000015941 001__ 15941
000015941 005__ 20240610120530.0
000015941 0247_ $$2pmid$$apmid:21730178
000015941 0247_ $$2pmc$$apmc:PMC3141939
000015941 0247_ $$2DOI$$a10.1073/pnas.1101210108
000015941 0247_ $$2WOS$$aWOS:000292876900019
000015941 0247_ $$2altmetric$$aaltmetric:180777
000015941 037__ $$aPreJuSER-15941
000015941 041__ $$aeng
000015941 082__ $$a000
000015941 084__ $$2WoS$$aMultidisciplinary Sciences
000015941 1001_ $$0P:(DE-Juel1)VDB97677$$aFedosov, D.A.$$b0$$uFZJ
000015941 245__ $$aPredicting human blood viscosity in silico
000015941 260__ $$aWashington, DC$$bAcademy$$c2011
000015941 300__ $$a11772 - 11777
000015941 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000015941 3367_ $$2DataCite$$aOutput Types/Journal article
000015941 3367_ $$00$$2EndNote$$aJournal Article
000015941 3367_ $$2BibTeX$$aARTICLE
000015941 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000015941 3367_ $$2DRIVER$$aarticle
000015941 440_0 $$05100$$aProceedings of the National Academy of Sciences of the United States of America$$v108$$x0027-8424$$y29
000015941 500__ $$aThis work was supported by National Institutes of Health Grant R01HL094270 and simulations were performed on the Cray XT5 at the National Science Foundation-National Institute for Computational Science and at the Julich Supercomputing Center in Germany.
000015941 520__ $$aThe viscosity of blood has long been used as an indicator in the understanding and treatment of disease, and the advent of modern viscometers allows its measurement with ever-improving clinical convenience. However, these advances have not been matched by theoretical developments that can yield a quantitative understanding of blood's microrheology and its possible connection to relevant biomolecules (e.g., fibrinogen). Using coarse-grained molecular dynamics and two different red blood cell models, we accurately predict the dependence of blood viscosity on shear rate and hematocrit. We explicitly represent cell-cell interactions and identify the types and sizes of reversible rouleaux structures that yield a tremendous increase of blood viscosity at low shear rates. We also present the first quantitative estimates of the magnitude of adhesive forces between red cells. In addition, our simulations support the hypothesis, previously deduced from experiments, of yield stress as an indicator of cell aggregation. This non-Newtonian behavior is analyzed and related to the suspension's microstructure, deformation, and dynamics of single red blood cells. The most complex cell dynamics occurs in the intermediate shear rate regime, where individual cells experience severe deformation and transient folded conformations. The generality of these cell models together with single-cell measurements points to the future prediction of blood-viscosity anomalies and the corresponding microstructures associated with various diseases (e.g., malaria, AIDS, and diabetes mellitus). The models can easily be adapted to tune the properties of a much wider class of complex fluids including capsule and vesicle suspensions.
000015941 536__ $$0G:(DE-Juel1)FUEK505$$2G:(DE-HGF)$$aBioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung$$cP45$$x0
000015941 588__ $$aDataset connected to Web of Science, Pubmed
000015941 65320 $$2Author$$ablood rheology
000015941 65320 $$2Author$$ablood modeling
000015941 65320 $$2Author$$ashear thinning
000015941 65320 $$2Author$$aaggregation force
000015941 65320 $$2Author$$adissipative particle dynamics
000015941 650_2 $$2MeSH$$aBlood Viscosity
000015941 650_2 $$2MeSH$$aCell Adhesion: physiology
000015941 650_2 $$2MeSH$$aComputer Simulation
000015941 650_2 $$2MeSH$$aHumans
000015941 650_2 $$2MeSH$$aModels, Biological
000015941 650_2 $$2MeSH$$aMolecular Dynamics Simulation
000015941 650_2 $$2MeSH$$aRheology: methods
000015941 650_7 $$2WoSType$$aJ
000015941 7001_ $$0P:(DE-Juel1)VDB96418$$aPan, W.$$b1$$uFZJ
000015941 7001_ $$0P:(DE-Juel1)VDB94875$$aCaswell, B.$$b2$$uFZJ
000015941 7001_ $$0P:(DE-Juel1)130665$$aGompper, G.$$b3$$uFZJ
000015941 7001_ $$0P:(DE-Juel1)VDB94877$$aKarniadakis, G.E.$$b4$$uFZJ
000015941 773__ $$0PERI:(DE-600)1461794-8$$a10.1073/pnas.1101210108$$gVol. 108, p. 11772 - 11777$$p11772 - 11777$$q108<11772 - 11777$$tProceedings of the National Academy of Sciences of the United States of America$$v108$$x0027-8424$$y2011
000015941 8567_ $$2Pubmed Central$$uhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC3141939
000015941 909CO $$ooai:juser.fz-juelich.de:15941$$pVDB
000015941 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000015941 9141_ $$y2011
000015941 9131_ $$0G:(DE-Juel1)FUEK505$$aDE-HGF$$bSchlüsseltechnologien$$kP45$$lBiologische Informationsverarbeitung$$vBioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung$$x0
000015941 9132_ $$0G:(DE-HGF)POF3-553$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lBioSoft  Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vPhysical Basis of Diseases$$x0
000015941 9201_ $$0I:(DE-Juel1)ICS-2-20110106$$gICS$$kICS-2$$lTheorie der weichen Materie und Biophysik$$x0
000015941 9201_ $$0I:(DE-Juel1)IAS-2-20090406$$gIAS$$kIAS-2$$lTheorie der Weichen Materie und Biophysik$$x1$$zIFF-2
000015941 970__ $$aVDB:(DE-Juel1)129394
000015941 980__ $$aVDB
000015941 980__ $$aConvertedRecord
000015941 980__ $$ajournal
000015941 980__ $$aI:(DE-Juel1)ICS-2-20110106
000015941 980__ $$aI:(DE-Juel1)IAS-2-20090406
000015941 980__ $$aUNRESTRICTED
000015941 981__ $$aI:(DE-Juel1)IBI-5-20200312
000015941 981__ $$aI:(DE-Juel1)IAS-2-20090406
000015941 981__ $$aI:(DE-Juel1)IAS-2-20090406