| Home > Publications database > Comparative 13C-metabolic flux analysis of pyruvate dehydrogenase complex-deficient L-valine-producing Corynebacterium glutamicum > print |
| 001 | 15863 | ||
| 005 | 20190625110530.0 | ||
| 024 | 7 | _ | |2 pmid |a pmid:21784914 |
| 024 | 7 | _ | |2 pmc |a pmc:PMC3187166 |
| 024 | 7 | _ | |2 DOI |a 10.1128/AEM.00575-11 |
| 024 | 7 | _ | |2 WOS |a WOS:000294691400040 |
| 024 | 7 | _ | |a altmetric:575543 |2 altmetric |
| 037 | _ | _ | |a PreJuSER-15863 |
| 041 | _ | _ | |a eng |
| 082 | _ | _ | |a 570 |
| 084 | _ | _ | |2 WoS |a Biotechnology & Applied Microbiology |
| 084 | _ | _ | |2 WoS |a Microbiology |
| 100 | 1 | _ | |0 P:(DE-Juel1)VDB59554 |a Bartek, T. |b 0 |u FZJ |
| 245 | _ | _ | |a Comparative 13C-metabolic flux analysis of pyruvate dehydrogenase complex-deficient L-valine-producing Corynebacterium glutamicum |
| 260 | _ | _ | |a Washington, DC [u.a.] |b Soc. |c 2011 |
| 300 | _ | _ | |a 6644 - 6652 |
| 336 | 7 | _ | |a Journal Article |0 PUB:(DE-HGF)16 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a article |2 DRIVER |
| 440 | _ | 0 | |0 8561 |a Applied and Environmental Microbiology |v 77 |x 0099-2240 |y 18 |
| 500 | _ | _ | |a This work was financially supported by the Fachagentur Nachwachsende Rohstoffe (Agency for Renewable Resources) of the BMVEL, German Federal Ministry of Food, Agriculture and Consumer Protection (grant 04NR003/22000304), and by Evonik Degussa GmbH. |
| 520 | _ | _ | |a L-Valine can be formed successfully using C. glutamicum strains missing an active pyruvate dehydrogenase enzyme complex (PDHC). Wild-type C. glutamicum and four PDHC-deficient strains were compared by (13)C metabolic flux analysis, especially focusing on the split ratio between glycolysis and the pentose phosphate pathway (PPP). Compared to the wild type, showing a carbon flux of 69% ± 14% through the PPP, a strong increase in the PPP flux was observed in PDHC-deficient strains with a maximum of 113% ± 22%. The shift in the split ratio can be explained by an increased demand of NADPH for l-valine formation. In accordance, the introduction of the Escherichia coli transhydrogenase PntAB, catalyzing the reversible conversion of NADH to NADPH, into an L-valine-producing C. glutamicum strain caused the PPP flux to decrease to 57% ± 6%, which is below the wild-type split ratio. Hence, transhydrogenase activity offers an alternative perspective for sufficient NADPH supply, which is relevant for most amino acid production systems. Moreover, as demonstrated for L-valine, this bypass leads to a significant increase of product yield due to a concurrent reduction in carbon dioxide formation via the PPP. |
| 536 | _ | _ | |0 G:(DE-Juel1)FUEK410 |2 G:(DE-HGF) |a Biotechnologie |c PBT |x 0 |
| 588 | _ | _ | |a Dataset connected to Web of Science, Pubmed |
| 650 | _ | 2 | |2 MeSH |a Carbon Dioxide: metabolism |
| 650 | _ | 2 | |2 MeSH |a Carbon Isotopes: metabolism |
