Institute for Advanced Simulation (IAS)
Julich Supercomputing Centre (JSC)

Highly-parallel Smoothed Particle
Hydrodynamics modelling of
protoplanetary discs

A. Breslau

schaft

#) JOLICH

FORSCHUNGSZENTRUM

Mitglied der Helmholtz-Gemein

Berichte des Forschungszentrums Julich 4340

Highly-parallel Smoothed Particle
Hydrodynamics modelling of
protoplanetary discs

A. Breslau

Berichte des Forschungszentrums Jilich; 4340
ISSN 0944-2952

Institute for Advanced Simulation (IAS)

Julich Supercomputing Centre (JSC)

Jul-4340

Vollstandig frei verfligbar im Internet auf dem Jilicher Open Access Server (JUWEL)
unter http://www.fz-juelich.de/zb/juwel

Zu beziehen durch: Forschungszentrum Jilich GmbH - Zentralbibliothek, Verlag
D-52425 Julich - Bundesrepublik Deutschland
= 02461 61-5220 - Telefax: 02461 61-6103 - e-mail: zb-publikation@fz-juelich.de

Zusammenfassung

Sterne entstehen durch gravitativen Kollaps aus molekularen Wolken. Wihrend dieses Prozesses bil-
den sich aufgrund der Erhaltung des Drehimpulses aus Gas und Staub bestehende Scheiben um die
jungen Sterne, sogenannte protoplanetare Scheiben. Aus diesen Scheiben konnen im Laufe ihrer Ent-
wicklung Planeten entstehen.

Durch Fluktuationen oder externe Storung konnen sich dichtere Klumpen innerhalb der Scheiben
bilden. Wenn das Material der Klumpen ausreichend kalt ist, iiberwiegt die Gravitationskraft den ther-
mischen Kréften und das Material wird gebunden. Durch Energieabstrahlung kénnen die Klumpen ih-
re GroBe verringern, an Dichte gewinnen und letztendlich moglicherweise Planeten bilden. Scheiben,
deren Massen 10% der Sternmasse iiberschreiten, verhalten sich nidherungsweise wie selbstgravitie-
rende, viskose Fliissigkeiten. Durch die Dissipation von kinetischer Energie in Wirme, bedingt durch
die Viskositit, wird die Scheibe geheizt, was die Fragmentierung moglicherweise verhindern kann,
wohingegen das Kiihlen der Scheiben durch Abstrahlung von Energie die Fragmentierung begiinstigt.
Das genaue Zusammenspiel dieser und anderer Prozesse ist bislang nicht bekannt.

Ziel dieser Arbeit ist die Entwicklung eines Codes zur Simulation viskoser, selbstgravitierender
Scheiben auf hoch parallelen Superrechnern, um damit zum Verstdndnis dieser Prozesse beizutragen.
Dazu wird der bisher fiir Plasma-Simulationen verwendete, hoch skalierende Code PEPC (Pretty
Efficient Coulomb Solver) zunichst fiir die Berechnung von Gravitationskrédften modifiziert. An-
schlieBend wird der Code um eine “Smoothed Particle Hydrodynamics” (SPH) genannte Methode
zur Losung von Stromungsgleichungen erweitert.

Um nachzuweisen, dass der neue Code physikalisch korrekte Ergebnisse liefert, wird er auf Test-
probleme angewendet. Es wird gezeigt, dass der neue Code akustische Wellen iiber 10* Zeitschrit-
te mit nur kleinen Abweichungen von der analytischen Losung behandeln kann und Schockwellen
ausreichend auflost. Dariiber hinaus wird das korrekte Zusammenspiel der neuen mit der alten Code-
komponente demonstriert.

Die Simulation einer protoplanetaren Scheibe mit dem neuen Simulationscode, wird schlieBlich
erfolgreich getestet. Dabei zeigt sich, dass zur stabilen Modellierung einer solchen Scheibe die Inte-

gration weiterer physikalischer Prozesse, wie zum Beispiel Kiihlung, in den Code unerlésslich ist.

Abstract

Stars form by gravitational collapse of molecular clouds. Due to angular momentum conservation
discs consisting of gas and dust form during this process around the young stars. Due to the potential
of later formation of planets out of the disc-material they are called protoplanetary discs.

Fluctuations in the discs can lead to the formation of dense clumps. When the material inside
the clumps is cold enough, the gravitational force outbalances the thermal forces and the material is
bound. By radiative energy loss the clumps can shrink and may ultimately form planets. Especially
discs with masses Mgjsc > 0.1Mg,, behave in first approximation like self-gravitating, viscous fluids.
Viscous heating of the disc can suppress fragmentation processes, while radiative cooling can support
them. The exact interplay of these and other processes is still unknown.

The aim of this work is the development of a code for the simulation of viscous, self-gravitating
discs with highly parallel supercomputers, to contribute to the understanding of these processes.
Therefore the highly scalable plasma-code PEPC (Pretty Efficient Coulomb Solver) is modified for
the computation of gravitational forces. Afterwards the code is extended with the Smoothed Particle
Hydrodynamics (SPH) method for fluid computation.

To demonstrate, that the code produces correct physical results, several test problems are inves-
tigated. It is shown, that the code can propagate sound waves over 10* time steps with only small
deviations from the analytical solution and that the code can resolve shock waves sufficiently. Further,
the correct cooperation of the new and old code components is demonstrated.

The simulation of a protoplanetary disc with the new simulation code is tested successfully. Nev-
ertheless it shows, that for the stable modelling of such a disc, the inclusion of additional physical

processes, like cooling, is necessary.

Contents

1 Motivation

[2__Introductioni

[2.1 ~ The formation of stars and protoplanetary discs|

[2.2 Observations and properties of protoplanetary discs|

[2.3 The evolution of protoplanetary discs| L.

Smoothed Particle Hydrodynamics|

3.1 Abasic SPH formulation| L o
[3.2 Improvements to the basic formulation|
3.3 Aresolutionrequirement| L. Lo

4 The tree-code PEPC

4.1 Tree-codes in general|

5 PEPC with SPH

5.1 Smoothed Particle Hydrodynamics equations|

[5.2 Implementationdetails|

[5.3 The neighbour search|

|6

Testing the new code|

|6.4 Sphere collapse| . . .
6.5 A protoplanetary disc]

N B~ WoW

13
14
18
22

25
25
28
35

39
39
40
41

55
56
57
58
62
65

71

73

1 Motivation

Discs around young stars consisting of gas and dust are the starting material for the formation of
planets. In the standard theory of planet formation the yum-sized dust particles grow to planetesimals
(¢ =~ 10 km) by coagulation processes. Afterwards, the growth processes is dominated by gravi-
tational interactions. If the disc provides a certain amount of material, the planetesimals are able to
grow further until they reach planet size. If the formed planetary embryos are massive enough, they
can accrete gas from the disc to form gas giant planets with masses up to several Myypicer.

Alternatively, it was proposed that planets might form through gravitational instabilities (GI) in
the gas disc. Given the right conditions, the disc can fragment and form dense clumps. Whether
these clumps can stay stable enough to form planets is an open question. This problem is currently
investigated intensely with computer simulations.

For the simulation of the fragmentation of discs around young stars, codes are needed, solving pri-
marily the gravitational and hydrodynamical interactions among the gas and dust particles. Therefore
gravity solvers are often combined with the Smoothed Particle Hydrodynamics (SPH) method as fluid
solver. This is done, due to advantages of this combination over the combination of the gravity solver
with a grid-based fluid solver. These advantages are the intrinsic resolution adaptiveness of SPH and
that SPH as well as most gravity solvers are particle based methods.

For simulations of fragmenting protoplanetary discs particle numbers of some 10° are needed. This
requirement results from two conditions, which have to be fulfilled. On the one hand the disc height
(H < r) has to be resolved sufficiently to avoid numerical heating suppressing fragmentation. On
the other hand the Jeans mass has to be resolved sufficiently for correct modelling of gravitational
fragmentation. The high particle numbers result in a high computational effort, why highly efficient
codes are needed.

The aim of this work is to develop an efficient simulation code for parallel computers, which
combines SPH with a gravity solver. With this code highly resolved protoplanetary discs will be

investigated to contribute to the understanding of the fragmentation process.

1 Motivation

2 Introduction

2.1 The formation of stars and protoplanetary discs

Only a fraction of the matter in a galaxy like our own Milky Way is bound in stars. Large parts
are confined in cold molecular clouds. These clouds consist mainly of molecular hydrogen (H,) and
can be up to several 10 parsecs' (pc) in diameter. The clouds are basically stabilised by a balance
between attracting gravitational force and repulsive pressure. The cloud is stable as long as its mass

Mc is below the Jeans mass Myj

My =5.46 <kBT>3/2p_1/2, (2.1)
mm G

where p is the density of the cloud, T its temperature, kg the Boltzmann constant, G the gravitational
constant and my; the mass of an average gas molecule (e.g. Unsold & Baschekl,|[2005], p. 380). Fluctu-
ations in the properties of the gas, like density or temperature, can lead to the local dominance of the
gravitational force resulting in the collapse of this part of the cloud (see Fig.[2.1]a). During such a col-
lapse part of the gas contracts from an extension of several 10°> Astronomical Units? (AU) to a few AU
meanwhile the density increases by several orders of magnitude. Due to the prior inhomogeneity and
motion of the gas, it has an angular momentum which is conserved during the collapse. This leads to
the formation of a rotating disc-like structure with a denser core in the centre (see Fig.[2.1]b).

During these early times in the formation of a star the core has a mass of less than 1072 Mgy, while
the disc can have a mass of several Ms,,. While the core is approximately in hydrostatic equilibrium,
matter from the disc continues falling onto the core. This can only happen, when the angular momen-
tum of the infalling matter is somehow transported outwards. Simultaneously, magnetic fields are
responsible for mass ejections of the protostar perpendicular to the midplane of the disc. The kinetic
and potential energy of this accreted matter is transformed into thermal energy and radiated away. At
that evolutionary stage this is the main source of the luminosity of the core, now called protostar.

During this accretion phase temperature and density in the protostar increase and initiate hydrogen
burning. At this point, there can still be a remaining disc, now having only a fraction of the central
stars mass (Mpjsc < 0.1Msr) (see Fig. c¢). Eventually accretion stops and the star reaches hydro-

static equilibrium considering the pressure caused by the nuclear fusion. Then the star has reached

11 parsec is the distance from which the distance from the earth to the sun is seen under an angle of 17, ~3-10'® m or
3.26 light-years.
21 Astronomical Unit is the distance between earth and sun, ~ 1.5 - 108 km.

4 2 Introduction

b) outflow

—
x1000

in scale

Rotating disk

Planet formation Mature solar system

Figure 2.1: Schematic view of the formation of a single star. (McCaughrean, M., |n.d.)

the main sequence. The matter forming the disc develops under several influences which can result
either in the destruction of the disc or the formation of planets (see Fig. [2.1]d).

This is the current view of the formation of a single star. However, most stars are not only binaries
or higher multiples, but often part of a cluster of stars containing several 100 to 100000 of stars. In

this case the stellar environment can influence the star formation process significantly.

2.2 Observations and properties of protoplanetary discs

Observations have confirmed above theoretical picture that most, if not all, young stars are surrounded
by a protoplanetary disc (Unsold & Baschekl [2005). The huge contrast in luminosity between the star
and disc combined with the small angular scale make direct observations of the disc very difficult.
Figure [2.2] shows the Spectral Energy Distribution (SED) of the star disc system WL 18 in Ophi-
uchus (Andrews et al.,|2010). The SED is the distribution of the energy flux of radiation depending on
the wavelength or frequency. The black dots are the observational data and the red line is the best fit
of star and disc properties to the data. The dashed blue line shows the stars long-wavelength emission

according to the Rayleigh-Jeans approximation of the Plank-law

2ckpT
BL(T) = =i 2.2)

where c is the speed of light and A the wavelength (Unsold & Baschekl, 2005)). This is a typical sample
SED of a star surrounded by a protoplanetary disc. It can be easily seen that in the optical wavelengths
around 0.5 um the observational data fit the black body radiation of the star (shown by the left part

of the red line and the dashed blue line). There is no noticeable contribution by the discs radiation.

2.2 Observations and properties of protoplanetary discs 5

1 10 100 1000
A [um]

Figure 2.2: Spectral Energy Distribution of the young star WL 18 in the Ophiuchus star forming region. The
black dots are the observational data and the red line is the best fit of star and disc properties to the
data. The dashed blue line shows the stars long-wavelength emissions. (Image by |Andrews et al.
(2010))

Therefore it is almost impossible to observe protoplanetary discs directly in optical wavelengths.
On the other hand the plot shows another property of the SED of a star disc system exploited by

the method primarily used to observe circumstellar discs. According to Wien’s displacement law
AT =2.90-10mK, (2.3)

the maximum-flux wavelength of a star with a surface temperature of several 1000 K and a disc with
a surface temperature of some 10 to few 100 K differ by a factor of 10 to 100 (Unsold & Baschekl,
2005).The Infrared® (IR) to sub-mm wavelength regime of the stars emitted radiation is given by (2.2)).
The thermal radiation of a protoplanetary disc in this wavelength regime is often much more luminous
as shown by the red line on top of the stars dashed blue line. The area between these lines is the IR
excess caused by the radiation of the protoplanetary disc. The gap between the data points in the range
[1:30] um and around 1000 pm is due to missing instruments for this wavelength regime. According
to (2.3) the wavelengths of the data points at the left and right side of the IR excess correspond to
temperatures of a few Kelvin at the outer regions of the disc and some 100 K at the inner regions.
Because of our large distance to star forming regions* (> 100 pc), even large discs with approxi-
mately 1000 AU in diameter are seen very close to their host star (here 5” for the outer regions of this
large discs). This small angular separations makes it impossible to image discs around stars more than
a few 1000 pc distant, even with modern high resolution telescopes. For closer star disc systems the
direct imaging of the disc is challenging due to the high contrast between star and disc. Some closer
discs have been imaged by using a coronagraph. This is an attachment to the telescope blocking the

light from the star. Figure [2.3]shows a sample of a direct image of a disc. The image shows the edge

3Infrared light is the light with wavelength between visible light (=~ 750nm) and radio waves (=~ 1mm).
4Ophiuchus-Scorpius and Taurus Auriga are the closest star forming regions to the earth with a distance of ~ 140 pc|Ghez
et al.|(1993).

6 2 Introduction

on view of a star surrounded by a protoplanetary disc in the orion nebula, ~ 400 pc away.

