000015982 001__ 15982 000015982 005__ 20200702121600.0 000015982 0247_ $$2pmid$$apmid:21546674 000015982 0247_ $$2DOI$$a10.2134/jeq2010.0404 000015982 0247_ $$2WOS$$aWOS:000289886000022 000015982 037__ $$aPreJuSER-15982 000015982 041__ $$aeng 000015982 082__ $$a333.7 000015982 084__ $$2WoS$$aEnvironmental Sciences 000015982 1001_ $$0P:(DE-Juel1)129549$$aVereecken, H.$$b0$$uFZJ 000015982 245__ $$aDo Lab-Derived Distribution Coefficient Values of Pesticides Match Distribution Coefficient Values Determined from Column and Field-Scale Experiments? A Critical Analysis of Relevant Literature 000015982 260__ $$aMadison, Wis.$$bASA [u.a.]$$c2011 000015982 300__ $$a879 - 898 000015982 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article 000015982 3367_ $$2DataCite$$aOutput Types/Journal article 000015982 3367_ $$00$$2EndNote$$aJournal Article 000015982 3367_ $$2BibTeX$$aARTICLE 000015982 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000015982 3367_ $$2DRIVER$$aarticle 000015982 440_0 $$03300$$aJournal of Environmental Quality$$v40$$x0047-2425$$y3 000015982 500__ $$3POF3_Assignment on 2016-02-29 000015982 500__ $$aRecord converted from VDB: 12.11.2012 000015982 520__ $$aIn this study, we analyzed sorption parameters for pesticides that were derived from batch and column or batch and field experiments. The batch experiments analyzed in this study were run with the same pesticide and soil as in the column and field experiments. We analyzed the relationship between the pore water velocity of the column and field experiments, solute residence times, and sorption parameters, such as the organic carbon normalized distribution coefficient ( ) and the mass exchange coefficient in kinetic models, as well as the predictability of sorption parameters from basic soil properties. The batch/column analysis included 38 studies with a total of 139 observations. The batch/field analysis included five studies, resulting in a dataset of 24 observations. For the batch/column data, power law relationships between pore water velocity, residence time, and sorption constants were derived. The unexplained variability in these equations was reduced, taking into account the saturation status and the packing status (disturbed-undisturbed) of the soil sample. A new regression equation was derived that allows estimating the values derived from column experiments using organic matter and bulk density with an value of 0.56. Regression analysis of the batch/column data showed that the relationship between batch- and column-derived values depends on the saturation status and packing of the soil column. Analysis of the batch/field data showed that as the batch-derived value becomes larger, field-derived values tend to be lower than the corresponding batch-derived values, and vice versa. The present dataset also showed that the variability in the ratio of batch- to column-derived value increases with increasing pore water velocity, with a maximum value approaching 3.5. 000015982 536__ $$0G:(DE-Juel1)FUEK407$$2G:(DE-HGF)$$aTerrestrische Umwelt$$cP24$$x0 000015982 588__ $$aDataset connected to Web of Science, Pubmed 000015982 650_2 $$2MeSH$$aAdsorption 000015982 650_2 $$2MeSH$$aData Interpretation, Statistical 000015982 650_2 $$2MeSH$$aEnvironmental Monitoring 000015982 650_2 $$2MeSH$$aGeologic Sediments: analysis 000015982 650_2 $$2MeSH$$aKinetics 000015982 650_2 $$2MeSH$$aPesticides: analysis 000015982 650_2 $$2MeSH$$aRegression Analysis 000015982 650_2 $$2MeSH$$aSoil: analysis 000015982 650_2 $$2MeSH$$aSoil Pollutants: analysis 000015982 650_2 $$2MeSH$$aWater Pollutants: analysis 000015982 650_7 $$00$$2NLM Chemicals$$aPesticides 000015982 650_7 $$00$$2NLM Chemicals$$aSoil 000015982 650_7 $$00$$2NLM Chemicals$$aSoil Pollutants 000015982 650_7 $$00$$2NLM Chemicals$$aWater Pollutants 000015982 650_7 $$2WoSType$$aJ 000015982 7001_ $$0P:(DE-Juel1)129548$$aVanderborght, J.$$b1$$uFZJ 000015982 7001_ $$0P:(DE-Juel1)VDB724$$aKasteel, R.$$b2$$uFZJ 000015982 7001_ $$0P:(DE-HGF)0$$aSpiteller, M.$$b3 000015982 7001_ $$0P:(DE-HGF)0$$aSchaffer, A.$$b4 000015982 7001_ $$0P:(DE-HGF)0$$aClose, M.$$b5 000015982 773__ $$0PERI:(DE-600)2050469-X$$a10.2134/jeq2010.0404$$gVol. 40, p. 879 - 898$$p879 - 898$$q40<879 - 898$$tJournal of environmental quality$$v40$$x0047-2425$$y2011 000015982 8567_ $$uhttp://dx.doi.org/10.2134/jeq2010.0404 000015982 909CO $$ooai:juser.fz-juelich.de:15982$$pVDB$$pVDB:Earth_Environment 000015982 9131_ $$0G:(DE-Juel1)FUEK407$$bErde und Umwelt$$kP24$$lTerrestrische Umwelt$$vTerrestrische Umwelt$$x0 000015982 9132_ $$0G:(DE-HGF)POF3-259H$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$aDE-HGF$$bMarine, Küsten- und Polare Systeme$$lTerrestrische Umwelt$$vAddenda$$x0 000015982 9141_ $$y2011 000015982 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed 000015982 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$gIBG$$kIBG-3$$lAgrosphäre$$x0 000015982 970__ $$aVDB:(DE-Juel1)129490 000015982 980__ $$aVDB 000015982 980__ $$aConvertedRecord 000015982 980__ $$ajournal 000015982 980__ $$aI:(DE-Juel1)IBG-3-20101118 000015982 980__ $$aUNRESTRICTED