000016099 001__ 16099
000016099 005__ 20240619083337.0
000016099 0247_ $$2pmid$$apmid:21545088
000016099 0247_ $$2DOI$$a10.1021/nn201033x
000016099 0247_ $$2WOS$$aWOS:000292055200079
000016099 0247_ $$2ISSN$$a1936-0851
000016099 0247_ $$2uri$$a10.1021/nn201033x
000016099 0247_ $$2Handle$$a2128/4416
000016099 037__ $$aPreJuSER-16099
000016099 041__ $$aeng
000016099 082__ $$a540
000016099 082__ $$a500
000016099 084__ $$2WoS$$aChemistry, Multidisciplinary
000016099 084__ $$2WoS$$aChemistry, Physical
000016099 084__ $$2WoS$$aNanoscience & Nanotechnology
000016099 084__ $$2WoS$$aMaterials Science, Multidisciplinary
000016099 1001_ $$0P:(DE-HGF)0$$aReddy, N.K.$$b0
000016099 245__ $$aFlow dichroism as a reliable method to measure the hydrodynamic aspect ratio of gold nanoparticles
000016099 260__ $$aWashington, DC$$bSoc.$$c2011
000016099 29510 $$aACS Nano, 2011, 5 (6), 4935 – 4944
000016099 300__ $$a4935 - 4944
000016099 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000016099 3367_ $$2DataCite$$aOutput Types/Journal article
000016099 3367_ $$00$$2EndNote$$aJournal Article
000016099 3367_ $$2BibTeX$$aARTICLE
000016099 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000016099 3367_ $$2DRIVER$$aarticle
000016099 440_0 $$018823$$aACS Nano$$v5$$x1936-0851$$y6
000016099 500__ $$aThe authors thank Dr. P. Holmqvist for useful discussions. We thank the EU for funding through the project NANODIRECT (Grant No. CP-FP 213948-2).
000016099 500__ $$aRecord converted from JUWEL: 18.07.2013
000016099 520__ $$aParticle shape plays an important role in controlling the optical, magnetic, and mechanical properties of nanoparticle suspensions as well as nanocomposites. However, characterizing the size, shape, and the associated polydispersity of nanoparticles is not straightforward. Electron microscopy provides an accurate measurement of the geometric properties, but sample preparation can be laborious, and to obtain statistically relevant data many particles need to be analyzed separately. Moreover, when the particles are suspended in a fluid, it is important to measure their hydrodynamic properties, as they determine aspects such as diffusion and the rheological behavior of suspensions. Methods that evaluate the dynamics of nanoparticles such as light scattering and rheo-optical methods accurately provide these hydrodynamic properties, but do necessitate a sufficient optical response. In the present work, three different methods for characterizing nonspherical gold nanoparticles are critically compared, especially taking into account the complex optical response of these particles. The different methods are evaluated in terms of their versatility to asses size, shape, and polydispersity. Among these, the rheo-optical technique is shown to be the most reliable method to obtain hydrodynamic aspect ratio and polydispersity for nonspherical gold nanoparticles for two reasons. First, the use of the evolution of the orientation angle makes effects of polydispersity less important. Second, the use of an external flow field gives a mathematically more robust relation between particle motion and aspect ratio, especially for particles with relatively small aspect ratios.