Figure 2.3: Edge on view of a star surrounded by a protoplanetary disc in the Orion Nebula. The star can not

be seen, because it is shadowed by the disc. (Cut from image by Bally & Throop (n.d.))

The observational data are usually fitted to theoretical models to determine specific properties of
the discs. In general, the results cover big ranges of values. This can have various reasons. First,
different observations are in general not in the same wavelength, which makes it difficult to compare
these observations, because in different wavelengths different matter is observed (see Sec. @) When
the observed discs differ in age, it is crucial to determine the age correctly, before the observations can
be compared. Furthermore, the environment of the discs can influence their properties, as described
in the following. And finally, the results depend on the used theoretical model.

Fitting a surface-density profile of the form

E(r)ecr ? (2.4)

produced values for p in general in the range [0 : 1](Williams & Cieza, 2011)), but also values p < 0
and p > 1 have been found (Isella et al., 2009} [Andrews & Williams|, 2007). Masses were found
mainly from 1073 to 10~' M, (Williams & Cieza, [2011), but here as well other values have been

found. In general younger discs seam to be more massive.

Usually the surface-density profile declines rapidly at some outer cutoff radius. For example
cente & Alves| (2005) have measured the diameters of protoplanetary disc silhouettes against the
bright orion nebula. They found radii from rgjsc = 50 to rgisc = 200 AU. Rarely also discs with
rdise > 1000 AU were observed (Williams & Ciezal, [201T)).

The typical disc thickness has been found to be ~ 10% of the discs diameter (Vicente & Alves,
2005).

Surface-temperature 7 profiles of the form

Tyo<r 4 (2.5)

were fitted to the data. Beckwith et al.|(1990) found g = 0.5 and [Lynden-Bell & Pringle|(1974) found
q = 3/4 far from the star. Temperatures have been found from 10 K at ~ 100 AU up to 2000 K at the
discs midplane in the inner regions (see 1998b), for an overview).

2.3 The evolution of protoplanetary discs 7

2.3 The evolution of protoplanetary discs

100 er T T T T T T T T
-8 B EF .
TR 2
LD |5 &8 A
3|9 or®e
= |2 a9
& ZIES —
&5
80 H %Z -
—
L A o
— T2
L = i
—_ __Q"
3¢ - £ 3 .
5 <
L = =
= N
() L 8 = <
3 &
o - =z (3] A
e 3 s
4 40 — N —
- r <) !
a Z w8
3 L = o 4
A & RS
© N < @
L 13 2 i
20 — Z = _]
L 2 E & o
o -
e o © 5 .
L Py ;o IN | LZ.’
i F hd 1 T b -
)
O — > —
=~
I 1 I I | I I 1 I | 1 | 1

o
(93}
—
o

Age (Myr)

Figure 2.4: Fraction of stars with near-infrared disc emission as a function of the age of the stellar group they
belong to. Open circles and solid symbols represent the disc frequency for stars in the T Tauri
(TTS) mass range (K5 or later), derived from different wavelength data. For further description see
original paper. (Image and text by Hernandez et al.,[2008))

Observations of young stars in star clusters of different age showed that the proportion of stars with
IR excess, indicating a disc, decreases with time (Haisch et al.l |2001; |Hernandez et al., [2008)) (see
Fig.[2.4). In clusters of an age of 5 million years (Myr) and above most systems seem to be disc-less.
There are in principle two possible reasons for this observations:

The first reason is, that the discs materials properties change in a way, that it stops radiating in
observable wavelengths. The SED of the radiation emitted by the discs depends basically on the
temperature and size of the dust grains. Thus the observation depend on the chosen wavelength and
these properties of the dust. When a specific wavelength was chosen for an observation and the dust
does not emit light of this wavelength because it is to cold, or the grains are to big, the disc can
not be observed. As mentioned before, observations in wavelengths around 0.1um are not possible,
because no instruments are available for this wavelength regime. Because km-sized planetesimals
emit mainly in this wavelengths, it is not possible to observe them directly. That means, when the
dust grains become larger due to coagulation processes, the IR radiation declines even though the disc
as a whole remains (see Sec.[2.3.1)). This can lead to the effect, that existing disc material is no longer

observable.

8 2 Introduction

The second reason is, that the protoplanetary discs are destroyed by the removal of their material.

Several processes are known to play a role in this disc destruction.

Viscous disc spreading

The material from the disc can be accreted by the star with a smaller rate than in the protostar phase.
Because the disc is rotating, this can only happen, when the inward migrating matter looses angular
momentum. Due to general angular momentum conservation it can only be transfered to other ma-
terial. A good candidate for causing the outward transport of angular momentum is viscosity. The
faster rotating inner material is decelerated by friction, which accelerates the slower outer material.
The decelerated inner material moves finally into the star, the accelerated outer material moves to a

higher orbit. By this means the disc spreads outward (Pringlel | 1981)).

Photoevaporation

As the protostar increases its mass, its luminosity increases as well. When the star is luminous enough
the inner regions of the disc are heated so much, that the gas molecules can reach escape velocity and
leave the potential well of the system. This process is called photoevaporation. For very luminous
stars this can lead to the destruction of the disc from the inside outwards.

As well, the radiation from another nearby luminous star can cause the destruction of the disc by

photoevaporation from the outside inwards.

Tidal stripping

Another process is the removal of disc material by encounters with other stars (Pfalzner et al., 20006).
When the star-disc system is located in a star cluster, encounters with other stars are likely to occur.
When an encounter is close enough and the perturber mass is high enough part of the disc material
can become unbound and leave the system. Strong or repeated encounters can even lead to a complete

destruction of the disc.

2.3.1 Two planet formation scenarios

Besides the above mentioned processes, the formation of planetesimals or planets lead to a removal of
observable disc material. While the gas and dust can be observed by its IR radiation the planetesimals
are too large, to be observable in the IR and too small, to be observable in the optical. Even the bigger
and much more massive planets are often difficult to observe.

Two competing planet formation scenarios were proposed.

The core accretion model

The material of a protoplanetary disc consists of ~ 99% of gas and ~ 1% of dust. Initially the dust

grains are of um-size. They feel the pressure of the gas and move with it. These dust grains can

2.3 The evolution of protoplanetary discs 9

collide and stick together and form bigger grains. When the grains are of metre-size, they no longer
feel the pressure of the gas and move independent of it. Now the dust grains can sediment to the
midplane of the disc. In the so increased grain density in the midplane, the collision-rate of the grains
is much higher (see top-left image of Fig.[2.5). When the “grains” have grown to 10-kilometre-sized
planetesimals their gravitational attraction is strong enough to boost the growth (see [Boss, |[1998a)
(see top-right image of Fig.[2.5). When these growing “planetary embryos” reach a certain mass after
approximately 10° years (= 10Mgamm), they start accreting the discs gas to form gas giant planets
(see bottom-left image of Fig. . This phase lasts for approximately 107 years (Boss, |1998a).
When there is enough disc gas left at the positions of the planet embryos in this phase the resulting
planets can have up to several Myypiter. At any time of this process, not accreted planetesimals can be

gravitationally slingshot out of the system (see bottom-right image of Fig. [2.5).

Central star

C

Dust disk

Orbiting dust grains accrete Planetesimals grow, moving in
into "planetesimals" through near-coplanar orbits, to form
nongravitational forces. "planetary embryos."

Gas-giant planets accrete gas Gas-giant planets scatter or
envelopes before disk gas accrete remaining planetesimals
disappears. and embryos.

Figure 2.5: Schematic view of the core accretion model for planet formation. (Rearranged from image by
NASA/ESA and Feild, A.|[2003)

As already mentioned this process lasts for 107 years. On the other hand, the disc lifetime is
only 5-10° years (see Sec. 2.3). So there seems to be a problem with the time-scale. Also there
are processes reducing the planet formation efficiency. Small colliding dust grains do not only stick
together. Depending on the relative velocity, they can also destroy each other increasing the time
needed to form planetesimals. While very small dust grains move with the gas and kilometre-sized

rocks barely feel the drag, the metre-sized clumps should be influenced by the gas. This should cause

10 2 Introduction

the rapid migration of these clumps into the central star. Additionally, the forming planets can produce
gaps in the disc which stops the inflow of gas (see [Boss, [1998a). Therefore, the material available in
the inner part of the disc can be insufficient to form gas giant planets. However, gas giant planets are

indeed observed within 1 AU from their star.

The gravitational instability model

The second planet formation scenario is based on the possible gravitational instability of the discs.

Toomre| (1964)) derived a criterion for the stability of a self-gravitating disc as

6Q
0= TGy’

(2.6)

where c; is the sound speed, € the local angular frequency, and G the gravitational constant and ¥ the
local surface density. This is basically a modified Jeans criterion considering the stabilisation by the
rotation. The disc is stable against gravitational collapse for Q > 1. Since the sound speed is ¢, o< /T,
the disc can be destabilised by decrease of temperature or increase of the surface density X.

Fluctuations in the disc, for example caused by spiral arms, can lead to the formation of dense
clumps. When the gas is cold enough (Q < 1), the gas becomes gravitationally bound and the clump
is stable (see top-right image of Fig. [2.6). This clump can accrete disc material very fast (within
some 103 years (Boss, [1998a))). Inside the clump, the dust grains can settle to the centre and form a
compact core (see bottom-left image of Fig. [2.6). The clump can shrink by converting gravitational
energy into thermal energy, which is radiated away. While the clump, now called planetary embryo,
accretes more disc material, it can clean its orbit (see bottom-right image of Fig. [2.6).

Various investigations were performed to determine the influence of cooling on the stability of the
discs (Gammie, 2001} |[Lodato & Rice, 2005; Rice et al., 2003} 2005). Usually cooling is modelled
by the introduction of a cooling-time 7.,0, Which is related to the local angular frequency Q by the
cooling parameter 8 = Qt.q0 (e.g. Lodato & Clarke, 2011). For 3, values were found between 3 and
13 (see [Meru & Bate, [2011). In this model, the discs become gravitationally unstable as a natural
outcome of the cooling process. Because in the inner regions of the disc viscous heating balances the
cooling and the equilibrium temperature is too high, the discs tend to fragment at the outer regions
at some 10 AU. In this model, stable clumps can form outside 50 AU, but most extrasolar giant
planets found so far, were found close to their central star (< 5 AU). This can not be explained by
this model. On the other hand, since planets can not be formed out of some 10 AU from the central
star according to the core accretion model (e.g. Levison & Stewart, 2001) the gravitational instability
model is currently the only explanation at hand for planets found that far away from their host star.

Alternatively to the evolution into instability by cooling, some groups (Clarke et al., 2008} |[Forgan
& Ricel 2009) investigated recently, whether star disc encounters play a role in the fragmentation of
protoplanetary discs. While |Clarke et al.| (2008) found no significant influence of the encounter on

the susceptibility to fragment, Forgan & Rice| (2009) found, that encounters rather stabilise the discs

2.3 The evolution of protoplanetary discs 11

with compressive and shock heating, than triggering the fragmentation.

A protoplanetary disk of gas Gravitational disk instabilities
and dust forms around a form a clump of gas that be-
young star. comes a self-gravitating planet.

. /Gas giant

- ¢

Dust grains coagulate and The planet sweeps out a wide
sediment to the center of the gap as it continues to feed on
protoplanet, forming a core. gas in the disk.

Figure 2.6: Schematic view of the gravitational instability model for planet formation. (Rearranged from image
by NASA/ESA and Feild, A} 2003)

12

2 Introduction

3 Smoothed Particle Hydrodynamics

Many processes described in the previous chapter can be reduced to the dynamics of a self-gravitating
gas. The numerical solution of the gravitational forces will be described in Sec. [.1] In this chapter

the SPH method will be described. It is used as fluid-solver in the code developed in this work.

Discretisation of the fluid-equations

In general, fluid flows are described by the Navier-Stokes-equation

where P is the pressure, p the density and v the velocity vector. The first part of the right hand side of
the equation is the acceleration caused by a pressure-gradient, the second part is the acceleration due

to convection. Neglecting the convective part, for the following example, one obtains,

d vp
oo 3.1)
ot P

This equation has to be discretised to solve it numerically. The classical discretisation is done at the
intersection points of a regular grid (see Fig.[3.1]a)). The x-component of the velocity at time ¢ + Ar

is then given by

Pir,jo) = Pi,i(0)
i i(t+Ar) = — ’ At 3.2

vxvlJ(+) < 2Axp(t) Y ()
where the subscripts i and j enumerate the grid-points in x- and y-direction and Ax is the x-distance
between two grid-points.

Analog the continuity equation

dp
— =V
ot pv
is discretised as
41, (1) = Vo (1 i1 (B) = vyt
pl7j(t+At) — pl](t) <vxvl+l7j()2A:xvl 17J() + v)‘l7]+1()2A;}ﬁl7] 1()> At. (3‘3)

The SPH method was introduced as an alternative approach to discretise the fluid-equations by
Gingold & Monaghan| (1977) and Lucy| (1977)). Here, not the space is discretised, but the flow itself

14 3 Smoothed Particle Hydrodynamics

Figure 3.1: To types of discretisation of the expansion of a stream into a vacuum. a) shows the discretisation
with a regular grid, as used by many numerical fluid solvers. At each point density and velocity is
evaluated according to Eq.[32]and[3-3] At the red points density and velocity have to be evaluated
without any gain. b) shows the corresponding SPH-discretisation. Here not the space, but the flow
is discretised.

(see Fig. 3.1]b)). Each interpolation point is linked to a specific amount of mass. By this means,
pseudoparticles are defined. This makes SPH a particle based fluid method, where the particles have
intrinsic properties like density, temperature etc. The mass associated with the particle is distributed
around the interpolation point with a function called "kernel’. During the temporal evolution, these
interpolation points and their associated density 'clouds’ move with the fluid, what makes SPH a
Lagrangian method. Because the interpolation points represent a fixed amount of mass, the resolution
automatically increases at denser regions. This intrinsic resolution adaptiveness and the fact, that
it does not depend on a mesh like Eulerian fluid methods, makes SPH ideal for the simulation of
gas flows with strong density gradients and free-surface flows. Another advantage over grid based
fluid-solver is, that mass is conserved exactly.

Additionally, this Lagrangian fluid dynamics method seems the natural counterpart of an also La-
grangian n-body method used for gravitation (see Sec.[d.T)). Both methods determine the acceleration

for the particles and then these particles are moved according to a given integration scheme.

