000015985 001__ 15985
000015985 005__ 20200702121600.0
000015985 0247_ $$2DOI$$a10.2136/vzj2009.0152
000015985 0247_ $$2WOS$$aWOS:000287573300020
000015985 037__ $$aPreJuSER-15985
000015985 041__ $$aeng
000015985 082__ $$a550
000015985 084__ $$2WoS$$aEnvironmental Sciences
000015985 084__ $$2WoS$$aSoil Science
000015985 084__ $$2WoS$$aWater Resources
000015985 1001_ $$0P:(DE-Juel1)129461$$aGraf, A.$$b0$$uFZJ
000015985 245__ $$aTemporal Downscaling of Soil Carbon Dioxide Efflux Measurements Based on Time-Stable Spatial Patterns
000015985 260__ $$aMadison, Wis.$$bSSSA$$c2011
000015985 300__ $$a239 - 251
000015985 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000015985 3367_ $$2DataCite$$aOutput Types/Journal article
000015985 3367_ $$00$$2EndNote$$aJournal Article
000015985 3367_ $$2BibTeX$$aARTICLE
000015985 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000015985 3367_ $$2DRIVER$$aarticle
000015985 440_0 $$010301$$aVadose Zone Journal$$v10$$x1539-1663$$y1
000015985 500__ $$3POF3_Assignment on 2016-02-29
000015985 500__ $$aA. Graf and D. Schuttemeyer gratefully acknowledge financial support by the Deutsche Forschungsgemeinschaft (DFG) project "Links between local scale and catchment scale measurements and modelling of gas exchange processes over land surfaces." N. Prolingheuer, A. Schickling, M. Herbst, J.A. Huisman, B. Scharnagl, C. Steenpass, and H. Vereecken gratefully acknowledge financial support by the Transregional collaborative research center (SFB/TR) 32 "Patterns in Soil-Vegetation-Atmosphere Systems: Monitoring, Modelling, and Data Assimilation" funded by the DFG. Instrument funding was provided by the Helmholtz project FLOWatch. We would like to thank Morton Canty and Carsten Montzka for processing the geodata condensed in the middle part of Fig. 1, as well as Friederike Beulshausen, Marta Burmistrow, Sina Egerer, Martin Hank, Christian Koyama, Hendrik Merbitz, Jan Rass, Anne Rosenkranz and Paul Wagner for additional help with the labor-intensive manual chamber measurements.
000015985 520__ $$aSoil CO2 efflux at a field site is often computed as the average of successive chamber measurements at several points to overcome the effects of spatial variability and microclimatic disturbances. As a consequence, the resulting data set has a coarser resolution in space (one average per site) and time than the raw data set. The deviations between raw measurements and the field average may provide additional insights, however, if they can be decomposed into a time-stable part, characterizing the spatial pattern of emission strengths, and a dynamic part, characterizing rapid changes in soil CO2 efflux. We evaluated data from several measurement campaigns in an agricultural landscape. First, we determined the persistence of spatial CO2 efflux patterns and found that >= 50% of spatial variance was stable for at least 1 d in all examined crop and field types. For fields where vegetation and gradients in soil properties determined the spatial variation in CO2 efflux, some correlation was still found after 10 d. In a next step, we removed the time-stable patterns from the raw time series. The resulting estimate of instantaneous area-average soil respiration closely resembled the conventional spatiotemporal field average on days without rapid changes in meteorologic conditions. On days with fluctuations of radiation and temperature, in contrast, soil respiration reacted on a time scale from instantaneous to about 1 h. Based on a discussion of potential mechanisms underlying these reactions for a wheat (Triticum aestivum L.) and a sugarbeet (Beta vulgaris L. ssp. vulgaris) stand, we suggest that the proposed downscaling methodology, in combination with existing decomposition techniques, may help to examine the short-term dependence of heterotrophic and root respiration on radiation, temperature, and rain.
000015985 536__ $$0G:(DE-Juel1)FUEK407$$2G:(DE-HGF)$$aTerrestrische Umwelt$$cP24$$x0
000015985 588__ $$aDataset connected to Web of Science
000015985 650_7 $$2WoSType$$aJ
000015985 7001_ $$0P:(DE-Juel1)VDB72509$$aProlingheuer, N.$$b1$$uFZJ
000015985 7001_ $$0P:(DE-HGF)0$$aSchickling, A.$$b2
000015985 7001_ $$0P:(DE-HGF)0$$aSchmidt, M.$$b3
000015985 7001_ $$0P:(DE-HGF)0$$aSchneider, K.$$b4
000015985 7001_ $$0P:(DE-HGF)0$$aSchüttemeyer, D.$$b5
000015985 7001_ $$0P:(DE-Juel1)129469$$aHerbst, M.$$b6$$uFZJ
000015985 7001_ $$0P:(DE-Juel1)129472$$aHuisman, J.A.$$b7$$uFZJ
000015985 7001_ $$0P:(DE-Juel1)VDB17057$$aWeihermüller, L.$$b8$$uFZJ
000015985 7001_ $$0P:(DE-Juel1)VDB63507$$aScharnagl, B.$$b9$$uFZJ
000015985 7001_ $$0P:(DE-Juel1)VDB70177$$aSteenpass, C.$$b10$$uFZJ
000015985 7001_ $$0P:(DE-Juel1)VDB17076$$aHarms, R.$$b11$$uFZJ
000015985 7001_ $$0P:(DE-Juel1)129549$$aVereecken, H.$$b12$$uFZJ
000015985 773__ $$0PERI:(DE-600)2088189-7$$a10.2136/vzj2009.0152$$gVol. 10, p. 239 - 251$$p239 - 251$$q10<239 - 251$$tVadose zone journal$$v10$$x1539-1663$$y2011
000015985 8567_ $$uhttp://dx.doi.org/10.2136/vzj2009.0152
000015985 909CO $$ooai:juser.fz-juelich.de:15985$$pVDB$$pVDB:Earth_Environment
000015985 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000015985 9141_ $$y2011
000015985 9131_ $$0G:(DE-Juel1)FUEK407$$aDE-HGF$$bErde und Umwelt$$kP24$$lTerrestrische Umwelt$$vTerrestrische Umwelt$$x0
000015985 9132_ $$0G:(DE-HGF)POF3-259H$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$aDE-HGF$$bMarine, Küsten- und Polare Systeme$$lTerrestrische Umwelt$$vAddenda$$x0
000015985 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$gIBG$$kIBG-3$$lAgrosphäre$$x0
000015985 970__ $$aVDB:(DE-Juel1)129493
000015985 980__ $$aVDB
000015985 980__ $$aConvertedRecord
000015985 980__ $$ajournal
000015985 980__ $$aI:(DE-Juel1)IBG-3-20101118
000015985 980__ $$aUNRESTRICTED