reconstruction unit cell (blue

shaded area on the right-hand side) are shown together with the

underlying diamond lattice. One important point to mention

is that for these reconstructions not all rotation axes obey

additionally a C3v symmetry (i.e., additional three mirror

planes). The adatoms or sometimes trimers of adatoms are

located at the corner of the unit cell.15 These rotation axes

obey C3v symmetry, while the other two rotation axes inside

the unit cell do obey a C3 symmetry (no mirror planes), as can

be seen from Fig. 9. The preceding analysis covered step 1 of

our general method: symmetry properties of the reconstruction

lattice including the basis with C3v symmetry shown in

Fig. 9.

Mutual shifts of these reconstruction lattices are shown in

Fig. 6(b). Only for the two mutual shifts shown in the left-hand

part of Fig. 6(b) (plus the zero shift) is a C3 symmetry obtained

for the combined system (step 2). Here the symmetry of the

rotation axes of the combined system is the intersection of C3v

and C3, which is C3.

In Fig. 9 the unit vectors of the substrate (1 × 1) surface unit

cell and of the reconstruction unit cell are shown. For a (
√

3 ×√
3) reconstruction the relation between both is �a = 2�a0 − �b0

and �b = �a0 + �b0. For a (N
√

3 × N
√

3) reconstruction a factor

N has to be included. Using the substrate unit-cell vectors

FIG. 9. (Color online) Unit cells of the (
√

3 ×
√

3)R30◦ recon-

struction (left-hand side) and the (2
√

3 × 2
√

3)R30◦ reconstruction

(right-hand side) and the underlying diamond lattice (111) surface.

The rotation axes at the corners of the reconstruction unit cell are

indicated by triangles and obey C3v symmetry. The rotation axes

inside the unit cell have C3 symmetry. The unit vectors of the

substrate surface and the reconstruction are indicated by arrows. As

explained in the text, the symmetry of the combined system of island

reconstruction and substrate reconstruction is always broken to a Cs

symmetry along a [112̄] direction.
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the three possible shifts which maintain the C3 symmetry

[left-hand part of Fig. 6(b) plus zero shift] can be written

for a (N
√

3 × N
√

3) reconstruction as

�V 1
rec = 0, �V 2

rec = N �a0, �V 3
rec = 2N �a0. (9)

These relations can be inferred directly from Fig. 9.

Comparing these shifts which maintain the C3 symmetry to

the allowed bulk shifts along the (111) surface of the diamond

structure given in Eq. (7), one sees that due to the noninteger

factor in Eq. (7) these shift vectors can never have the same

value. Due to the noninteger shift induced by the step edge

( �Vstep) the combined system will never have a C3 symmetry.

While the C3 symmetry is always broken for the combined

system, mirror planes can be retained, as will be shown

in the following. As can be seen from Fig. 6(b), there are

three directions for the mutual shift which preserve the Cs

symmetry. The corresponding shift vectors for a (N
√

3 ×
N

√
3) reconstruction can be written in terms of the substrate

basis vectors as

�V 1
rec = α1N (�a0 + �b0),

�V 2
rec = α2N (−�a0 + 2�b0), (10)

�V 3
rec = α3(�b − �a) = α3N (−2�a0 + �b0).

The bulk condition for the possible shifts [Eq. (7)] which

has to be fulfilled as well limits the number of possible shifts. It

turns out that for the (
√

3 ×
√

3) (N = 1) reconstruction there

are three shifts which fulfill the bulk condition as well. In

total, as a result of the symmetry breaking for the (
√

3 ×
√

3)

reconstruction, no C3 symmetric islands occur, but the island

shapes have one mirror plane (Cs symmetry) along one of

the three [112̄] directions. This behavior was indeed observed

for the system of 2D Si or Ge islands on Si(111), where

islands and substrates are terminated by a Bi (
√

3 ×
√

3)R30◦

reconstruction, as reported in our previous publication.6 In this

case islands with only one mirror plane were observed, despite

of the fact that a threefold C3v symmetry was present for the

substrate and both the island reconstruction and the substrate

reconstruction.

C. Symmetry and the “real physical world”

The symmetry analysis performed up to now was a

mathematical analysis. The advantage is that such an analysis

is always strict and seems to give very definite conclusions. A

symmetry is either obeyed or not obeyed (broken). However,

the implications of symmetry breaking in the real physical

world can range from almost insignificant to a considerable

effect. For implications of symmetry breaking in a crystal

structure on the physical properties of the crystal an interaction

is needed. We would like to discuss this for the example of the

growth speed of steps, which we consider here as a physical

property. We start with an example of a pseudomorphic

2D island on a surface with a reconstruction initially only

present on the surface and not on the island. For this case

the symmetry of the combined system is just the reconstruction

symmetry. The (pseudomorphic) island cannot induce any

symmetry breaking since it is carved from the bulk crystal and

obeys its symmetry (compare also Fig. 2). As a consequence

of this, also the growth shape of the island will obey the

above-mentioned symmetry. If we now introduce a small

patch of reconstruction also on the island, the symmetry

of the total combined system can be broken immediately,

as we discussed in detail before. Such symmetry breaking

occurs immediately and strictly already for a small patch of

reconstruction present at the center of the island. However,

if we think about the implications on the physical properties

(step speeds in our case) the consequences of this symmetry

breaking can be infinitesimal. If the reconstruction patch on

the island is far from the island step edges, the interaction

between this patch and the step edges is minute and the step

speeds are hardly influenced by the reconstruction patch on the

island. Consequently (strict) symmetry breaking has virtually

no influence on the shape of the crystal. Therefore, the original

symmetry of the growth shape is retained in spite of the fact

that the symmetry is now strictly broken. The implication of

symmetry breaking on the step speeds becomes more and more

significant as the reconstruction patch expands toward the step

edges. When the reconstruction is also present at the step edge

itself, the influence on the step speed is largest and can lead

to island shapes of reduced (broken) symmetry as observed

recently.16 A special case of surface reconstruction present

at the step edge is a passivated step edge.17 Passivation or

depassivation of step edges will have a major influence on the

growth speed of the steps, since the step edges are the places

were crystal growth is actually happening.

