000015863 001__ 15863
000015863 005__ 20190625110530.0
000015863 0247_ $$2pmid$$apmid:21784914
000015863 0247_ $$2pmc$$apmc:PMC3187166
000015863 0247_ $$2DOI$$a10.1128/AEM.00575-11
000015863 0247_ $$2WOS$$aWOS:000294691400040
000015863 0247_ $$2altmetric$$aaltmetric:575543
000015863 037__ $$aPreJuSER-15863
000015863 041__ $$aeng
000015863 082__ $$a570
000015863 084__ $$2WoS$$aBiotechnology & Applied Microbiology
000015863 084__ $$2WoS$$aMicrobiology
000015863 1001_ $$0P:(DE-Juel1)VDB59554$$aBartek, T.$$b0$$uFZJ
000015863 245__ $$aComparative 13C-metabolic flux analysis of pyruvate dehydrogenase complex-deficient L-valine-producing Corynebacterium glutamicum
000015863 260__ $$aWashington, DC [u.a.]$$bSoc.$$c2011
000015863 300__ $$a6644 - 6652
000015863 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000015863 3367_ $$2DataCite$$aOutput Types/Journal article
000015863 3367_ $$00$$2EndNote$$aJournal Article
000015863 3367_ $$2BibTeX$$aARTICLE
000015863 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000015863 3367_ $$2DRIVER$$aarticle
000015863 440_0 $$08561$$aApplied and Environmental Microbiology$$v77$$x0099-2240$$y18
000015863 500__ $$aThis work was financially supported by the Fachagentur Nachwachsende Rohstoffe (Agency for Renewable Resources) of the BMVEL, German Federal Ministry of Food, Agriculture and Consumer Protection (grant 04NR003/22000304), and by Evonik Degussa GmbH.
000015863 520__ $$aL-Valine can be formed successfully using C. glutamicum strains missing an active pyruvate dehydrogenase enzyme complex (PDHC). Wild-type C. glutamicum and four PDHC-deficient strains were compared by (13)C metabolic flux analysis, especially focusing on the split ratio between glycolysis and the pentose phosphate pathway (PPP). Compared to the wild type, showing a carbon flux of 69% ± 14% through the PPP, a strong increase in the PPP flux was observed in PDHC-deficient strains with a maximum of 113% ± 22%. The shift in the split ratio can be explained by an increased demand of NADPH for l-valine formation. In accordance, the introduction of the Escherichia coli transhydrogenase PntAB, catalyzing the reversible conversion of NADH to NADPH, into an L-valine-producing C. glutamicum strain caused the PPP flux to decrease to 57% ± 6%, which is below the wild-type split ratio. Hence, transhydrogenase activity offers an alternative perspective for sufficient NADPH supply, which is relevant for most amino acid production systems. Moreover, as demonstrated for L-valine, this bypass leads to a significant increase of product yield due to a concurrent reduction in carbon dioxide formation via the PPP.
000015863 536__ $$0G:(DE-Juel1)FUEK410$$2G:(DE-HGF)$$aBiotechnologie$$cPBT$$x0
000015863 588__ $$aDataset connected to Web of Science, Pubmed
000015863 650_2 $$2MeSH$$aCarbon Dioxide: metabolism
000015863 650_2 $$2MeSH$$aCarbon Isotopes: metabolism
000015863 650_2 $$2MeSH$$aCorynebacterium glutamicum: genetics
000015863 650_2 $$2MeSH$$aCorynebacterium glutamicum: metabolism
000015863 650_2 $$2MeSH$$aEscherichia coli: enzymology
000015863 650_2 $$2MeSH$$aEscherichia coli: genetics
000015863 650_2 $$2MeSH$$aEscherichia coli Proteins: genetics
000015863 650_2 $$2MeSH$$aEscherichia coli Proteins: metabolism
000015863 650_2 $$2MeSH$$aGlycolysis
000015863 650_2 $$2MeSH$$aNADP Transhydrogenases: genetics
000015863 650_2 $$2MeSH$$aNADP Transhydrogenases: metabolism
000015863 650_2 $$2MeSH$$aPentose Phosphate Pathway
000015863 650_2 $$2MeSH$$aPyruvate Dehydrogenase Complex: genetics
000015863 650_2 $$2MeSH$$aValine: metabolism
000015863 650_7 $$00$$2NLM Chemicals$$aCarbon Isotopes
000015863 650_7 $$00$$2NLM Chemicals$$aEscherichia coli Proteins
000015863 650_7 $$00$$2NLM Chemicals$$aPyruvate Dehydrogenase Complex
000015863 650_7 $$0124-38-9$$2NLM Chemicals$$aCarbon Dioxide
000015863 650_7 $$07004-03-7$$2NLM Chemicals$$aValine
000015863 650_7 $$0EC 1.6.1.-$$2NLM Chemicals$$aNADP Transhydrogenases
000015863 650_7 $$0EC 1.6.1.2$$2NLM Chemicals$$apntA protein, E coli
000015863 650_7 $$0EC 1.6.1.2$$2NLM Chemicals$$apntB protein, E coli
000015863 650_7 $$2WoSType$$aJ
000015863 7001_ $$0P:(DE-HGF)0$$aBlombach, B.$$b1
000015863 7001_ $$0P:(DE-HGF)0$$aLang, S.$$b2
000015863 7001_ $$0P:(DE-HGF)0$$aEikmanns, B.J.$$b3
000015863 7001_ $$0P:(DE-Juel1)129076$$aWiechert, W.$$b4$$uFZJ
000015863 7001_ $$0P:(DE-Juel1)129053$$aOldiges, M.$$b5$$uFZJ
000015863 7001_ $$0P:(DE-Juel1)129051$$aNöh, K.$$b6$$uFZJ
000015863 7001_ $$0P:(DE-Juel1)VDB56982$$aNoack, S.$$b7$$uFZJ
000015863 773__ $$0PERI:(DE-600)1478346-0$$a10.1128/AEM.00575-11$$gVol. 77, p. 6644 - 6652$$p6644 - 6652$$q77<6644 - 6652$$tApplied and environmental microbiology$$v77$$x0099-2240$$y2011
000015863 8567_ $$2Pubmed Central$$uhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC3187166
000015863 909CO $$ooai:juser.fz-juelich.de:15863$$pVDB
000015863 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000015863 9141_ $$y2011
000015863 9131_ $$0G:(DE-Juel1)FUEK410$$aDE-HGF$$baußerhalb PoF$$kPBT$$lohne FE$$vBiotechnologie$$x0
000015863 9132_ $$0G:(DE-HGF)POF3-581$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vBiotechnology$$x0
000015863 9201_ $$0I:(DE-Juel1)VDB56$$gIBT$$kIBT-2$$lBiotechnologie 2$$x0$$zab 31.10.10 weitergeführt IBG-1
000015863 970__ $$aVDB:(DE-Juel1)129247
000015863 980__ $$aVDB
000015863 980__ $$aConvertedRecord
000015863 980__ $$ajournal
000015863 980__ $$aI:(DE-Juel1)IBG-1-20101118
000015863 980__ $$aUNRESTRICTED
000015863 981__ $$aI:(DE-Juel1)IBG-1-20101118