000016099 536__ $$0G:(DE-Juel1)FUEK505$$2G:(DE-HGF)$$aBioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung$$cP45$$x0
000016099 536__ $$0G:(EU-Grant)213948$$aNANODIRECT - Toolbox for Directed and Controlled Self-Assembly of nano-Colloids (213948)$$c213948$$fFP7-NMP-2007-SMALL-1$$x1
000016099 542__ $$lCopyright: American Chemical Society
The publication is available at:
http://pubs.acs.org/doi/abs/10.1021/nn201033x
000016099 588__ $$aDataset connected to Web of Science, Pubmed
000016099 65320 $$2Author$$agold rod
000016099 65320 $$2Author$$agold decahedron
000016099 65320 $$2Author$$atransmission electron microscopy
000016099 65320 $$2Author$$adepolarized dynamic light scattering
000016099 65320 $$2Author$$aBrownian motion
000016099 65320 $$2Author$$aflow dichroism
000016099 65320 $$2Author$$aJeffery orbits
000016099 650_2 $$2MeSH$$aGold: chemistry
000016099 650_2 $$2MeSH$$aHydrodynamics
000016099 650_2 $$2MeSH$$aLight
000016099 650_2 $$2MeSH$$aMetal Nanoparticles: chemistry
000016099 650_2 $$2MeSH$$aMicroscopy, Electron: methods
000016099 650_2 $$2MeSH$$aMicroscopy, Electron, Transmission: methods
000016099 650_2 $$2MeSH$$aModels, Statistical
000016099 650_2 $$2MeSH$$aNanoparticles
000016099 650_2 $$2MeSH$$aNanotechnology: methods
000016099 650_2 $$2MeSH$$aOptics and Photonics
000016099 650_2 $$2MeSH$$aParticle Size
000016099 650_2 $$2MeSH$$aRheology: methods
000016099 650_2 $$2MeSH$$aScattering, Radiation
000016099 650_7 $$07440-57-5$$2NLM Chemicals$$aGold
000016099 650_7 $$2WoSType$$aJ
000016099 650_7 $$atransmission electron microscopy
000016099 650_7 $$aBrownian motion
000016099 650_7 $$aJeffery orbits
000016099 650_7 $$adepolarized dynamic light scattering
000016099 7001_ $$0P:(DE-HGF)0$$aPérez-Juste, J.$$b1
000016099 7001_ $$0P:(DE-HGF)0$$aPastoriza-Santos, I.$$b2
000016099 7001_ $$0P:(DE-Juel1)130789$$aLang, P.R.$$b3$$uFZJ
000016099 7001_ $$0P:(DE-Juel1)130616$$aDhont, J.K.G.$$b4$$uFZJ
000016099 7001_ $$0P:(DE-HGF)0$$aLiz-Marzan, L.$$b5
000016099 7001_ $$0P:(DE-HGF)0$$aVermant, J.$$b6
000016099 773__ $$0PERI:(DE-600)2383064-5$$a10.1021/nn201033x$$gVol. 5, p. 4935 - 4944$$p4935 - 4944$$q5<4935 - 4944$$tACS nano$$v5$$x1936-0851$$y2011
000016099 8567_ $$uhttp://dx.doi.org/10.1021/nn201033x
000016099 8564_ $$uhttps://juser.fz-juelich.de/record/16099/files/GOLDPART_final_submission.pdf$$yOpenAccess
000016099 8564_ $$uhttps://juser.fz-juelich.de/record/16099/files/GOLDPART_final_submission.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000016099 8564_ $$uhttps://juser.fz-juelich.de/record/16099/files/GOLDPART_final_submission.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000016099 8564_ $$uhttps://juser.fz-juelich.de/record/16099/files/GOLDPART_final_submission.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000016099 909CO $$ooai:juser.fz-juelich.de:16099$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000016099 9141_ $$y2011
000016099 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000016099 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000016099 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000016099 9131_ $$0G:(DE-Juel1)FUEK505$$aDE-HGF$$bSchlüsseltechnologien$$kP45$$lBiologische Informationsverarbeitung$$vBioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung$$x0
000016099 9132_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lBioSoft Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000016099 9201_ $$0I:(DE-Juel1)ICS-3-20110106$$gICS$$kICS-3$$lWeiche Materie$$x0
000016099 970__ $$aVDB:(DE-Juel1)129742
000016099 9801_ $$aFullTexts
000016099 980__ $$aVDB
000016099 980__ $$aConvertedRecord
000016099 980__ $$ajournal
000016099 980__ $$aI:(DE-Juel1)ICS-3-20110106
000016099 980__ $$aUNRESTRICTED
000016099 980__ $$aJUWEL
000016099 980__ $$aFullTexts