3.1 A basic SPH formulation

The here presented derivation of the fundamental equations will basically follow the work of
(1992)). It should be mentioned that there exist a mathematically more consistent version (see
'Springel & Hernquist, 2002)), but here the more-widely used version by Monaghan is used. First a

basic set of equations needed for the SPH method will be derived, then some improvements will be

presented.

3.1 A basic SPH formulation 15

3.1.1 The SPH principle
The central idea of SPH is that any function f(x) can be expressed with the delta-distribution as

f(x):/f(x')a(x—x’)dx'.

In three dimensions, one can similarly define a function A of the position vector r in the following

way

Alr) = /A(r')a(r—).
Defining a function W, in the following called kernel, with the property

lim W (r, 1) = 8(x),

where the smoothing length / is a parameter determining the width of the kernel, one can write
A(r)=lim [A(r NW(r—r' h)dr'.
For a small enough 4 follows

A(r) ~ /A(r’)W(r—r’,h)d3r’. (3.4)

With the relation between mass m and density p dm = p(r)d>r one finally obtains

A !

A(r) = / (r/)W(r— v’ h)dm'.
p(r’)

With this equation it is possible to interpolate any scalar field A at the location r with the value of this

field at different locations r’. For later computational usage, the integral has to be discretised:

mp
Ag=Y —AW(r,—ry,h). (3.5)

b Pb
Here the subscripts a denotes a specific interpolation point and b enumerates other interpolation
points. From (3.3) one can see, that an arbitrary property A, of the interpolation point a can be
computed by summing up the properties A, of the points b weighted with their masses m;, densities

pp and the function W.

16 3 Smoothed Particle Hydrodynamics

3.1.2 Density and acceleration

With p(r) as function A(r), one obtains an expression for the density at point a as
Pa =Y myW(ry—rp,h). (3.6)
b
Furthermore, the gradient of a function A can be expressed as

VA.=Y 224, VW (r, — 1y, h). (3.7)
b Pn
Until here, the derivation was straight forward and the obtained equations are very generic. For later
application, the arbitrary function A has to be identified with physical quantities.

The accelerations a of the interpolation points is given by the Navier-Stokes-equation as

vp
a=——.
Joj
Straight forward transformations leads to
1 mp,
a,=——Y —PB,VW(r,—rp,h). (3.8)
© Pa ; p, PV e)

As pointed out by [Monaghan| (1992)), this equation does not guarantee the conservation of linear and
angular momentum. To avoid this, it is better to symmetrize the formula in a way, that the properties

of both interpolation points a and b are taken into account:

V(P):Vp_pvl)
P

p p?
vp P \%
LYy () +pYP (3.9)
p P P
Together with (3.7) follows
VP mp, Pb Pu mp
a,=—) =) —VW(,—rp,h)+—=) —ppVW(r,—rp,h
‘ (P>a zb“Pbe (k.) pgzb:pb (ra)
P, P
b pb pu
This gives the force term
P, P
Fo=—mgy m (§+“2> VW (r,—rp,h). (3.10)
b pb pa

Using (3.10) instead of (3.8) improves the momentum conservation (see Monaghan, [1992; Monaghan
& Lattanziol |1985). Because VW (r, — rp,h) = —VW (r; — 1y, h), the use of both pressures P, and P,

3.1 A basic SPH formulation 17

in (3.10) guarantees, that the forces are symmetric:
Fop=—Fp a

3.1.3 Thermal energy equation

With the equations|3.6/and it is already possible to implement a very basic fluid solver. However,
these equations do not guarantee energy conservation.

When two interpolation points move towards each other with contrary velocities, they both slow
down because their kinetic energy is transformed into thermal energy. The thermal energy u is defined
in terms of pressure, density and velocity as

du P

— =——Vv.

dt p
This can be transformed in a similar way as (3.9):

Vpv=pVv+vVp

oy VoW -wp
P
du F,
> = —p—gzb:mb(vb—va)VW(ra—rb,h). (3.11)

Here only the pressure of interpolation point a is taken into account. Again, for better conservation

behaviour, another equation has to be derived:

$*=—me%wqmwwM—mm. (3.12)

Here only the pressure of interpolation point b is taken into account. By averaging (3.11) and (3.12))
one obtains the symmetric energy-equation as
du P,

1 P,
aw_ Za —v,)V — : :
- 2§m<ﬁ+%>m Vo) VW (r, — 1, h) (3.13)

18 3 Smoothed Particle Hydrodynamics

3.1.4 Summary

The conservation laws of mass, momentum and energy are now given by the set of equations (3.6)), (3.10)

and (3.13), here recalled for an overview. This set of equations are the basis of the SPH method.

Pa = ZmbW(l’a — I’b,h)
b

P, P,
F,= —maZmb <1; + 2) VW (r, —rp,h)
b Py, P

a

du Pb

1 P,
7:_72,” —+— | (vp = Vo) VW (r, —1p,h
dr 2b b<p3 p}g)(b) (b)

3.2 Improvements to the basic formulation

The basic SPH equations derived above can already be used for the simulation of fluids. In the
following an improvement for the application to shock waves will be derived. Additionally, a method

will be introduced, to reduce the computation-time fundamentally.

3.2.1 Artificial viscosity

SPH, as well as many other numerical solver for differential equations, has limited capability to
resolve strong gradients as occurring for example in shocks. Unlike in sound waves, the physical
properties, like temperature, pressure or density, change in shocks very fast and by huge amounts. Due
to the Lagrangian nature of SPH, in shock waves it is possible that the interpolation points approach
very close and even penetrate each other. Since the interpolation points represent macroscopic matter
flows, this is unphysical and should not happen. To avoid this, an artificial viscosity as introduced by
Monaghan & Gingold (1983)) is used in most SPH-codes. As the term “artificial” already implies, this
is not strictly analytical derived from the physical viscosity in fluids, but more an empirical approach.

To include this artificial viscosity, the term

in (3.10) and (3.13) is replaced by

3.2 Improvements to the basic formulation 19

with
P 2
acub‘p{’zzz+ﬁuah vVr< 0
Hab - “
0 otherwise
and
n hVab -
ab = 3 5>
rab + n

where o, B and 7 are dimensionless parameters, ¢, is the mean sound speed and p,, the mean
density.

This viscosity is only non zero, if the two particles move towards each other. In practice, the
parameters ¢ and 3 are usually chosen as @ =~ 1 and B ~ 2«. 7 is just needed to prevent singularities
when r,; is close to zero and is usually set to 0.1/ (see Monaghan, [1992).

Integrating this improvement one obtains

P, P,
Fo=—mgY m (’; + = +HN,,) VW (r, —rp,h) (3.14)
b pb pa
du 1 P, P,
— = “4+741 — Vo) VW (g —1p,h). 1
I 2;mb<pg+p§+ Nb> (Vo —Va) VW (rs — 15, h) (3.15)

3.2.2 The kernel

Up to this point, to calculate a property of an interpolation point the properties of the N — 1 other
interpolation points have to be summed up, which results in an overall computation cost of & (NZ).
However, by using a function W as kernel, with }1!132) W (r,h) = &(r), the majority of the points will
contribute almost nothing to the properties of point a. The reason is that the distance is large and
so the kernel for this pair of points very small. One can benefit from this by using a kernel function
with compact support!. One such kernel is a spline of the form first used by Monaghan & Lattanzio
(1985):

2 A3 ,
1=5(5) +3(7)" if 0<(f) <1

Wirh) =0 ¢ 4= ()7 if 1< (5) <2
0 otherwise,

! A function with compact support is zero everywhere except a small range.

20 3 Smoothed Particle Hydrodynamics

where
2
i 1D
_ 10
0= 7m2 2D
1

to fulfil the normalisation criterion [W (r,h)d%r = 1. This kernel has compact support, its second

oo

derivative is continuous and the dominant error term in the integral interpolant is ¢(h?) (Monaghan,
1992).

0.7 . .

- splihe kernel
/ N\ gaussian kernel

05 | 1
/// \\\

04 | 1
03 .
// \
02 | /]
/
/ \
0.1 } // \\\ N
O I _ 1 1 1 ~ I
2 -1 0 1 2

x/h

Figure 3.2: Spline kernel for 1D compared to normalised Gaussian.

Figure shows a comparison of the spline kernel with a Gaussian with same normalisation.
While the exact form of the kernel is of minor importance, it is crucial that it is smooth close to the
maximum and where it approaches zero. Both is given for the Gaussian and the spline kernel. For
|x| > 2h the spline kernel equals zero.

Monaghan| (2005) noted that various other kernels have been studied but none produced signifi-
cantly better results than this one.

Because the kernel is a polynomial, the first derivative can be easily derived as

(Ct)rif 0<(f) <1
A\ 2
vWwrh)=cg 2CG) 5 1<y <2

0 otherwise,

3.2 Improvements to the basic formulation 21

with r = |r| and o as noted above. With this kernel the computation time per interpolation point is
linear in the number of interpolation points within the 2/ smoothing-sphere which is a lot better than
7 (N 2) for good choices of A.

3.2.3 Choosing the neighbours

By using this spline kernel the sums in the SPH-formulas change from ZZV to Zg <<N_where N is the
number of interpolation points in the region around a where W (r, —rp, h) # 0. In principle, there are

two methods to specify N:

* By choosing one / for all interpolation points. Then N is the number of interpolation points
inside a sphere with radius 24 around interpolation point a. In this case, the algorithm for
finding the interaction partners can be very easy because the interpolation points can be sorted
in equal-sized boxes and then only the neighbouring boxes of an interpolation point have to be
searched for neighbours. On the other hand, this would destroy the resolution adaptiveness and

can result in long computation times if the interpolation points cluster.

* By choosing # individually for each interpolation point for example in a way that there is always
the same mass inside the kernel or that pi® = constant. The first would be the same as choosing

a fixed N for all interpolation points. This would reduce the runtime of the force summation to
o (N-N).

Even though the SPH-formulas have already been symmetrised above, there is still an error source
in the way how the neighbouring interpolation points of a are determined during the computation.

Using the N closest interpolation points as neighbours for a corresponds to a criterion like
b neighbour of a, if dist(a,b) < 2h(a), (3.16)

where h(a) is here defined by the distance to the furthest of the N neighbours.

As shown in Fig. it is likely in strong density gradients, that a particle a is neighbour of a
particle b but b is not a neighbour of particle a. That means that the force from b to a is taken into
account, but not vice versa. This corrupts the momentum conservation achieved with the derivation
of the symmetric force equation (3.10) in case of strong density gradients.

To avoid this problem another criterion for the interaction partners of interpolation point a is

needed:
b neighbour of a, if dist(a,b) < max(2h(a),2h(D)). (3.17)

This has to be considered when searching the interaction partners.

22 3 Smoothed Particle Hydrodynamics

<y

Figure 3.3: Example of a particle distribution where a symmetric neighbour criterion is needed to avoid viola-
tion of momentum conservation.

3.3 A resolution requirement

In simulations of protoplanetary discs, the discs heated for example by viscosity, are typically cooled
by assuming a cooling-time #.o0;, Which is related to the local dynamical time Q by the cooling
parameter B = Qt o0 (e.g. Lodato & Clarke, 2011). In the last years several numerical investigations
tried to find reasonable values for 3. Recent investigations by Lodato & Clarke| (2011) showed that
some results obtained by SPH simulations of fragmenting protoplanetary discs can be reinterpreted
in a way that the effects found in the simulations are caused by insufficient resolution. For a disc with

density p

5= D exp (55)

nz) = expl —=— |,

P VarH P\ 2m?

where X is the previously used surface-density, z is the coordinate perpendicular to the discs plain and

H is the so called scale height|Williams & Ciezal (2011)), physical fragmentation can occur when

h
— <1,
H

where £ is the SPH smoothing length. Together with the Toomre stability parameter

csQ

0= or

where ¢ is the sound speed and G the gravitational constant|{Toomre| (1964),

m(r) = ¥ /Mitar

3.3 A resolution requirement 23

and

ph3 = nmp7

where 1) is a parameter for SPH and m;, the mass of one particle according to m, = Mgisc /N, a criterion

for the minimal particle number needed to ensure sufficient resolution can be constructed

W n 3/2 2 1/2
H”(m(r)) <n2Q2N) '

For a power-law surface-density with index p = 1 this can be evaluated at the outer edge to obtain

=03 ()

where ¢ = Myisc / Mistar-
To get a vertical resolution at the outer edge of the disc of H /5 for a disc with ¢ = 0.1 approximately
850000 particles are needed. For H /10 nearly 7 - 10° particles are needed.

To simulate such a disc with this resolution a fast simulation code is needed.

24

3 Smoothed Particle Hydrodynamics

4 The tree-code PEPC

While thermodynamic forces are of short-range character, gravitational or coulomb forces with their
1 /r-potential are long-range interactions. This means that a computational solution of these forces
can not be calculated by just taking the properties of the direct environment into account but has
to take the whole simulation volume into account. The equations of motion for N gravitationally
interacting bodies are given by the N coupled differential equations of the form

di;

i~ = F ’
m di (1‘1..N)

where m; is the mass of body i, r; its position vector and F is the force caused by all particles at
their positions r; . To solve these equations numerically, for each body N — 1 forces have to be
calculated, which leads to a & (Nz) computation-time. This limits the manageable total number of
bodies (or particles) on today’s fastest supercomputers due to limited computation resources. When
many time-steps have to be calculated, only a few 100000 particles can be treated. To simulate more
particles - or the same amount of particles in a more efficient way - a better-scaling method is needed.
Among several such methods which all abstract in some way from the individual particle properties
to a coarser level, tree-codes, as introduced by Barnes & Hut| (1986), are often used for the numerical

solution of gravitational interactions in astrophysical simulations.

4.1 Tree-codes in general

In computer sciences a tree is a special type of graph. Graphs are data-structures often used in
computer science to organise a set of elements (nodes). The nodes are connected pairwise with edges
often denoting a relation between the two nodes they connect (see Fig. a). When there is always
only one path from each node to all other nodes, this graph is a tree (see Fig.[d.1]c). When the edges
denote directed relations (like a < b, a > b, a ’is child of” b, a ’contains’ b), the tree is a directed tree
(see Fig.[.1]d). In this case the nodes can be rearranged hierarchically (see Fig. {.T]e).

Tree-codes use trees as data-structures to store and access information about a particle-distribution.
The tree-nodes are spatial subsets of the whole simulation box and the edges denote the relation
’a contains b’. The tree-nodes are linked to information about the particle-distribution inside the
simulation volume they represent.

