000015857 001__ 15857
000015857 005__ 20200423203013.0
000015857 0247_ $$2pmid$$apmid:22223810
000015857 0247_ $$2DOI$$a10.1093/jxb/err334
000015857 0247_ $$2WOS$$aWOS:000304836300003
000015857 037__ $$aPreJuSER-15857
000015857 041__ $$aeng
000015857 082__ $$a580
000015857 084__ $$2WoS$$aPlant Sciences
000015857 1001_ $$0P:(DE-Juel1)VDB99611$$aRuts, T.$$b0$$uFZJ
000015857 245__ $$aDiel patterns of leaf and root growth: endogenous rhythmicity or environmental response?
000015857 260__ $$aOxford$$bUniv. Press$$c2012
000015857 300__ $$a3339 - 3351
000015857 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000015857 3367_ $$2DataCite$$aOutput Types/Journal article
000015857 3367_ $$00$$2EndNote$$aJournal Article
000015857 3367_ $$2BibTeX$$aARTICLE
000015857 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000015857 3367_ $$2DRIVER$$aarticle
000015857 440_0 $$03318$$aJournal of Experimental Botany$$v63$$x0022-0957$$y9
000015857 500__ $$aRecord converted from VDB: 12.11.2012
000015857 520__ $$aPlants are sessile organisms forced to adjust to their surrounding environment. In a single plant the photoautotrophic shoot is exposed to pronounced environmental variations recurring in a day-night 24 h (diel) cycle, whereas the heterotrophic root grows in a temporally less fluctuating environment. The contrasting habitats of shoots and roots are reflected in different diel growth patterns and their responsiveness to environmental stimuli. Differences between diel leaf growth patterns of mono- and dicotyledonous plants correspond to their different organization and placement of growth zones. In monocots, heterotrophic growth zones are organized linearly and protected from the environment by sheaths of older leaves. In contrast, photosynthetically active growth zones of dicot leaves are exposed directly to the environment and show characteristic, species-specific diel growth patterns. It is hypothesized that the different exposure to environmental constraints and simultaneously the sink/source status of the growing organs may have induced distinct endogenous control of diel growth patterns in roots and leaves of monocot and dicot plants. Confronted by strong temporal fluctuations in environment, the circadian clock may facilitate robust intrinsic control of leaf growth in dicot plants.
000015857 536__ $$0G:(DE-Juel1)FUEK407$$2G:(DE-HGF)$$aTerrestrische Umwelt$$cP24$$x0
000015857 588__ $$aDataset connected to Web of Science, Pubmed
000015857 65320 $$2Author$$aCarbohydrate
000015857 65320 $$2Author$$acircadian
000015857 65320 $$2Author$$adicot
000015857 65320 $$2Author$$adiurnal
000015857 65320 $$2Author$$aenvironment
000015857 65320 $$2Author$$agrowth
000015857 65320 $$2Author$$aleaf
000015857 65320 $$2Author$$amonocot
000015857 65320 $$2Author$$aregulation
000015857 65320 $$2Author$$aroot
000015857 650_2 $$2MeSH$$aAngiosperms: growth & development
000015857 650_2 $$2MeSH$$aCircadian Rhythm: physiology
000015857 650_2 $$2MeSH$$aEnvironment
000015857 650_2 $$2MeSH$$aModels, Biological
000015857 650_2 $$2MeSH$$aPlant Leaves: growth & development
000015857 650_2 $$2MeSH$$aPlant Roots: growth & development
000015857 650_7 $$2WoSType$$aJ
000015857 7001_ $$0P:(DE-Juel1)129358$$aMatsubara, S.$$b1$$uFZJ
000015857 7001_ $$0P:(DE-Juel1)129420$$aWiese-Klinkenberg, A.$$b2$$uFZJ
000015857 7001_ $$0P:(DE-HGF)0$$aWalter, A.$$b3$$ufzj
000015857 773__ $$0PERI:(DE-600)1466717-4$$a10.1093/jxb/err334$$gVol. 63, p. 3339 - 3351$$p3339 - 3351$$q63<3339 - 3351$$tThe @journal of experimental botany$$v63$$x0022-0957$$y2012
000015857 8567_ $$uhttp://dx.doi.org/10.1093/jxb/err334
000015857 8564_ $$uhttps://juser.fz-juelich.de/record/15857/files/FZJ-15857.pdf$$yRestricted$$zPublished final document.
000015857 909CO $$ooai:juser.fz-juelich.de:15857$$pVDB
000015857 9141_ $$y2012
000015857 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000015857 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000015857 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000015857 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000015857 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000015857 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000015857 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000015857 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000015857 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000015857 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG
000015857 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000015857 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000015857 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000015857 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000015857 9131_ $$0G:(DE-Juel1)FUEK407$$1G:(DE-HGF)POF2-240$$2G:(DE-HGF)POF2-200$$bErde und Umwelt$$kP24$$lTerrestrische Umwelt$$vTerrestrische Umwelt$$x0
000015857 9132_ $$0G:(DE-HGF)POF3-582$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vPlant Science$$x0
000015857 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$gIBG$$kIBG-2$$lPflanzenwissenschaften$$x0
000015857 970__ $$aVDB:(DE-Juel1)129241
000015857 980__ $$aVDB
000015857 980__ $$aConvertedRecord
000015857 980__ $$ajournal
000015857 980__ $$aI:(DE-Juel1)IBG-2-20101118
000015857 980__ $$aUNRESTRICTED