001     15863
005     20190625110530.0
024 7 _ |2 pmid
|a pmid:21784914
024 7 _ |2 pmc
|a pmc:PMC3187166
024 7 _ |2 DOI
|a 10.1128/AEM.00575-11
024 7 _ |2 WOS
|a WOS:000294691400040
024 7 _ |a altmetric:575543
|2 altmetric
037 _ _ |a PreJuSER-15863
041 _ _ |a eng
082 _ _ |a 570
084 _ _ |2 WoS
|a Biotechnology & Applied Microbiology
084 _ _ |2 WoS
|a Microbiology
100 1 _ |0 P:(DE-Juel1)VDB59554
|a Bartek, T.
|b 0
|u FZJ
245 _ _ |a Comparative 13C-metabolic flux analysis of pyruvate dehydrogenase complex-deficient L-valine-producing Corynebacterium glutamicum
260 _ _ |a Washington, DC [u.a.]
|b Soc.
|c 2011
300 _ _ |a 6644 - 6652
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |0 8561
|a Applied and Environmental Microbiology
|v 77
|x 0099-2240
|y 18
500 _ _ |a This work was financially supported by the Fachagentur Nachwachsende Rohstoffe (Agency for Renewable Resources) of the BMVEL, German Federal Ministry of Food, Agriculture and Consumer Protection (grant 04NR003/22000304), and by Evonik Degussa GmbH.
520 _ _ |a L-Valine can be formed successfully using C. glutamicum strains missing an active pyruvate dehydrogenase enzyme complex (PDHC). Wild-type C. glutamicum and four PDHC-deficient strains were compared by (13)C metabolic flux analysis, especially focusing on the split ratio between glycolysis and the pentose phosphate pathway (PPP). Compared to the wild type, showing a carbon flux of 69% ± 14% through the PPP, a strong increase in the PPP flux was observed in PDHC-deficient strains with a maximum of 113% ± 22%. The shift in the split ratio can be explained by an increased demand of NADPH for l-valine formation. In accordance, the introduction of the Escherichia coli transhydrogenase PntAB, catalyzing the reversible conversion of NADH to NADPH, into an L-valine-producing C. glutamicum strain caused the PPP flux to decrease to 57% ± 6%, which is below the wild-type split ratio. Hence, transhydrogenase activity offers an alternative perspective for sufficient NADPH supply, which is relevant for most amino acid production systems. Moreover, as demonstrated for L-valine, this bypass leads to a significant increase of product yield due to a concurrent reduction in carbon dioxide formation via the PPP.
536 _ _ |0 G:(DE-Juel1)FUEK410
|2 G:(DE-HGF)
|a Biotechnologie
|c PBT
|x 0
588 _ _ |a Dataset connected to Web of Science, Pubmed
650 _ 2 |2 MeSH
|a Carbon Dioxide: metabolism
650 _ 2 |2 MeSH
|a Carbon Isotopes: metabolism
650 _ 2 |2 MeSH
|a Corynebacterium glutamicum: genetics
650 _ 2 |2 MeSH
|a Corynebacterium glutamicum: metabolism
650 _ 2 |2 MeSH
|a Escherichia coli: enzymology
650 _ 2 |2 MeSH
|a Escherichia coli: genetics
650 _ 2 |2 MeSH
|a Escherichia coli Proteins: genetics
650 _ 2 |2 MeSH
|a Escherichia coli Proteins: metabolism
650 _ 2 |2 MeSH
|a Glycolysis
650 _ 2 |2 MeSH
|a NADP Transhydrogenases: genetics
650 _ 2 |2 MeSH
|a NADP Transhydrogenases: metabolism
650 _ 2 |2 MeSH
|a Pentose Phosphate Pathway
650 _ 2 |2 MeSH
|a Pyruvate Dehydrogenase Complex: genetics
650 _ 2 |2 MeSH
|a Valine: metabolism
650 _ 7 |0 0
|2 NLM Chemicals
|a Carbon Isotopes
650 _ 7 |0 0
|2 NLM Chemicals
|a Escherichia coli Proteins
650 _ 7 |0 0
|2 NLM Chemicals
|a Pyruvate Dehydrogenase Complex
650 _ 7 |0 124-38-9
|2 NLM Chemicals
|a Carbon Dioxide
650 _ 7 |0 7004-03-7
|2 NLM Chemicals
|a Valine
650 _ 7 |0 EC 1.6.1.-
|2 NLM Chemicals
|a NADP Transhydrogenases
650 _ 7 |0 EC 1.6.1.2
|2 NLM Chemicals
|a pntA protein, E coli
650 _ 7 |0 EC 1.6.1.2
|2 NLM Chemicals
|a pntB protein, E coli
650 _ 7 |2 WoSType
|a J
700 1 _ |0 P:(DE-HGF)0
|a Blombach, B.
|b 1
700 1 _ |0 P:(DE-HGF)0
|a Lang, S.
|b 2
700 1 _ |0 P:(DE-HGF)0
|a Eikmanns, B.J.
|b 3
700 1 _ |0 P:(DE-Juel1)129076
|a Wiechert, W.
|b 4
|u FZJ
700 1 _ |0 P:(DE-Juel1)129053
|a Oldiges, M.
|b 5
|u FZJ
700 1 _ |0 P:(DE-Juel1)129051
|a Nöh, K.
|b 6
|u FZJ
700 1 _ |0 P:(DE-Juel1)VDB56982
|a Noack, S.
|b 7
|u FZJ
773 _ _ |0 PERI:(DE-600)1478346-0
|a 10.1128/AEM.00575-11
|g Vol. 77, p. 6644 - 6652
|p 6644 - 6652
|q 77<6644 - 6652
|t Applied and environmental microbiology
|v 77
|x 0099-2240
|y 2011
856 7 _ |2 Pubmed Central
|u http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3187166
909 C O |o oai:juser.fz-juelich.de:15863
|p VDB
913 1 _ |0 G:(DE-Juel1)FUEK410
|a DE-HGF
|b außerhalb PoF
|k PBT
|l ohne FE
|v Biotechnologie
|x 0
913 2 _ |0 G:(DE-HGF)POF3-581
|1 G:(DE-HGF)POF3-580
|2 G:(DE-HGF)POF3-500
|a DE-HGF
|b Key Technologies
|l Key Technologies for the Bioeconomy
|v Biotechnology
|x 0
914 1 _ |y 2011
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |0 I:(DE-Juel1)VDB56
|g IBT
|k IBT-2
|l Biotechnologie 2
|x 0
|z ab 31.10.10 weitergeführt IBG-1
970 _ _ |a VDB:(DE-Juel1)129247
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)IBG-1-20101118
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBG-1-20101118


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21