To build the tree a box enclosing the whole simulation volume is identified with the root of the

tree and then the box is consecutively subdivided into smaller child boxes, which are linked with the

26 4 The tree-code PEPC

D

Figure 4.1: Samples for graphs and trees: a) graph b) directed graph c) tree d) directed tree)
Nodes from d) rearranged.

parent box. If one box contains only one particle, the subdivision is stopped and the particle is linked
to this box. This can be done by dividing the dimensions in a rotating manner or by dividing each
dimension at every step. The first would result in a binary-tree, the second in a binary-, quad- or
oct-tree depending on the dimensionality of the problem. For a 2D sample of a particle distribution

with associated quad-tree see Fig.[d.2]

RERIENE '
ul —7 N
LT bl A

Figure 4.2: 2D particle distribution with corresponding quad-tree. The root of the tree is the full simulation-box
and the subdivision is stopped, when there is only one particle in a cell. At every level, the order of
the nodes is bottom-left, bottom-right, top-left, top-right.

For each box, pseudoparticles are constructed representing the particle-distribution inside the box.
In the simplest case, these pseudoparticles have the total mass of all particles in the box and are
located at their centre of mass.

Then for the force computation particle-pseudoparticle interactions are taken into account rather
than particle-particle interactions. To decide which pseudoparticle to use for the interaction, a crite-

rion is constructed based on the distance d between particle and pseudoparticle and the size s of the

4.1 Tree-codes in general 27

box associated with the pseudoparticle
s/d <0, 4.1)

where 0 is a dimensionless parameter which has to be chosen adequately (e.g. [Pfalzner & Gibbon,
1996). 0 = 0 results in a direct particle-particle force summation with & (N 2) run-time. For 8 > 0,
only for close interactions highly resolved pseudoparticles are used, for distant interactions a few
big pseudoparticles are used. This reduces the computational effort for the force-summation to an
O (NlogN) run-time.

From a physical point of view, the total mass pseudoparticle at the centre of mass associated with
a tree-node is the first order of the multipole expansion of the gravitational potential caused by the

particles in the box.

Figure 4.3: Interaction of particle j with a pseudoparticle. R is the vector from the particle j to the centre of
mass of the pseudoparticle. r; is the vector from a particle contributing to the pseudoparticle to its
centre of mass.

For a particle j, the gravitational potential caused by the particles in a tree-node is given by

ZQD —r;),

where R is the vector from the particle to the centre of mass of the particles in the tree-node and r; is
the vector from the particle i to the centre of mass (see Fig. 4.3). For a 1/r potential, the multipole
expansion is given by

a 1 Jd d 1
Zml +rllaa =

with the masses m; of the particles in the tree-node (e.g. [Pfalzner & Gibbonl [1996)). The terms in the
square brackets are, from left to right, the monopole, the dipole and the quadrupole moment. For a

pure gravitational tree-code, the dipole moment vanishes. The force on particle j can then be obtained

28 4 The tree-code PEPC

with

d

F;(R) = —mj

d(R).

The multipole moments of a tree-node only depend on the mass distribution inside the node. This
makes it possible to pre-compute the multipole moments. This is important, because the multipoles
are used very often and pre-computing them once saves a lot of computation time. To calculate the
multipole moments of a bigger tree-node, the multipole moments of its child-nodes can be used (see
Pfalzner & Gibbonl |{1996).

In more sophisticated tree-codes, higher multipole moments of the potential are used to reduce
errors in the force summation instead of reducing 6. This needs more memory but is often faster.
Because the computation time of a multipole moment of order' [has an & (12) dependence (see
Pfalzner & Gibbon, [1996), a good compromise between the highest used multipole moment and the
choice of 6 has to be found. In practice 6 < 0.6 is often sufficient. In PEPC (Pretty Efficient Coulomb

Solver) the multipoles up to the quadrupole term are implemented.

4.2 Parallel tree code - PEPC

4.2.1 Parallel computing

To simulate large physical problems in a reasonable (wall) time, there are recently three possible ways.
At first, there are the classical supercomputers. These are basically standard computer components
like CPUs and main memory with some kind of fast interconnect. The problem is then split into small
pieces and computed on the CPUs in parallel. The available supercomputers belong in principle to

two different types.

Shared-memory computers

The first type are so called shared-memory computers. They have several CPUs connected in a way,
that they can access the same memory. Such the processes running in parallel on the CPUs can work
on the same data simultaneously. Recent shared-memory supercomputers like the SGI ALTIX UV
provide up to 4096 CPUs accessing up to 32 TB of shared main memory (PSC, n.d.). Programs for
these types of supercomputers are easier to parallelise because all processes have the same data. It
is possible to parallelise loops over big arrays in a way, that the parallel processes work on different
regions of the arrays, e.g. process 1 of p processes computes array entry 1 to N/p, process 2 computes
array entry N/p+ 1 to 2N/p and so on. With modern programming techniques like OpenMP the

parallelisation of the most expensive loops in the program can normally be achieved within hours.

'The monopole moment has [= 0, the dipole moments / = 1, and so on.

4.2 Parallel tree code - PEPC 29

Distributed-memory computers

The other type are the distributed-memory computer. These are in principle several shared-memory
computers, called nodes, connected through a very fast network. The processes running on one nodes
can only access the data in their local shared-memory and if they need information from a process
running on another node they have to retrieve this information via the network. One widely used
programming technique for this type of computers is MPI (Message Passing Interface). It provides
functions to send data, e.g. particle coordinates, to another process. The programmer has to take care
of the correct collection of the data from the local arrays of the source process, as well as to include
the received data into the local arrays of the target process. Because the bandwidth of the network
communication is limited and it is affected by latency, every communication has to be well-considered
and optimised. On the other hand the local memory of the nodes is limited, so that it is in general not
possible to communicate all information to all processes. Hence it can be quite challenging to write a
program, that scales good on huge distributed-memory computers. But reward for the higher effort it

a program, that in principle can benefit from a higher number of processors and more memory.

Hardware accelerators

The alternative to supercomputers for fast computing is the use of hardware accelerators like those
developed from recent high-end graphic-cards. These cards have their own memory and a processor
capable of computing large sets of data in parallel. When a problem is small enough to fit in the
memory of an accelerator and the computational expensive parts of the problem can be transformed
in a way that it can be handled by the accelerator, the performance gain can be very large. When the
problem does not fit into the memory of one accelerator it is possible to combine the accelerators with
the classical shared- or distributed-memory supercomputers. In this case data exchange between two
accelerators via the shared-memory or via the network can be quite time consuming compared to the
computation time. This can nullify the performance gain.

The type of code developed in this work requires a lot of communication (see Sec.[5.3.3). Therefore

it is expected that this code would benefit from accelerator cards.

Scaling

When a program runs on a parallel computer with p processes in parallel, it is in general not exactly
p-times faster. As first described by |Amdahl| (1967) the speedup of a parallel program is limited by
these serial components. The speedup of a program running on a distributed-memory computer is
often limited by the communication. Additionally, the run-time of most algorithms does not increase
linearly with problem size. The dependence of the program run-time on the problem size or number

of parallel processes is called scaling.

30 4 The tree-code PEPC

4.2.2 Parallel tree code - PEPC

During this work the parallel tree-code PEPC was extended with a SPH-module for hydrodynamics.
PEPC is parallelised with MPI for distributed memory computers, In the following the parts most
important for this work will be described in detail.

PEPC is a so-called hashed-oct-tree based tree-code written by |Gibbon| (2003)) for plasma-simula-
tions. It follows the implementation described by Warren & Salmon| (1995)) and is parallelised with
MPI to optimise it for distributed-memory-computers. As noted in|Gibbon et al.|(2010a)) it is capable
of simulating more than 10% particles with up to ~ 8000 parallel processes. However, recent changes
made PEPC capable of running on all 73728 compute-nodes (with 294912 cores) of Jugene (see
Winkel et al,[2011)). Because Jugene is still the supercomputer with the highest number of nodes in
the world?, this makes PEPC the highest scaling tree-code. In Fig. the scaling of the latest version
for homogeneous particle distributions with different particle numbers N can be seen. The solid lines
represent the total run-times. A linear decrease of run-time with increasing number of cores is ideal.

Note the near ideal decrease of run-time with increasing number of cores of the blue solid line, almost

up to the full machine.

—— total N = 2048 x 106
=a= tree traversal
e branch exchange

N=8%1F

N=D0.125x 10°

wall clock time (s)

[
[JUGENE - 294,912 c::res]—) v

1071
“‘III
02)i
.\““u
\\“AII
102 B gt
1 4 16 64 256 1k 4k 16k 64k 256k

number of cores

Figure 4.4: Runtime of PEPC for simulations of homogeneous particle distributions with different particle num-
bers N. The solid lines represent the total run-times. A linear decrease of run-time with increasing
number of cores is ideal. Note the near ideal scaling for huge particle numbers (blue line). (Image

courtesy of Winkel et al.||2011)

For any parallel program on a distributed memory machine, it is necessary to distribute the data

somehow to the processes. To reduce communication to a minimum, frequently used date should be

2For the full list of the fastest computers seehttp://www.top500.0rgl

http://www.top500.org

4.2 Parallel tree code - PEPC 31

kept together. For particles distributed homogeneously in the simulation box this means, that the data
of one process preferentially cover a contiguous space region. The distribution of simulated space

across the main-memory of the processors is called domain decomposition.

4.2.3 Domain decomposition and tree construction

To identify particles and tree-nodes over process-boundaries, unique identifier are needed, provided

by coordinate-based keys.

Key construction

To construct these keys, first the maximum extension of the three dimensions boxsize is determined.
With a maximum number of ny,, tree-levels, the bisection of every dimension per level leads to the
box-length® s on the finest level with s = boxsize /2"« . The finest level can be filled with up to
2Mer tree-nodes per dimension. Then the three floating-point coordinates of the particles are trans-
formed into three integers giving the number of finest-level-box-lengths s which fit between the lower

simulation-box-border and the particle with
ix = (x —xmin) /s,

where xmin is the minimum x-coordinate of all particles (iy and iz likewise). From the binary repre-
sentations of these integers, the oct-tree can now be derived with simple arithmetic operations because
each of these integers already has the form of a one-dimensional binary tree: If the most significant
bit* equals 0, the particle is located in the left half of the simulation-box, if it equals 1 the particle is
located in the right half. If the n-th most significant bit equals O the particle is located in the left half
of the n-th level box, if it equals 1 the particle is located in the right half of that box.

Figure [4.5] shows how in the 2D-case a quad-tree is constructed from the integer-coordinates. The
x-coordinate of a column can be found by reading the digits written under this column from the outer
to the inner one as a binary number. For example, for the column with the red 2 one finds 1010,, where
the subscript denotes the numeral system. As denoted above, this equals the number of columns left
of that box, here 101¢. The leading 1 (in binary notation) tells that the box lies in the right half of the
top-level box. Similarly one obtains 1001, for the y-coordinate of this box, which corresponds to 9.
Here the leading 1 tells that the box lies in the upper half of the top level box. Enumerating the four
quarter-boxes on every level with O to 3, one can transform the bits of the integer-coordinates directly
into the digit sequence called key k via

n},—l

k=p+ Y 4(2-bit(iy, j) + bit (i, j)), 4.2)
j=0

3The edge length of a tree-node.
4The most significant bit is the bit with the highest value.

32

4 The tree-code PEPC

= (1111,=15,, 1111,= 15,,)
2 3 2—-—!
2 S°
213 A
112 o
0 23 o
01 = (1010,= 10,,, 1001,= 9,,)
= *k*w;/*z (bit by bit)
—
o Cell: 11000110,
0 1 = = 3012,
© o + placeholder bit
o Cell: 1011000001010,
Oll‘oll 0|1‘0|1 011‘011 0|1‘0|1 = 13012,
ol1lo0l1l0l1|0l1
0 1 0 1
0 1

(0000,= 0,,, 0000,= 0,,)

Figure 4.5: Sketch for the key construction from integer coordinates. The box with the red 2 is the 11" box
from left and the 10! box from bottom. Because counting starts from 0 here, the box has the integer
coordinates (10,9) as shown in the sketch (the subscript denote the numeral system). The bits from
these coordinates binary representation are then interleaved to construct the cells key.

where the function bit (i, j) selects the j-th bit of the integer coordinate i, n, is the total number of
bits (here 4) and p is a placeholder to distinguish between the keys 00, and 000, which are written as
100, and 1000, with the placeholder bit (see (Gibbon et al., 2010b). So for the red 2, one obtains the
key k= 1011000001010, = 130124. Conversely one can learn from that key that the box is a fourth-
level box (five digits minus one for the placeholder), in the top-level-box it is located in the top-right
quarter (enumerated with 3), in this quarter it is located in the bottom-left quarter (enumerated with 0)
and so on.
For the 3D-code, the keys are computed as
ny—1

k=p+ Y 8/(4-bit(iy,j)+2-bit(iy, j) + bit (ix, j)).-
j=0

4.3)

By this means a single integer-key can be constructed from the three floating-point coordinates to
identify each particle. In PEPC the three 8-byte floating-point coordinates are transformed into one
8-byte integer. Without the placeholder-bit, 63 bits of the integer are used for position-information
instead of the 3 - 64 = 192 bits of the three real numbers. Because only 21 of these 63 bits can be used
per dimension, the spatial resolution of the key-space is limited to 22! ~2-10° finest-level-boxes per
dimension within the simulation-box. Therefore, the maximum particle-density contrast is limited by

the code-design.

4.2 Parallel tree code - PEPC 33

Domain decomposition and hashing

For the domain-decomposition, the particles are sorted according to the integer-values of the keys
(see e.g. |Gibbon et al., [2010b). This 1D particle distribution is divided into p (p is the number of
processes) equal-load chunks by weighting the particles with their computational effort, determined
in the previous time-step. Each of these particle chunks is assigned to one process and the particles
and their properties are sent to their associated processes. Figure[.6|shows the resulting space-filling-

curve in case of a fully filled finest level and the assignation to five domains.

a) [P Te el el ool o el ele]e]elelale]> b)

oooooooooooooooo

1
1

0

oooooooooooooooo

1

oooooooooooooooo

0

0

1

1

0

0

1

0

0101010101010101
0

01010101/01010101
60/1/0/1/0/ 1/ 01
0 1 0 1
0 1

Figure 4.6: Quad-tree with particles filling the finest tree-level (a) and corresponding space-filling-curve (b).
The colours denote five different domains over which the curve is distributed.