The atomic structure of the zone next to the boundary of

the island (the step edges of the island) determines the growth

speed of the various step edges of the island. The details of

the atomic structure of the step edges are usually not known.

However, it is not necessary to know the details of the atomic

structure in order obtain conclusions related to symmetry.

Since the atomic structure of step edges in directions related

by the point-group symmetry of the combined system has

to be the same, we can use the analysis of the symmetry of

the combined system which we performed before in order

to obtain predictions on the symmetry of the growth shape

of the islands. The point-group symmetry of the combined

system tells us which directions are related by symmetry.

As a consequence, the atomic structure of an (arbitrarily)

complicated reconstructed step edge also has to be the same for

directions related by symmetry. Thus also the growth speeds

have to be the same for directions related by symmetry. As a

result of this, finally the symmetry of the (steady-state) growth

shape of the island has to obey the point-group symmetry of

the combined system.

A 1D reconstruction present at a step edge can formally

also break the symmetry. For instance, a mirror symmetry

could be broken by a translational domain of a three times

reconstruction of a reconstructed step edge. However, since

in spite of this formally broken symmetry the whole step will

advance with a specific speed, the orientation-dependent step

speed is still maintained.

Another case where, in addition to the mathematical

symmetry analysis the physical properties of the system come

into play, are the probabilities for certain broken symmetries

to occur. Previously we analyzed the number of cases (or

probabilities) for which certain symmetries are maintained.

As a consequence, one would assume to find these calculated

a priori probabilities for the different symmetries also in the
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statistics of the measured symmetry of the islands. However,

this is only true if islands with all possible translational

domains occur with the same probability. Due to the physics in

the system, such as lower total energy or higher barrier for the

nucleation for a certain translational domain, the probabilities

for the symmetries of the observed island shapes can be

different than the a priori probabilities obtained from the

symmetry analysis. On the other hand, such deviations from

the a priori probabilities will give insight into the physics of

the system (total energy or nucleation barriers).

VI. EXTENSIONS

Domains of surface reconstruction can have, in addition to

a translational shift, also a rotation relative to the substrate

(rotational domain). A simple example would be domains

of (2 × 1) and (1 × 2) on a simple cubic lattice. One can

do all the steps of the symmetry analysis again instead of

a pure translational shift for the case where one reconstruction

lattice is rotated. The freedom of domain rotation can reduce

further the symmetry of the combined system. For the

examples given in here previously, we have considered only

surface reconstructions with high symmetry, where rotational

freedom does not affect the symmetry. However, in the

case of less symmetric reconstructions [such as (N × M)]

one should include the rotational freedom in the symmetry

analysis.

The analysis presented here can be extended to other

cases. For instance, we considered only 2D islands of one

atomic layer height. 2D islands of other heights can be easily

included by just taking into account the correct shift of the

island lattice relative to the substrate lattice for islands of

multiple step heights. For example for three atomic layers

high islands at a diamond (111) surface, the shift between the

substrate layer and island layer induced by the substrate is

zero. The periodicity length of the diamond structure in the

(111) direction is three step heights.

While we considered only low-index surfaces, vicinal

surfaces can be also analyzed. Due to the vicinality, the highest

symmetry of a vicinal surface is Cs with a mirror plane parallel

to the direction of vicinality. This mirror plane can be broken,

resulting in a I symmetry, depending on the reconstruction.

Our analysis can be extended to cases in which the

reconstruction on the island and the reconstruction on the

substrate is different. For these cases the symmetry analysis has

to be performed along the lines shown in the previous sections

of this paper. We considered only pseudomorphic 2D islands.

The analysis can be extended to epitaxial (not pseudomorphic)

islands. In this case the intersection of the symmetry elements

of the epitaxial island and the substrate has to be considered.

VII. CONCLUSIONS

We analyzed the relationship between symmetry and

shape (equilibrium shape or steady-state growth shape) of

reconstructed 2D islands. We state that if some reasonable

assumptions are fulfilled, the point-group symmetry of the

(growth) shape of an island (crystal) is identical to the sym-

metry of the underlying crystal structure. Using this relation,

a symmetry analysis can be used to predict the symmetry of

the shape of the growing islands and equilibrium shapes. We

present a method to analyze the symmetry of the combined

system of a reconstructed island plus a reconstructed substrate

from the symmetries of the subsystems. We introduce a method

of symmetry analysis which is based on the determination

of common symmetry elements of the two subsystems. We

used this method to analyze as examples the symmetry of

the shape of reconstructed 2D islands on reconstructed simple

cubic (100), fcc (100), and diamond lattice (111) surfaces.
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