001     15941
005     20240610120530.0
024 7 _ |2 pmid
|a pmid:21730178
024 7 _ |2 pmc
|a pmc:PMC3141939
024 7 _ |2 DOI
|a 10.1073/pnas.1101210108
024 7 _ |2 WOS
|a WOS:000292876900019
024 7 _ |a altmetric:180777
|2 altmetric
037 _ _ |a PreJuSER-15941
041 _ _ |a eng
082 _ _ |a 000
084 _ _ |2 WoS
|a Multidisciplinary Sciences
100 1 _ |0 P:(DE-Juel1)VDB97677
|a Fedosov, D.A.
|b 0
|u FZJ
245 _ _ |a Predicting human blood viscosity in silico
260 _ _ |a Washington, DC
|b Academy
|c 2011
300 _ _ |a 11772 - 11777
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |0 5100
|a Proceedings of the National Academy of Sciences of the United States of America
|v 108
|x 0027-8424
|y 29
500 _ _ |a This work was supported by National Institutes of Health Grant R01HL094270 and simulations were performed on the Cray XT5 at the National Science Foundation-National Institute for Computational Science and at the Julich Supercomputing Center in Germany.
520 _ _ |a The viscosity of blood has long been used as an indicator in the understanding and treatment of disease, and the advent of modern viscometers allows its measurement with ever-improving clinical convenience. However, these advances have not been matched by theoretical developments that can yield a quantitative understanding of blood's microrheology and its possible connection to relevant biomolecules (e.g., fibrinogen). Using coarse-grained molecular dynamics and two different red blood cell models, we accurately predict the dependence of blood viscosity on shear rate and hematocrit. We explicitly represent cell-cell interactions and identify the types and sizes of reversible rouleaux structures that yield a tremendous increase of blood viscosity at low shear rates. We also present the first quantitative estimates of the magnitude of adhesive forces between red cells. In addition, our simulations support the hypothesis, previously deduced from experiments, of yield stress as an indicator of cell aggregation. This non-Newtonian behavior is analyzed and related to the suspension's microstructure, deformation, and dynamics of single red blood cells. The most complex cell dynamics occurs in the intermediate shear rate regime, where individual cells experience severe deformation and transient folded conformations. The generality of these cell models together with single-cell measurements points to the future prediction of blood-viscosity anomalies and the corresponding microstructures associated with various diseases (e.g., malaria, AIDS, and diabetes mellitus). The models can easily be adapted to tune the properties of a much wider class of complex fluids including capsule and vesicle suspensions.
536 _ _ |0 G:(DE-Juel1)FUEK505
|2 G:(DE-HGF)
|a BioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung
|c P45
|x 0
588 _ _ |a Dataset connected to Web of Science, Pubmed
650 _ 2 |2 MeSH
|a Blood Viscosity
650 _ 2 |2 MeSH
|a Cell Adhesion: physiology
650 _ 2 |2 MeSH
|a Computer Simulation
650 _ 2 |2 MeSH
|a Humans
650 _ 2 |2 MeSH
|a Models, Biological
650 _ 2 |2 MeSH
|a Molecular Dynamics Simulation
650 _ 2 |2 MeSH
|a Rheology: methods
650 _ 7 |2 WoSType
|a J
653 2 0 |2 Author
|a blood rheology
653 2 0 |2 Author
|a blood modeling
653 2 0 |2 Author
|a shear thinning
653 2 0 |2 Author
|a aggregation force
653 2 0 |2 Author
|a dissipative particle dynamics
700 1 _ |0 P:(DE-Juel1)VDB96418
|a Pan, W.
|b 1
|u FZJ
700 1 _ |0 P:(DE-Juel1)VDB94875
|a Caswell, B.
|b 2
|u FZJ
700 1 _ |0 P:(DE-Juel1)130665
|a Gompper, G.
|b 3
|u FZJ
700 1 _ |0 P:(DE-Juel1)VDB94877
|a Karniadakis, G.E.
|b 4
|u FZJ
773 _ _ |0 PERI:(DE-600)1461794-8
|a 10.1073/pnas.1101210108
|g Vol. 108, p. 11772 - 11777
|p 11772 - 11777
|q 108<11772 - 11777
|t Proceedings of the National Academy of Sciences of the United States of America
|v 108
|x 0027-8424
|y 2011
856 7 _ |2 Pubmed Central
|u http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3141939
909 C O |o oai:juser.fz-juelich.de:15941
|p VDB
913 1 _ |0 G:(DE-Juel1)FUEK505
|a DE-HGF
|b Schlüsseltechnologien
|k P45
|l Biologische Informationsverarbeitung
|v BioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung
|x 0
913 2 _ |0 G:(DE-HGF)POF3-553
|1 G:(DE-HGF)POF3-550
|2 G:(DE-HGF)POF3-500
|a DE-HGF
|b Key Technologies
|l BioSoft Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|v Physical Basis of Diseases
|x 0
914 1 _ |y 2011
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |0 I:(DE-Juel1)ICS-2-20110106
|g ICS
|k ICS-2
|l Theorie der weichen Materie und Biophysik
|x 0
920 1 _ |0 I:(DE-Juel1)IAS-2-20090406
|g IAS
|k IAS-2
|l Theorie der Weichen Materie und Biophysik
|x 1
|z IFF-2
970 _ _ |a VDB:(DE-Juel1)129394
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)ICS-2-20110106
980 _ _ |a I:(DE-Juel1)IAS-2-20090406
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBI-5-20200312
981 _ _ |a I:(DE-Juel1)IAS-2-20090406
981 _ _ |a I:(DE-Juel1)IAS-2-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21