In general, the keys of particles relatively close to each other differ mainly in the least significant
bits. The keys of particles from opposite parts of the whole simulation box differ mainly in the most
significant bits. For example, all particles in the red domain in Fig. [4.6] have 11, as most significant
bits. This provides a method for rapid access of the information associated with a tree-node. Because
the particles of one domain are in general relatively close to each other (not true for all particles of
the green domain in Fig. {1.6), their keys are equal in the most significant bits. By removing part of
the most significant bits the keys can be mapped to memory addresses within a previously allocated
memory area. With this technique, a tree-node can be accessed very quickly compared to an indirect
addressing scheme. Because of this method, called "hashing’, and the subdivision of a tree-node into

eight child-nodes, this type of code is called *hashed-oct-tree’.

Tree construction

After the domain decomposition, each process constructs its local tree. During this process a parent-
node’s key is obtained by shifting the child-node’s key by the number of dimension bits in the direc-
tion of the least significant bit. Contrary, the child-node’s keys can be constructed from the parent-
node’s key by attaching the binary representation of the numbers 0 — 7. At each node, information

about the present child-nodes are stored. If a tree-node contains only one particle this is attached to

34 4 The tree-code PEPC

Figure 4.7: The tree from Fig. where each node has a link to the “next” node. Following the red line each
node is visited exactly once.

the node, else the node is subdivided into eight child-nodes (see |Gibbon et al.,2010b). Additionally,
at each node a link to the “next” node is stored to line up the nodes (see Fig.[d.7).

Then the multipole moments are computed for each local tree-node.

4.2.4 Tree-walk and force summation

When the preparations are done, for each local particle a list of pseudoparticles fulfilling the criterion
(4.1)) is built for the force-summation. Because these lists can contain several hundreds of pseudopar-
ticles, storing the lists for all local particles can be very memory-consuming. To avoid this problem,
the present version of PEPC creates interaction-lists for chunks of local particles at a time. After the
force summation for each chunk the interaction-lists for the next chunk of particles is built and stored
in the same memory area. Because the routine building the interaction-lists *walks’ through the tree
from node to node, basically according to the order shown in Fig. this routine is called tree-walk.

After computing the forces for all particles, the particles’ velocities and positions are advanced by
the integrator. Here a leapfrog integrator is used. This is a second order accurate integration scheme,
which conserves momentum and energy accurate. Here the velocity is evaluated for a point in time

between two coordinate evaluations.

Xipl =X+ Ui 1)2- A

Uit1)2 = Ui—1)2 +a(x;) - At,

where x is the coordinate, u the velocity, a the acceleration and the subscript denotes the time-step.
After the coordinates and velocities have been updated, the code proceeds with the next time-step.
For a simplified work scheme of PEPC see Lst. @.1]

4.3 The tree-walk in detail 35

1 | for each time—step

2 do domain decomposition

3 build tree

4 compute multipole moments
5

6 for each chunk

7 find pseudoparticles for gravitational interaction
8 sum forces

9 end chunks

10

11 compute new velocities

12 compute new positions

13 |end time—step

Listing 4.1: Simplified work scheme of PEPC

4.3 The tree-walk in detail

The newly implemented neighbour-search algorithm for SPH is based on PEPCs tree-walk. The
neighbour search itself will be described later, but first the tree-walk will be described here in more
detail.

Because PEPC is designed for distributed-memory computers, the particles needed for the force
summation are not necessarily stored in the memory of the process doing the actual force summation.
Thus, this information has to be retrieved from another process and copied into the local tree. In a
typical run, a lot of multipole moments have to be imported by a process, so that this communication
is very sensitive to network latency. To minimise the impact on the total runtime, PEPC uses a latency-
hiding scheme (see |Warren & Salmon, |1993) for searching and retrieving the information needed for
the force evaluation. It is based on an alternating execution of communication code and the local
search (see Lst. [4.2)).

The interaction lists for long-range interactions can become quite long depending on the parti-
cle distribution and the parameter 6 chosen for the acceptance criterion (Eq. @d.I). Therefore, the
interaction-lists are not built for all particles at the same time. For a given number of particles, an
array is filled with the indexes of the actual particles to be processed. The entries of this array named
pshort (see Lst. and Fig. point to the actual particle coordinates, masses etc. For example
the x-coordinate of the first particle in this list can now be accessed with x (pshort (1)).

At the beginning of a local walk a separate array called plist is filled with the indexes of
the pshort array. Now, the x-coordinate of the first particle in this list can be accessed with
x (pshort (plist (1))) (see Lst.d.2]and Fig.[4.8§).

For all particles i in p1ist the local walk walks through the tree searching for interaction partners

36

4 The tree-code PEPC

L]

X pshort plist
1 x(1) 1 231 1
'l I ! 2 232 |« | 2
| | |
I I 3 233 |« 3
231| x(231) ? 4 | 234 ¥ | |
232| x(232) 5 235 ! !
/ B 36 Local search
233 x(233) / between communication
234| x(234) / 7 237
235 x(235) / 1 1
236| x(236) / ! !
237| x(237)
Tree-walk for a chunk of particles

Figure 4.8: PEPCs tree-walk uses arrays containing indexes of other arrays for the book-keeping. Here the
most important arrays are shown. x is an array containing for example the x-coordinates of the
particles but could be another array containing velocities or masses as well. This array is global for
the whole tree-code. The red rectangle denotes the whole tree-walk for one chunk of particles. The
green rectangle represents the inner loop (see Lst. @

for the particle pshort (plist (i)) starting at the root-node and and following the order formerly

described (see Fig. .7). In the innermost loop for all particles in plist only one node is checked.

When a tree-node fulfils the acceptance criterion (@.1)), it is added to the interaction listof plist (1)

otherwise in the next iteration the walk proceeds with the next node. When the walk reaches a tree-

node where the acceptance criterion is not fulfilled and tries to access a child-node which is not

locally present, this child-node is appended to a nodes-to-get’-list for later retrieval and the particle

is removed from plist. This is repeated until plist is empty, which means that the walk cannot

proceed without node-information from other processes.

This is acquired via the following steps:

1. All processes notify the other processes they need information from.

2. Buffers are created for receiving requests from other processes.

3. The requests are collected by the owner-process and sent to the requesting process.

4. Buffers are created for receiving requested data.

5. The data requested by the other processes are packed and sent.

6. The processes wait for incoming data.

7. When data are received in the buffers they are integrated into the local trees.

After the communication is finished for all particles in pshort, the walk status is tested. If

the walk is not finished for a particle it is added to the new plist. Then the walk is resumed

with plist, which will become shorter and shorter every iteration. It is important to note that the

4.3 The tree-walk in detail

interaction lists are associated with pshort, so plist only contains pointers to the unfinished

particles.

When the walk is finished for all particles, p1ist does not contain any more particles. Then for

all particles in pshort, pseudoparticles for the gravitational interaction are stored in lists. These

lists are used by the force summation. All pseudoparticles with their multipole information needed

for this force summation for particles of the actual chunk have already been imported to the local tree.

For a simplified work scheme of the tree-walk see Lst. 4.2]

1| IN: pshort ! indices of actual particles in local arrays
2 | IN: npshort = #pshort

3 maxactive = MPL MAX(npshort)

4 plist = indices in pshort

5 nlist = #plist

6

7 DO WHILE (maxactive > 0)

8 DO WHILE (nlist >0)

9 DO i=1,nlist

10 local_index = pshort(plist(i))

11

12 IF (mac ok) use this node

13 ELSE resolve node

14 END IF

15

16 END DO

17 plist = indices of not finished particles in pshort
18 nlist = #plist

19 END DO

20 get remote data

21 plist = indices of not finished particles in pshort
22 nlist = #plist

23 maxactive = MPL. MAX(nlist)

24 END DO

Listing 4.2: Simplified work scheme of PEPCs tree-walk.

38

4 The tree-code PEPC

5 PEPC with SPH

In this work, the existing hierarchical tree-code PEPC has been extended to include the treatment of a
hydrodynamical component with a smoothed particle hydrodynamics algorithm. When combining a
tree-code with SPH, it is natural to identify the particles used by the tree-code with the interpolation
points used for SPH. In the tree-code, the particles already have coordinates x, y, z, velocities vy, vy,
v, and masses m. As SPH-particles contain as well intrinsic properties like density p and temperature
T or energy u, additional information have to be introduced. Depending on how the code is designed,
a smoothing-length 4 - fixed or individual - is required. Together with the force F or acceleration a

affecting the particles, the temperature change has to be returned for later integration.

5.1 Smoothed Particle Hydrodynamics equations

Before implementing the equations derived in Chap. [3| some more adaptions are needed. To simulate
gas-discs around stars, temperature is more important than internal energy, because it is used to com-
pute pressure and, as output, can be compared to observations. Therefore, the temperature is used as
one of the independent variables. The SPH-equations have to be adjusted for explicit dependence on
temperature rather than other physical quantities.

From the equation of state for an ideal gas follows

P=L T, (5.1)
myy

where P is the pressure, p is the density, my, is the mass of one molecule of the gas, kp is the
Boltzmann constant and 7' the temperature. Combining this with (3.14)), one obtains
kgTp, | kpl,

4
mpypPy MpPa

F,= —maZmb <
b

+Hab) VW (ry —rp,h). (5.2)

With the energy per particle with Z degrees of freedom of u = %kBT and the relation between heat

capacity ratio y and the degrees of freedom of y = %, one obtains the relation between temperature

T and energy per particle u as

kBT = (}/— l)u.

40 5 PEPC with SPH

Together with (3.15)) and the transformation above, one obtains for the temperature change

T, n 1, I
mypPa mupPp kg

1
T —(y— l)izb:mb (> (Vo —Va)VW (rs — 13, h). (5.3)

Equation [3.6] for the density can be implemented as derived earlier.

5.2 Implementation details

The SPH-routines are implemented as a module in PEPC which can be included easily into the rest
of the code. The entire SPH-part is basically started by just one function call inside PEPC. However,
some changes to parts of the existing code were still necessary: Particle properties like density, tem-
perature and temperature change have to be included. Also several new physical constants have be
introduced.

The additional program components were implemented as shown in Lst. (for comparison see
Lst. 4.1). The gravitational force summation results in an array with the forces for all particles. In
the SPH-force-summation, the thermal forces are just added to the gravitational forces in that array.
Additionally, the temperature changes are written to another array. These arrays are passed back to
the integrators for the particle coordinates and the temperature.

Since the equations and need the density p, it is computed first, which however needs the

neighbours of the particles to be determined first. This results in the necessary sequence:
1. search neighbours
2. compute density
3. compute force

The temperature change is computed together with the force, as properties already calculated for the
force can be reused. Because PEPC is a distributed-memory program, the computed density of a
particle has to be sent to all processes which have requested this particle during the neighbour search.
This has necessarily to be done between the density computation and the force computation which
results in the flow seen in Lst.

The summations according to the equations [3.6] [5.2] and [5.3] for a fixed number of neighbours has
a complexity of & (N - N,,). The most expensive part of the SPH-method is the neighbour-search. In
the simulation code developed in this work, a neighbour-search exploiting the already present oct-tree

is used with a complexity of & (NlogN).

5.3 The neighbour search 41

1 | for each time—step

2 do domain decomposition
3 build tree

4 compute multipole moments
5

6 for each chunk

7 find pseudoparticles for gravitational interaction
8 sum forces

9 end chunks

10 BEGIN SPH

11

12 for each chunk

13 search neighbours

14 (validate neighbours)
15 compute density

16 end chunks

17

18 update remote density
19

20 for each chunk

21 compute sph force

22 end chunks

23

24 END SPH

25 compute new velocities

26 compute new positions

27 compute new temperature
28 |end time—step

Listing 5.1: Simplified work scheme of PEPC with SPH

5.3 The neighbour search

The implemented neighbour-search algorithm follows the idea described by Warren & Salmon|(1995).

It corresponds basically to a modified version of the tree-walk as described in Sec.[4.3]

42 5 PEPC with SPH
1 | search_neighbours_of_particle_i(r) {

2

3 walk through tree from root to leaves

4 1) particles within r put on next neighbour list
5 2) ignore nodes/particles outside r

6 3) for nodes with overlap with r

7 if children locally present, resolve

8 else get children from remote process

9 end

10 |}

Listing 5.2: The first version of the neighbour search algorithm. It is just capable of finding neighbour particles

within a fixed radius around the particle i.

The implementation was done in several steps. The first step is to find all particles within a given

radius around a particle (see Lst.[5.2).

Figure 5.1: Sketch for the neighbour acceptance criterion. The node j (here illustrated as red cube) can contain

neighbour particles for the particle i inside the blue sphere, if the sphere with radius b,/2 around
the centre of the cube and the blue sphere overlap. This is the case, when (5.4) is fulfilled.

For every particle i, the algorithm walks through the tree from the root down to the leaves as

described before. The acceptance criterion for a node is changed from the original node-size-distance-

ratio (Eq. [.1)) to a criterion taking the distance and both smoothing lengths into account. Here only

particles within the radius 2/, which is here equal for all particles, are accepted as neighbours, because

the kernel vanishes outside (see Sec. [3.2.2). This means that a node j with body diagonal b, can

contain potential neighbour particles for particle i, if

dij < 2h+by/2, 5.4

where d; ; is the distance between particle i and geometrical centre of node j (see Fig. @ In this

5.3 The neighbour search 43

case, the child-nodes have to be checked with the same criterion. Like in the normal tree-walk, the
non-local data has to be requested from other processes. If a node is a leaf and the acceptance criterion
is positive, the associated particle is added to the neighbour list of particle i.

The validity of the implementation was tested as described in Sec.[5.3.1] Figure[5.2]shows a sample

particle distribution where the neighbours of one particle were removed for better contrast.

Figure 5.2: Visualisation of the results of the next neighbour search with 100000 particles distributed in a two
dimensional disc with a r—2 density run with 32 processes. This is a zoom on the inner part. The
different colours represent the process domains. In the big white circle in the centre are no particles
to avoid to high particle densities caused by the 2 density distribution. In the other white circle
the next neighbours within the radius 2/ around the particle in the centre of this circle were removed
to have a better contrast.

44 5 PEPC with SPH

1 | while there are particles with less than N_nn found next neighbours
2 search_neighbours_of_particle_i(r_i)

3

4 if found next neighbours < N_nn

5 increase r_i for this particle

6 put particle on list to search neighbours again

7 end

8 | end

9

10 | for all particles

11 while n_found > N _nn

12 move furthest particle to the end of the list

13 shorten list by one

14 end

15

16 move furthest particle to the end of the list

17 new search radius r_i is 1.1 % distance to this particle
18 |end

Listing 5.3: Modified neighbour search to find exactly Ny, neighbours.

