001     15931
005     20240709094454.0
024 7 _ |2 DOI
|a 10.1016/j.jeurceramsoc.2011.05.021
024 7 _ |2 WOS
|a WOS:000292667300002
037 _ _ |a PreJuSER-15931
041 _ _ |a eng
082 _ _ |a 660
084 _ _ |2 WoS
|a Materials Science, Ceramics
100 1 _ |a Pecanac, G.
|b 0
|u FZJ
|0 P:(DE-Juel1)138890
245 _ _ |a Ring-On-Ring Testing of Thin, Curved Bi-layered Materials
260 _ _ |a Amsterdam [u.a.]
|b Elsevier Science
|c 2011
300 _ _ |a 2037 - 2042
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Journal of the European Ceramic Society
|x 0955-2219
|0 3891
|y 12
|v 31
500 _ _ |a The author would like to thank CeramTec GmbH, Marktredwitz, Germany for providing the half-cells material. The research leading to these results was partly funded by the European Union's Seventh Framework Programme FP7/2007-2013 under grant agreement no 228701.
520 _ _ |a The bi-axial ring-on-ring test is a convenient method to determine elastic modulus and fracture strength of brittle materials in plate geometry. However, standard analytical relationships appear to be limited to flat isotropic samples with discrete ratios of thickness to loading/support ring radii. In addition to the necessity to consider residual stresses due to differences in thermal expansion for bi-layered materials, the curvature of thin components complicates the analysis of the experimental data. Experimental and finite element modeling results are presented for thin curved bi-layered materials with substrates of different elastic behavior. Basis for the analysis are experimental results obtained for solid oxide fuel cells with anode substrates in oxidized and reduced state. A testing procedure and its limits are outlined that permits to extend the use of standard analytical relationships to curved bi-layered specimens with the aim to determine the properties of the mechanically dominating support material. (C) 2011 Elsevier Ltd. All rights reserved.
536 _ _ |a Rationelle Energieumwandlung
|0 G:(DE-Juel1)FUEK402
|c P12
|2 G:(DE-HGF)
|x 0
536 _ _ |a NASA-OTM - NAnostructured Surface Activated ultra-thin Oxygen Transport Membrane (228701)
|0 G:(EU-Grant)228701
|c 228701
|x 1
|f FP7-NMP-2008-SMALL-2
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
653 2 0 |2 Author
|a C. Fracture
653 2 0 |2 Author
|a C. Strength
653 2 0 |2 Author
|a Elastic behavior
653 2 0 |2 Author
|a Solid oxide fuel cells
653 2 0 |2 Author
|a Bending test
700 1 _ |a Bause, T.
|b 1
|u FZJ
|0 P:(DE-Juel1)VDB57534
700 1 _ |a Malzbender, J.
|b 2
|u FZJ
|0 P:(DE-Juel1)129755
773 _ _ |a 10.1016/j.jeurceramsoc.2011.05.021
|g Vol. 31, p. 2037 - 2042
|p 2037 - 2042
|q 31<2037 - 2042
|0 PERI:(DE-600)2013983-4
|t Journal of the European Ceramic Society
|v 31
|y 2011
|x 0955-2219
909 C O |o oai:juser.fz-juelich.de:15931
|p openaire
|p VDB
|p ec_fundedresources
913 1 _ |a DE-HGF
|b Energie
|k P12
|l Rationelle Energieumwandlung
|0 G:(DE-Juel1)FUEK402
|v Rationelle Energieumwandlung
|x 0
913 2 _ |a DE-HGF
|b Forschungsbereich Energie
|l Energieeffizienz, Materialien und Ressourcen
|1 G:(DE-HGF)POF3-110
|0 G:(DE-HGF)POF3-113
|2 G:(DE-HGF)POF3-100
|v Methods and Concepts for Material Development
|x 0
914 1 _ |y 2011
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |k IEK-2
|l Werkstoffstruktur und -eigenschaften
|g IEK
|0 I:(DE-Juel1)IEK-2-20101013
|x 0
970 _ _ |a VDB:(DE-Juel1)129383
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)IEK-2-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21