| 650 | _ | 2 | |2 MeSH |a Corynebacterium glutamicum: genetics |
| 650 | _ | 2 | |2 MeSH |a Corynebacterium glutamicum: metabolism |
| 650 | _ | 2 | |2 MeSH |a Escherichia coli: enzymology |
| 650 | _ | 2 | |2 MeSH |a Escherichia coli: genetics |
| 650 | _ | 2 | |2 MeSH |a Escherichia coli Proteins: genetics |
| 650 | _ | 2 | |2 MeSH |a Escherichia coli Proteins: metabolism |
| 650 | _ | 2 | |2 MeSH |a Glycolysis |
| 650 | _ | 2 | |2 MeSH |a NADP Transhydrogenases: genetics |
| 650 | _ | 2 | |2 MeSH |a NADP Transhydrogenases: metabolism |
| 650 | _ | 2 | |2 MeSH |a Pentose Phosphate Pathway |
| 650 | _ | 2 | |2 MeSH |a Pyruvate Dehydrogenase Complex: genetics |
| 650 | _ | 2 | |2 MeSH |a Valine: metabolism |
| 650 | _ | 7 | |0 0 |2 NLM Chemicals |a Carbon Isotopes |
| 650 | _ | 7 | |0 0 |2 NLM Chemicals |a Escherichia coli Proteins |
| 650 | _ | 7 | |0 0 |2 NLM Chemicals |a Pyruvate Dehydrogenase Complex |
| 650 | _ | 7 | |0 124-38-9 |2 NLM Chemicals |a Carbon Dioxide |
| 650 | _ | 7 | |0 7004-03-7 |2 NLM Chemicals |a Valine |
| 650 | _ | 7 | |0 EC 1.6.1.- |2 NLM Chemicals |a NADP Transhydrogenases |
| 650 | _ | 7 | |0 EC 1.6.1.2 |2 NLM Chemicals |a pntA protein, E coli |
| 650 | _ | 7 | |0 EC 1.6.1.2 |2 NLM Chemicals |a pntB protein, E coli |
| 650 | _ | 7 | |2 WoSType |a J |
| 700 | 1 | _ | |0 P:(DE-HGF)0 |a Blombach, B. |b 1 |
| 700 | 1 | _ | |0 P:(DE-HGF)0 |a Lang, S. |b 2 |
| 700 | 1 | _ | |0 P:(DE-HGF)0 |a Eikmanns, B.J. |b 3 |
| 700 | 1 | _ | |0 P:(DE-Juel1)129076 |a Wiechert, W. |b 4 |u FZJ |
| 700 | 1 | _ | |0 P:(DE-Juel1)129053 |a Oldiges, M. |b 5 |u FZJ |
| 700 | 1 | _ | |0 P:(DE-Juel1)129051 |a Nöh, K. |b 6 |u FZJ |
| 700 | 1 | _ | |0 P:(DE-Juel1)VDB56982 |a Noack, S. |b 7 |u FZJ |
| 773 | _ | _ | |0 PERI:(DE-600)1478346-0 |a 10.1128/AEM.00575-11 |g Vol. 77, p. 6644 - 6652 |p 6644 - 6652 |q 77<6644 - 6652 |t Applied and environmental microbiology |v 77 |x 0099-2240 |y 2011 |
| 856 | 7 | _ | |2 Pubmed Central |u http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3187166 |
| 909 | C | O | |o oai:juser.fz-juelich.de:15863 |p VDB |
| 913 | 1 | _ | |0 G:(DE-Juel1)FUEK410 |a DE-HGF |b außerhalb PoF |k PBT |l ohne FE |v Biotechnologie |x 0 |
| 913 | 2 | _ | |0 G:(DE-HGF)POF3-581 |1 G:(DE-HGF)POF3-580 |2 G:(DE-HGF)POF3-500 |a DE-HGF |b Key Technologies |l Key Technologies for the Bioeconomy |v Biotechnology |x 0 |
| 914 | 1 | _ | |y 2011 |
| 915 | _ | _ | |0 StatID:(DE-HGF)0010 |a JCR/ISI refereed |
| 920 | 1 | _ | |0 I:(DE-Juel1)VDB56 |g IBT |k IBT-2 |l Biotechnologie 2 |x 0 |z ab 31.10.10 weitergeführt IBG-1 |
| 970 | _ | _ | |a VDB:(DE-Juel1)129247 |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a ConvertedRecord |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a I:(DE-Juel1)IBG-1-20101118 |
| 980 | _ | _ | |a UNRESTRICTED |
| 981 | _ | _ | |a I:(DE-Juel1)IBG-1-20101118 |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|