Next the search was refined to obtain exactly N, neighbours for a particle i. This is done by first
searching neighbours within a sphere with a given radius r; around particle i. For the first time-step,
these radii are set to an initial value specified in the configuration file. For all other time-steps, the
value determined in the previous time-step is used. After all particles in this sphere are found, they
are counted to check whether at least N,,, neighbours are found. If not, the search radius is increased
by 10% for this particle and the search is repeated (see Lst. [5.3)).

When the number of located neighbours Ny fulfils Ny > N,,, the furthest neighbour is moved to
the end of the list. While Ny > N,,, the list is then shortened by one and the next furthest particle
moved to the end of the list, until exactly N,,, neighbours are left. When this is finished the furthest
among the N, neighbours is at the end of the list. The separation between this furthest neighbour and
particle 7 is used as the new individual search radius for particle i during the next time-step.

This version is basically one more loop around the first version, that is executed while there are
still particles with less than N,, found neighbours.

To test the SPH-code, it was necessary to make simulations of a periodic medium possible. Switches
in the configuration-file allow one, two or three dimensional periodicity or open boundaries' to be se-
lected. The periodic boundaries have been implemented by modifying the neighbour search and

the integrator. When the particles are moved, it is tested whether the particles are still inside the

IThe periodicities of all three dimensions can be chosen individually. However, because in case of reduced dimensionality
first the x-, then the y- and then the z-dimension is used, the periodicity has to be enabled according to the choice of
dimensionality.

5.3 The neighbour search 45

simulation-box. Therefore, the minimum x-, y- and z-coordinate and the x-, y- and z-box-length have
to be specified in the configuration-file. When a particles coordinate is smaller (bigger) than the corre-
sponding minimum (maximum) coordinate the particle is shifted by the box-length so that it is inside

the box again.

° ° ° ° ° °
° ° ° ° ° .
° ° ° ° ° ® ° ° °
° ° °
° o® ° o® ° °®
° ° ° ° ° °
o o ° PR Y ° o o °
° ° °
° ° °
° ° ° b ° °
° ° . . ° . 5
o ° i o ° g o ° i o
<]
° ° o
° ° M
° S}
. ° ° Q
o o * o o >
o ° °
° ° °
° ° °
° ® A °
° ° °
° o® ° o® ° o®
° © ° © ° °
o o ® o o ® o o °
° ° °
° ° °
\ J

x box-length

Figure 5.3: To find all neighbours of the red particle in the circle in case of 2D-periodicity also the virtually
shifted simulation boxes (gray particles) have to be tested.

In the case of a periodic boundary problem, the neighbour search has to look for neighbouring
particles also in simulation boxes virtually shifted by the box-lengths (see Fig.[5.3). In 1D 3 boxes, in
2D 9 boxes, and in 3D 27 boxes respectively have to be searched for neighbours. Therefore, according
to the periodicity, shift-vectors for the virtual simulation boxes are constructed®. Then for all shift-
vectors the overlap of search-sphere and particle-coordinate shifted by the shift-vector is tested. In
case a neighbour is found, the neighbours node-number and the shift-vector are stored in a list. The
particles are again virtually shifted by the shift-vectors when density and forces are computed.

The search in all virtual boxes is realised as an additional loop over all copies of the simulation box.
Searching for neighbours in up to 27 copies of the simulation box needs up to 27 times the normal
run-time. This is very slow and could be solved way better, but since it is just for tests and not for real
simulations this is not necessary here.

A visualisation of the neighbours of a particle for a 3D particle distribution with 3D-periodicity
can be found in Fig.[5.4]

The final neighbour search algorithm is implemented as shown in Lst. [5.4, The loop over the
periodic copies is the innermost loop and done for every single comparison. Here lies potential
for improvement. When a comparison is negative for one periodic copy of a node and positive for

another one, the test for the child-nodes is only necessary for the children of that copy where the test

2The first shift-vector is (0,0,0) for the real simulation-box, another one could be (- x-box-length, 0, z-box-length).

46 5 PEPC with SPH

Figure 5.4: Neighbours (red) of a particle (green) in a three dimensional periodic simulation-volume. Because
the green particle is located in one corner of the simulation box and the periodicity in all three
dimensions is activated, the neighbours lie in all corners.

was positive. This will be improved in the next version.

5.3

The neighbour search 47

O 00 9 O Lt AW N~

LW W LW LW W LW LW N N N NV NN DN = = == = = = s
AN L A WD R, O O 0NN R WD R, O 0O 0NN R W N = O

37
38
39
40

IN: pshort ! indices of actual particles in local arrays

IN: npshort = #pshort

not_enough_nn = indices in pshort, n_not_enough_nn = #not_enough_nn
plist = indices in not_enough_nn, nlist = #plist
max_n_not_enough_nn = MPIL MAX(n_not_enough_nn)
DO WHILE (max_n_not_enough_nn > 0)

maxactive = MPL. MAX(n_not_enough_nn)

DO WHILE (maxactive > 0)
DO WHILE (nlist >0)
DO i=1,nlist

local_index = pshort(not_enough_nn(plist(1)))
DO periodic_shift = 1, num_periodic_shifts

IF (mac ok)
IF (node is particle) use this particle
ELSE resolve node
END IF

ELSE ignore this node

END IF

END DO ! periodic

END DO ! do nlist
plist = indices of not finished particles in not_enough_nn
nlist = #plist

END DO ! while nlist

get remote data

plist = indices of not finished particles in not_enough_nn

nlist = #plist

maxactive = MPL MAX(nlist)

END DO ! maxactive

not_enough_nn = indices of particles with less than nn neighbours
in pshort
n_not_enough_nn = # not_enough_nn
plist = indices in not_enough_nn, nlist = #plist
max_n_not_enough_nn = MPL MAX(n_not_enough_nn)
END DO ! not enough

Listing 5.4: The final neighbour search algorithm with periodicity.

48 5 PEPC with SPH

The previously described reiteration of the neighbour search for particles with Ny < Ny, is re-
alised similar to the loops over a subset of the particle chunks in the original tree-walk. One more
array containing indexes of another array is introduced called not_enough_nn with its length
n_not_enough_nn. The entries of this array point to the entries of pshort (see Fig.[5.5). All
particles with pshort (not_enough_nn (i)), with 1 between 1 and n_not_enough_nn ful-
fil Ny < Ny,. For example, during the inner loop, the coordinates of the first particle can be accessed

with x (pshort (not_enough_nn (plist (1)))).

X pshort not enough nn plist
[[xo] 1 [231 1 |2 1 |1 [i]
! ! 2 | 232 N 2 | 3 2 | 3 /
1 1 | L
I ! 3 | 233 |4 3 |5 ’e - 3 |4
231| x(231) / 4 | 234 2 | 6 » | |
32| x(232) / 5 | 235 ¥ 5 | 7 ' '

/ B 36 ¥ Local search
233 x(233) / " ! I | between communication
234| x(234) / 7 237 ! 1
235| x(235) / . 0 Loop over particles with not enough
236| x(236) / i ! found neighbours
237 x(237)

Neighbour search for a chunk of particles

| |

Figure 5.5: Also the new implemented neighbour search algorithm uses arrays containing indexes of other
arrays for the book-keeping. Here the most important arrays are shown. x is an array containing
for example the x-coordinates of the particles but could be another array containing velocities or
masses as well. This array is global for the whole tree-code. The red rectangle denotes the whole
neighbour search for one chunk of particles. The blue rectangle shows the reiteration of particles
with Ny < Nyy,. The green rectangle represents the inner loop (see Lst. Ef[)

As shown in Lst. @ the array not_enough_nn is filled with all particles in line 4. In the
’maxactive’-loop from line 10 to line 34, the search is performed with fixed search radii for all par-
ticles in not_enough_nn. In line 36 not__enough_nn is filled again with the particles fulfilling
Ny < Ny,. For those particles the search radius is increased as described before. Then the search is

started again for these particles.

5.3.1 Validation of the neighbour search

To check the correctness of the neighbour lists for all particles, a validation subroutine was imple-
mented. This routine computes all N — 1 distances between one particle and all others and stores them
in a list. This list is then sorted and the closest N, neighbours are compared to the results from the
tree-based neighbour search.

Storing the distances from all particles to all other particles needs & (NZ) memory. For huge
particles numbers this is not possible. Therefore, the validation is performed in chunks similar to the
neighbour search. All processes send their particles to all other processes one after the other. The

processes compute the distances for all particles in the actual chunk to the received remote particles.

5.3 The neighbour search 49

The distances are sorted and only the closest N,, neighbours are stored. When the distances to the
particles from the next process are computed, these N, closest neighbours are appended to the list
before sorting it. In the end the closest N,, neighbours among all particles are known.

The result from this routine is compared to the result from the tree-based neighbour search and the
number of differences, if any, is written out to a log-file. With this routine, the validation of periodic
neighbour lists is also possible.

Final tests of the periodic neighbour search with random particle distributions with up to 10° par-

ticles and all combinations of dimensionalities and periodicities worked without errors.

5.3.2 Symmetric neighbour search

As already noted above (see Sec.[3.2.3)), the neighbours have to be chosen according to the symmetric
neighbour criterion for a better momentum conservation. Since the density computation is
done with the neighbours based on simple neighbour criterion (3.16)), this makes another neighbour
search necessary just before the force computation. To implement the symmetric criterion, the tree-

construction has to be modified. To allow the comparison with
max(hi, h;),

the maximum /% beneath each node has to be stored as a node-property - a refinement beyond the

scope of this work which will be included in future.
5.3.3 Scaling

An analytical estimate

Assuming that the density is constant within the whole simulation volume, one can estimate the
number of particles to be fetched by one process (Breslaul |2010). A total number of particles N in
the volume V result in a mean-density of p = N/V. If simulated on p processes, the average volume

of one domain is V,, =V /p. Assuming that the domain is spherical, its radius can be expressed as

3nv, 3
Rdomain = 4 .

With the mean-density, the radius of the sphere containing all N, next neighbours of a particle can

3N\ ¥
T'search = 4mp .

As shown in Fig.[5.6] the search spheres of all particles close to the domain border form a shell

be written as

around the domain, in which next neighbours of particles from the domain can be found. All these

50 5 PEPC with SPH

R1 Radius of the domain

R2 Radius of the volume
containing all neighbours
for particles of that domain

r Radius of the search sphere

Figure 5.6: Sketch for the estimation. The inner big circle with the radius R1 represents one process domain. If
there are many particles near the domain border, the search spheres with radius r of these particles
overlap and fill the area between the two bigger circles. All particles in this area have to be fetched
from other processes.

particles have to be fetched during the next neighbour search and stored in the local memory. Their

number can be calculated as
News — 4 3 53
fetch — gnp (R+r) —R
1

NyN? N2 N 3
_ <27 nn2 +27 nn +N3n))
p p

It is easy to see that this leads to the asymptotic complexities
ONm), ONP), O(p~*F), (5.5)

for large N,;,, N and p respectively.

In case of a fixed number of particles per process N,, one finds
Niewh = (27NN, +2IN;,N, +N,,) :
which leads to the complexities
ONw), ON;). (5.6)

However, this is only for the communication effort and the memory space needed locally to store
the fetched particles. Additionally requested memory can lead to problems when simulating with
too few particles per process, because the size of the locally allocated memory is initially calculated
depending on the number of local particles. As shown in Tab. [5.1] the fraction of additional memory

needed, increases with decreasing particles per process. This can lead to out-of-memory problems

5.3 The neighbour search 51

even though the memory is almost unused.

Nun | Ny Nretch | Nreten|[%]
50 | 10000 | 6000 | 61
50 | 50000 | 17000 | 33
50 | 200000 | 40000 | 20

Table 5.1: Estimated number of particles to fetch from remote processes depending on the number of particles
per process.

Benchmarks

For benchmarking the new algorithm, several sets of time measurements have been performed each
with one configuration parameter varying. In each case the time needed by the neighbour search
algorithm for the local walk (’nn walk’), the time to fetch data from other processes ('nn fetch’) and
the time needed by the rest of the program (’rest’) was measured.

The measurements were performed without periodicity because the periodic search is known to be

slow and is just for test scenarios and not for real simulations.

100 : T T T T T T
.g —V‘=—:%ﬁfxf:::::::::;i:if;iﬁ,f,,,,,,?fffff —
5 10}]
Q
=
E
e
[>~]
nn walk +
nn fetch
rest *
1 1 1 1 1 1 1 1
80 160 240 320 400 560 800
number of processes

Figure 5.7: Weak scaling on Juropa using 150000 particles per process and 50 next neighbours to find. The
data were fitted with functions of the form f(x) = alog (bx) + ¢, where c is a constant overhead, b
is an overhead per particle and a is the cost-factor for each particle.

* For the weak scaling, the number of particles per process was fixed to 150000 and the number

of neighbours required set to 50. The number of processes was varied from 80 to 800, which

52

5 PEPC with SPH

20 : T T T T
S nn walk +
nn fetch
rest *
oc x—0:96
oc x—0-79
— 18 - oc x—0-87
Z L
£ 8 r
g Ty
L
=
ERR
= 4l
3+ .
2 1 1 1 1 1

80 160 240 320 400

number of processes

Figure 5.8: Strong scaling on Juropa using 12 M particles and 50 next neighbours to find.

results in 1.2 - 107 to 1.2 - 10% particles in total. For the log-log plot of the absolute run-
time see Fig. Due to the theoretical &(NlogN) scaling of the tree-algorithm, the weak
scaling, where N = N,, - p, should be close to &'(log (N, p)). Therefore the data were fitted with
functions of the form f(x) = alog (bx)+c. Fits with a function of the form f(x) < x*, according
to what is expected from the analytical estimate (Eq. [5.6) resulted in values for a below 0.25.
That means that the time for the communication is here not dominated by the number of fetched

particles.

For the strong scaling, the total number of particles was fixed to 1.2 - 107 and the number
of neighbours set to 50. The number of processes was varied from 80 to 400, which results
in 30000 to 150000 particles per process. For the log-log plot of the absolute run-time see
Fig. Ideal strong scaling means that if the number of processes is multiplied by a factor a
the run-time is divided by a, which results in a p~! dependence of the run-time, where p is the
number of processes. As can be seen in the figure, the local next neighbour search ('nn walk’)
scales almost ideal with a p~°% dependence. The ’nn fetch’, which is the time for the next

neighbour communication, scales like p~%79. This is close to the estimated p—2/3 (Eq. .

For the N scaling, the number of processes was fixed to 240 and the number of neighbours set to
50. The total number of particles was varied from 6 - 10° to 3.6 - 107, which results in 25000
to 150000 particles per process. For the log-log plot of the absolute run-time see Fig. The
fitted functions show that all three measured program parts scale like &'(log (N,p)), which is

in excellent agreement with the expectations.

5.3 The neighbour search 53

100 N T T T T T

absolute runtime [s]

nn walk +
nn fetch
rest M
1 1 1 1 1 1
4 6 8 10 20 40 60

number of particles [mio]

Figure 5.9: N scaling on Juropa using 240 processes and 50 next neighbours to find. The data were fitted with
functions of the form f(x) = axlog (x) 4+ b, where b is a constant overhead and a is the cost-factor
for each particle.

* For the N,, scaling, the number of particles per process was fixed to 50000 and the number of
processes set to 80. The number of next neighbours to find was varied from 25 to 150. For the
log-log plot of the absolute run-time see Fig. According to the expected linear dependence
on N, (Eq. and Eq. the data were fitted with functions of the form f(x) = ax”. There
is a good agreement for the ’nn fetch’-time. The walk is even better. The run-time increase of

the rest of the program is probably due to a fuller hash-table.

54

5 PEPC with SPH

absolute runtime [s]

100

10 |

0.1

nn walk
nn fetch

rest
oc x0.76

oc 096

10

number of next neighbours

100

Figure 5.10: Ny, scaling on Juropa using 50000 particles per process and 80 processes.

6 Testing the new code

Several tests were performed to verify the correctness of the code. Among them are one-dimensional
sound-waves propagating in a periodic simulation box. After these tests succeeded, further features
like the artificial viscosity were implemented. Its validity was tested with one-dimensional shock
problems. Finally, a test involving gravity and pressure was performed to show that both components

are working correctly together.

Generating start configurations

Before starting the test series, one has to solve the problem of generating start conditions. There are in
principle two methods to setup a density distribution with SPH. The first one is to distribute particles
with different masses equally-spaced in the simulation box. This is straight forward but destroys the
intrinsic resolution adaptiveness. The other method is to use equal-mass particles and distribute them
with variable distances. This method is more complex but the resolution adaptiveness is preserved.
Therefore, this method is preferred.

For one-dimensional setups the density p(x) can be integrated over the whole length L of the

simulation box to obtain the mass M in the box

M= / p(x)dx.
L
For a given number of particles N in the simulation box the mass of an individual particle m is given
by m =M /N. To place the first particles in the simulation box, the density-function p(x) is integrated
again with the upper limit x; fulfilling

The particle is then placed in the middle between 0 and x;. For the other particles i the integration has
to fulfil

Xi

/p(x)dx: i-m.

0

The particle i is placed in the middle between x; and x;_;. With this method start-conditions for any

56 6 Testing the new code

density-distribution in one dimension p(x) can be obtained.

6.1 1D sound wave

t=0 t=0.3 t=1
1001 1001
a 1000 1000 ¥
999 999
ge_gg T T T T] ge_gg - T T T T - ge_gg T T T -
a e- - 2e-06 - - 2e-
S o Bl O 0 me
< -2e-06 - -2e-06 -2e-06 W
-4e-06]]]] -1 -4e-06]]]] -1 -4e-06]
0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1
X X X

Figure 6.1: 1D sound-wave propagating in a periodic simulation box of length L = 1. The plots show the
simulated density and the deviation from the analytical density fort =0, =0.3 and ¢t = 1.

In fluids, sound waves are small density disturbances that obey the (here one-dimensional) wave-
equation
2 2
9P _ 29 6.1)
or? dax?’ '
where c¢ is the sound-speed. Besides the wave equation, sound waves have to satisfy the one-

dimensional Euler equations, which are given by

)
ot ox ’
o _ 1or
ot pox

with the velocity v of the medium and the pressure P. For small disturbances, p; << pg, and with
the equation of state for an ideal gas P = kgT p (here the mass of the molecules m,, is included in kp)

they can be transformed to

ap av
§ - _p0$a
v . kBT 8p

5_ Po ox’

6.2 1D sound wave in 2D volume 57

It can be easily shown that

p(x,t) = po + py sin (271% + coz) 6.2)
_ P X
v(x,t) = CPo sin <27r}L + a)t) (6.3)

solve these equations and the wave-equation (6.1), with ¢ = @A /27 and ¢*> = kzT. Here is the
angular frequency and A the wave-length of the wave.

For the time ¢t = 0, the start parameters for a simulation are

p(x) = po+pisin (21), (6.4)
v(x) = —c% sin (27:%) 6.5)

The box-length L has to be chosen as a multiple of the wave-length A as L = kA, with the wave-
number k, because of the periodicity of the simulation box.

A one-dimensional wave was set up with wave-number k = 1. For the here performed tests, the
simulation box of length L = 1 contained N = 1000 particles (see Fig.[6.1] left plot). The sound-speed
was chosen as ¢ = 1. This setup was advanced with a time-step size of At = 0.0001 for a total time
t = 1. Figure shows a comparison of the results at t = 0.3 and ¢ = 1 together with the analytical
solutions (see Eq. [6.2). The upper plots show the densities obtained from the simulation. The lower
plots show the relative deviation from the analytical density (Ogim — Panalytic) /Psim- The relative error
increases with time, but after 10000 time-steps it is still below 4 - 10~% which is satisfying. Further
tests could measure the dependence of the error of the number of particles and the size of the time-

step.

6.2 1D sound wave in 2D volume

The sound wave test was also performed in a two-dimensional periodic simulation volume. Therefore,
the particles distributed along the x-axis from the previous test were replicated in y-direction to fill
the x-y-plane. The start velocities were obtained as in the one-dimensional case. Figure [6.2] shows
the results. The wave is only stable until # ~ 0.32, corresponding to time-step 32 for the time-step
size At = 0.01 in the case visualised here. With smaller time-steps the result is almost the same. This
problem is still not fully understood, but the wave collapses probably because the whole setup is very
sensitive to perturbations. The particle positions deviate from a regular lattice with spacing d only by
a factor of 0.001d.

However, the code presented here is not designed for solving exact problems. The stability of the

wave until ¢+ = 0.32 can be interpreted as a good result.

58

6 Testing the new code

t=20,0

.

D
<

t=0,38

b)

<

t=0,32

X

Figure 6.2: One-dimensional sound wave propagating in a two-dimensional periodic simulation volume. The
upper plots show the view on the x-y-plane. The colour denote the density, where blue is low and
red is high. The lower plots show the density versus x-coordinate, colours as in the upper plots.
The squares delimit the real simulation volume, the rest are shifted copies to show the periodicity.
The graphics show the initial conditions (a), for t = 0.32 (b), t = 0.38 (c) t = 0.48 (d). The wave

propagates in the negative x-direction.

6.3 1D shock-tubes

In the next step, it should be tested in how far the code is capable to resolve shocks. As already

mentioned, shocks occur, when the fluid properties, like temperature, density of pressure, change by

huge amounts. This results in large accelerations. The tests presented here were introduced by
(1978)). [Toro| (1997)) described them in detail and presented numerical solutions obtained with several

different solvers. [Springel (2010) and [Hubber et al.| (2011) performed similar tests with their SPH-
codes. In[Springel (2010) three different problems were investigated. In Tab.[6.T]the initial conditions

are shown. All three test problems are one dimensional, hence shock tubes, with a discontinuity in

density, pressure or velocity. Figure[6.3]shows the results from that paper.

Here only the problems 1 and 3 are used. Problem 1 is investigated with the two alternative setup

methods described in Sec. [6] Figure[6.4]shows the results. They can be compared to Fig.[6.3] Results

6.3 1D shock-tubes 59

Test pL VL P Pr VR Pr
Problem1 1.0 0.0 1.0 0.125 0.0 0.1
Problem2 1.0 -20 04 1.0 20 04
Problem3 1.0 00 1000 1.0 0.0 0.01

Table 6.1: Initial conditions for shock tests from Springel| (2010).

Problem 1 Problem 2 Problem 3
R S REmE ma s e BEBEEEEEEEE SRS R B S S s R
1.0 =", 4 10F 3 sE [E
08 '.. b 0.8_—. b 42_ : _;
p o6l 1 osf | [3 ! E
04l e 1 oafp ° fo 3 1L 3
«SPH particles #~ \ i /] p
0.2 - = 0.2 - N ° T 1E L el
Analytic solutions . L : . 1 E_\~\,,....,,........--'
[oX o) PP N BN SN R P I et SR R S R A B B
T e B R, REEREEE e s R P
1.0 . 2F s 00 aenn - 1
.-...‘t~. E '- 4 L 4
0.8 - 4 4 4 b Y L [
41 1F o E 15 - -
06 / b é] L
v J , of 1 wof J]
04l J . : i]
° RER= E 5-_ i
02] ! -
p] F] i]
0.0 P 3 P> 3 okt -
M I U BN BT S R N R R P A I B
LA LB B L L Y L B) L L OIS:IIIIIIIIIIIIIIIIII_ _|||||||||||||||||||_
i 1,000 P]
1.0 ="] 3 A []
< 0.4 fe = [(! i
) E ‘1 8o % . .
08 k!] E- E [kY]
3] 03F " = L]
A] E P31 e00f s . 1
P 06 A — E 1] r N 1
0al 1 %0 b1 a0 ’]
02f ooy % E /3 200p 1]
N L '
000w vt v vt v vy 0.0F vt S v] (o) P N B B W
0.0 0.2 04 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 04 0.6 0.8 1.0
x

Figure 6.3: Results of the 1D shock tests with SPH from Springel| (2010) for comparison.

for similar tests can for example be found in Hubber et al.| (2011]) or Merlin et al.| (2010)).

* Test la (see Fig.[6.4] left) corresponds to Problem 1 from Tab.[6.1] set up with equal mass parti-
cles distributed according to above described method. The initially higher pressure and density
in the left half of the box causes a shock wave propagating to the right and a rarefaction wave
propagating to the left. In the rarefaction front the particles are accelerated to the right, what

can be seen in the velocity plot. Due to the simple neighbour search which does not produce

60

6 Testing the new code

test 1a test 1b test 2
1 T T T T] l T T T T] 4 B T T ,.I T]
5 08F 4 0.8 K 1 3L i
g o6f 4 06 F 1 Ll |
% 04 =4 04 | -
02 F — 4 02} - 401
0r | | |] 0r | | | [0r | | | L
1 E ¢ 1 1 I 1 E ¢ T T — 1 14 F | 1 —
— 12 - -
5 08F 4 08 F 6L]
'g 0.6 - 4 0.6 . 8 - .
° 04 4 04 | - 6 N
> 02t 102k 1 5[i
e T e e e e e
1 1 1B " J1000 F—— -
) 0.8 4 0.8 - 800 1 -
7 0.6 4 0.6 \ - 600 \ -
o 04 4 04 + 400 .
S 02 4 02t 4200t - -
0r | | | L 0r | | | L] 0r | | | |

0 02040608 1

0 02040608 1

0 02040608 1

X X X

Figure 6.4: Results for all three performed shock tests. Test 1a and test 1b correspond to Problem 1 in Tab.
Test 1a is set up with equal mass particles and test 1b with equidistant distributed particles. Test 2
corresponds to Problem 3 set up with equidistant distributed particles. (Explanation see text.)

neighbour lists for a symmetric force computation the momentum is not fully conserved. This

is probably the cause of the difference of the results in Fig. [6.4] to the results by Springel (see
Fig.[6.3).

Test 1b (see Fig. [6.4 middle) corresponds to Problem 1 from Tab. [6.1] set up with equidistant
distributed non-equal mass particles. The result is basically the same as in test 1a with some
small differences in the density, pressure and velocity behind the shock wave. Additionally

there is a discontinuity in the pressure at x ~ 0.65 that is not shown by the analytical solution
in Fig.[6.3]

Test 2 (see Fig. [6.4]right) corresponds to Problem 3 from Tab. [6.1] set up with equidistant dis-
tributed non-equal mass particles. In the initial conditions there was only a huge discontinuity
in the pressure, here corresponding to temperature for the continuous density. This leads to a
rightward propagating peaked shock front and a leftward propagating rarefaction wave. The
rarefaction wave propagates faster because it is moving in the hotter medium, which has a

higher sound speed.

All three tests were also performed with lower resolution. The results showed basically the

same features but not as sharp as the high resolution simulations.

6.3 1D shock-tubes 61

In principle, the equal mass particle distribution is to prefer for example for the simulation of
protoplanetary discs, because of the intrinsic resolution adaptiveness. But here the discontinuity in
the density in test 1a leads to serious problems caused by the simple neighbour criterion (see Eq.
explained in the following.

Figure[6.5]a) shows a sample distribution of equal mass particles with a discontinuity in the density
and the effect on the neighbour lists. In the upper part of the image a 1D density distribution with a
jump in the density by a factor of 3 is shown. The lower part shows the corresponding particle distri-
bution with a jump in the particle distances by a factor of 1/3. The circles have radii corresponding
to the local smoothing length for N, = 4. The particles 1 to 8 and 12 to 20 have two left and two
right neighbours within the kernel. Because the simple neighbour criterion from Eq. [3.16]is used the
4 closest particles are used as neighbours. This produces problems for the particles 9, 10 and 11.
These particles have one left and 3 right neighbours.

Figure [6.5] b) shows the corresponding neighbour lists. For example a force from particle 14 is
effecting particle 11 but not vice versa. This asymmetry destroys the momentum conservation. For the
shock tests the jump in density is a lot higher. Therefore, for test 1b and test 2 equidistant distributed
particles are used.

This problem with the simple neighbour criterion shows that further improvements of the neighbour
search are needed to allow symmetric force computations. The symmetric neighbour criterion (3.17))

should be implemented.

62 6 Testing the new code

a) PA

Figure 6.5: 1D sample distribution of equal mass particles with a discontinuity in the density (a) and corre-
sponding interaction table (b). (Explanation see text.)

6.4 Sphere collapse

In the previous sections it was described, how the newly implemented SPH part of the code was
tested. Next, the combination of the SPH part with the tree part has to be investigated. One possible
test for this is the gravitational collapse of a uniform density sphere with pressure. This problem is
analytically well understood. The analytical solution as can be found in (Truelove et al.,[1998)will be

summarised in the following.

A sphere with uniform density pg collapses under gravitational force and without pressure in the

R¥/1
tr = |)
ff 32Gpy’ (6.6)

with the gravitational constant G to a singularity. This process is independent of the size of the sphere.
As noted by |[Hubber et al|(2011) an amount of mass initially in the distance ro from the centre of

free-fall time #

6.4 Sphere collapse 63

the sphere has moved to a distance r < ro from the centre in the time

t(r) = sz% <cosl \/7 + \/7 P) : (6.7)
T ro o o

Particle tracks from the simulation can be compared to this analytical relation.

6.4.1 Collapse with pressure

When pressure is considered in the collapse of the sphere, the collapse will be superimposed by the
thermal spreading of the sphere into the surrounding vacuum. The total energy of the sphere deter-
mines, to which extend it will dissolve. While the sphere is collapsing a rarefaction wave propagates
inwards. This rarefaction wave is faster than a inward propagating sound wave because the matter
itself is flowing inward. The speed of the rarefaction wave is the sum of the local flow speed and the
sound speed. The time dependence of the position of the rarefaction wave can be found in (Truelove
et al., [1998)).
The time needed by the collapsing sphere to reach a density p > py is given by

t(p) = tff% <7”l + % Sin(2n)) :

with

wn=(3) "

The mass M,¢ inside the rarefaction front is given by

. 13 12} 3
Ms=M{ 1 —2-arctan [<p) — 1] , (6.8)
Vif Po

where M is the total initial mass of the sphere and v the free-fall velocity

8
foZR\/gﬂGPo

with the initial radius R of the sphere. With

M(r)= gn'r3p

follows the radius r,s of the rarefaction front

31‘4rf> 1/3

i(p) = (s

64 6 Testing the new code

For a given p > py the radial position ri(p) of the rarefaction front can be calculated as well as
the time #(p) when this density is reached. So r(¢) can be obtained numerically and compare to the

results of the simulation.

6.4.2 Test setup and results

To set up a uniform density sphere, particles are distributed on a regular three-dimensional grid with
50 particles in each dimension. From this cube a sphere is cut with a diameter of 1 AU resulting in
approximately 65000 particles. For later use with astrophysical problems, all physical constants like
the gravitational constant and the Boltzmann constant are converted into the units Year, Mg,,, K and
AU.

The masses of the particles are scaled so that the whole mass of the sphere is 1 Mg,,. The mean
density of this sphere is p ~ 1.9011Mg,,/AU?, which results in a free-fall time of 7 ~ 0.063 y.

For the simulation, the time-step size is chosen as Ar = 1/1000¢. The gravitational collapse of the
sphere without pressure is shown in Fig. [6.6|together with the analytical solution according to (6.7).
The points denote the radial positions of particles initially outside of 90%, 50% and 10% mass.

1.2
1r ,
p—o—0—o-
-5 oo o o
g
0.8 Foooo00qg o Sy i
>0 o o S - O\o
g SN
o S
e © S . SN
© o RS
£ 06 g R -
S\fy\ N\G\
b—o- 97@7@764(}75}7@,6776“&7@779 e \
04 ‘A‘bwgoo *\ N ,
S~ g \\k\&
~e
A \ \
TRl AN \\
0.2 - Qo*ﬂ C\c\ e
e \
8\
Numerical solution ~ © <\
Analytical solution \\
O | | | |
0 0.2 0.4 0.6 0.8 1

g

Figure 6.6: Free-fall collapse of a uniform density sphere involving only gravitational force. The points denote
the radial positions of particles initially outside of 90%, 50% and 10% mass. The analytical solution

is obtained with Eq.

For the collapse with pressure, the temperature was chosen so that the inward propagating rarefac-
tion wave can reach the centre within #g. Figure shows the results of the simulation together with
the analytical solution for the rarefaction wave. The green points show the radial positions of parti-
cles initially outside of 90%, 50% and 10% mass. The red lines show the collapse without pressure as

presented in Fig.[6.6] The dotted line shows the analytical solution for the inward propagation of the

6.5 A protoplanetary disc 65

rarefaction front. The good agreement of the numerical results with the analytical solution is obvi-
ous. This agreement proves, that the code can treat the gravitation as well as the thermodynamics for

example of a protoplanetary disc correctly. Now the code can be applied to real physical problems.

12

rlrg

Collapse without pressure
Position of the rarefaction front
‘ Collapse With‘ pressure
0
0 0.2 0.4 0.6 0.8 1
ity

Figure 6.7: Collapse of a uniform density sphere involving gravitational and thermal forces. The green points
show the radial positions of particles initially outside of 90%, 50% and 10% mass. The red lines
show the collapse without pressure as presented in Fig.[6.6] The dotted line shows the analytical
solution for the inward propagation of the rarefaction front.

6.5 A protoplanetary disc

After the tests were successful a first protoplanetary disc was simulated. Here a high-mass disc with
Mgise = 0.1 Mg, around a solar mass star was used. As described before (see Sec. [2.3)), such a disc is
expected to fragment and form planets.

The density distribution p(r,z) for the disc was chosen as

21712
p(r,z) < r 7 lexp (—Zg) (6.9)

where z is the height in cylindrical coordinates, H(r) is the discs scale height with H(r) = r/Hy, and
p index of the density distribution (see Sec.[2.2). Here Hy = 10 AU and p = —1 were used, because
they fit the observations.

The initial particle distribution is here obtained with a Monte-Carlo approach. The particles are
placed at random coordinates with a probability proportional to the density. The so obtained physical
system is not in equilibrium and has to be relaxed before used for simulations.

For the initial set up, 10° particles were distributed according tho the density distribution given by

66 6 Testing the new code

(6.9) with a maximum extension of the disc rmax = 100 AU. As the singularity in the density close to
r = 0 would cause numerical problems, a central region of radius » = 10 AU was devoid of simulation
particles.

For cold protoplanetary discs of low mass, self-gravitation and thermal forces can be neglected. In
this case, the initial particle orbits around the star are approximately Keplerian. The Kepler velocities
vk are given by

GMar

Vk = .
r

For high-mass discs (Mgjsc =~ 0.1Mg,,), the self-gravitation can no longer be neglected and the orbits
can no longer be approximated to be keplerian. Under the assumption, that a particle moves on a
circular orbit, the centripetal force F is provided by the attracting forces of star and disc.
2
my
Fe = d)
r
where m is the mass of the particle and vy the tangential velocity. Then the tangential velocity of a
particle can be obtained with
vy = (Fstar+Fdisc)r’ (6.10)

m

where Fy,, is here the gravitational force of the star and Fyisc the gravitational force of the whole disc.

When as well thermal forces are taken into account, the orbits are even more complex. Due to the
random placing of particles, strong numerical density fluctuations are likely to occur. The tremendous
forces arising from the density gradients can accelerate particles to velocities high enough to leave
the gravitational well of the system. To avoid this non-physical effect, the disc is set up with initial
velocities following (6.I0) and then the particle distribution is relaxed, which is described in the
following. In Tab. [6.2]the setup parameters are summarised. They were chosen according to typical
observed parameters (see Sec. [2.2)).

Idisc, inner | Tdisc, outer

Parameter ‘ Miar ‘ Myisc H ‘ p ‘ N ‘ T ‘ At

Value ‘ IMgy | 0.1Mgy, | 10 AU ‘ 100 AU ‘ 10 AU ‘ -2 ‘ 100000 ‘ 20K ‘ 0.1 year

Table 6.2: Setup parameter for the protoplanetary disc.

During the relaxation process the thermal forces F; are taken into account with a factor 7

F=F,+ 1k

6.5 A protoplanetary disc 67

Time: 10 years

Figure 6.8: The relaxation process of a protoplanetary disc. The particles are coloured by density, from low
(blue) via intermediate (white) to high density (red). a) shows the face on view on the disc. b)
shows the edge-on view, where the front half of the disc is removed. c) shows a zoom on the inner
part of the disc. d) shows a slice around the x-z-plane.

with
T= i/trelaxa

where F is the total force, Fy is the gravitational force, i is the actual time-step and fjax is the whole
number of relaxation time-steps. That means, that the thermal forces are totally neglected at the
beginning of the relaxation. Then their effect is increased linearly until they are fully considered at
the end. For the relaxation 10000 time-steps with a time-step size of Az = 0.1 years were used. The
temperature increase due to viscous heating is limited by 7 < 50 K.

Figure shows the disc at the beginning of the relaxation process. The particles are coloured by
density, from low (blue) via intermediate (white) to high density (red). a) shows the face on view on
the disc. The light blue close to the centre denotes the higher density. b) shows the edge on view with
the front half removed. c) shows a zoom on the inner part of the disc. Here even the densest regions,
coloured in red, can be seen. As can be distinguished from the black background, the particles are
distributed inhomogeneous at small scales. d) shows a slice through the x-y-plane. Here the vertical

structure of the disc can be seen.

68 6 Testing the new code

The result of the relaxation is shown in Fig. [6.9] The four views and the colouring scheme are
the same as in Fig.[6.8] In a) it can be seen, that the disc has expanded and that there is a complete
light blue ring around the central hole. In ¢) it can be seen, that the colour gradient is much smoother
than in Fig. [6.8] The particles are distributed much more homogeneous. In d) the vertical density
profile can be seen. The disc is in hydrostatic equilibrium at least at the inner regions (r < 40 AU).
The settling of particles to the discs midplane is prohibited by the pressure gradient resulting from

the vertical density profile.

Time: 1000 years

C)

Figure 6.9: The relaxed protoplanetary disc. The particles are coloured by density, from low (blue) via in-
termediate (white) to high density (red). Comparison with Fig. shows, that the particles are
distributed much more homogeneous. The colour gradient is much smoother. a) shows the face on
view on the disc. b) shows the edge-on view, where the front half of the disc is removed. c¢) shows
a zoom on the inner part of the disc. d) shows a slice around the x-y-plane.

After the relaxation the disc was evolved with full consideration of the thermodynamics. Due to
viscous heating the temperature in the inner parts of the disc increases. With the here chosen values
for the mass of the disc, the density distribution, the time-step size and the viscosity parameters o
and B (see Sec. the temperature increases at the inner edge of the disc from 7 = 50 K to
T > 10000 K within 10 years (or 100 time-steps) after the relaxation. These high temperatures lead
to the dissolution of the disc within some 100 years. By implementing certain cooling mechanisms
for example as described by Meru & Bate|(2011) these inconvenient heating can be avoided.

Figure[6.10]shows the disc 100 years after the relaxation process. The four views and the colouring

6.5 A protoplanetary disc 69

scheme are the same as before. In a) and c) it can be seen, that the particles are pushed in the central
hole. The density decreased compared to Fig. [6.9] In d) on can see, that the inner part of the disc
is no longer in hydrostatic equilibrium as seen in Fig. d). The increasing pressure, due to the
high temperatures, accelerates the particles perpendicular to the discs midplane. 1000 years after the
relaxation the disc will have lost approximately 10% of its mass due to this process. By that time the
shape of the disc will have changed more to a flat torus, with a temperature of some 1000 K inside
this torus. However, the heating without cooling mechanisms or thermal conduction is not physical.
For a more physical evolution of the disc further work is needed. The stable modelling and evolution
of a protoplanetary disc with SPH codes is subject of ongoing research and far beyond the scope of

this work.

Time: 1100 years

Figure 6.10: The protoplanetary disc after 100 years of evolution with full consideration of the thermodynam-
ics. The particles are coloured by density, from low (blue) via intermediate (white) to high density
(red). a) shows the face on view on the disc. b) shows the edge-on view, where the front half of
the disc is removed. c¢) shows a zoom on the inner part of the disc. d) shows a slice around the
x-y-plane. Comparison with Fig.[6.9]d) shows, that the previously thin and dense inner part of the
disc is thicker and sparser. Some particles are already pushed out of the disc.

70

6 Testing the new code

7 Conclusion

In this work, a numerical code was developed for simulations of self-gravitating protoplanetary discs
on highly parallel computers. The new code, which is based on the existing code PEPC (Pretty
Efficient Coulomb Solver), is expected to simulate up to 2 - 10° particles on highly parallel machines
like the supercomputer Jugene operated by Forschungszentrum Jiilich. Tests with up to 10° particles
- our envisaged application to protoplanetary discs - were successfully performed. The capability to
handle more particles has to be demonstrated in the future.

The previously existing code PEPC is mainly used for the computation of Coulomb forces in
plasma physics applications. The new code has been adapted for the computation of gravitational
forces. Obviously, this means an adjustment of the force constant. In contrast to the simulation of
Coulomb forces, characterised by forces between two types of charged particles, for gravitational
simulations the mass is the force determining property and therefore only one type of particles is
used. With these modifications it is possible to simulate a self-gravitating disc in high resolution.
However, thermal and viscous forces are neglected in this first version.

The main objective of this work was to model as well the fluid component of the disc. Therefore a
module, implementing a basic Smoothed Particle Hydrodynamics (SPH) formulation, was developed
for fluid computations. This method allows to model the hydrodynamical forces based on a particle
algorithm. Here, the simulation particles have intrinsic properties like density, pressure and tempera-
ture. As most important part of the SPH module a parallel tree-based neighbour search algorithm was
implemented. It has been demonstrated that its scaling is at least as good as the scaling of the code
PEPC it is combined with, which is dominated by the &'(NlogN) scaling of the force summation.

The evaluation of the density, pressure induced acceleration and change of temperature was imple-
mented. Afterwards, tests were performed to show that the code describes all the relevant physical
effects correctly. For protoplanetary discs these effects are sound waves, shocks and gravitation.

Simulating sound waves, it was demonstrated that the code can reproduce the analytical solu-
tion sufficiently. The relative deviation of the numerical solution for the density from the analytical
solution was below 4 - 1076 after 10000 time-steps. This is more than sufficient for the planned
applications.

It was demonstrated, that the code is capable of resolving shocks. Here, one dimensional discon-
tinuities in density and pressure were used. The solutions for two different types of shock problems
were compared to numerical solutions of other codes. It was demonstrated, that the physical phenom-

ena can be reproduced correctly with the new code.

72 7 Conclusion

With a three-dimensional problem incorporating gravitation and hydrodynamics it was investigated
whether the two code-parts work together correctly. The results obtained from the simulation were
compared to analytical solutions, confirming the correctness of the new code.

Finally, a first test simulation of a high-mass protoplanetary disc was performed successfully. As
expected, the disc dissolves due to increasing temperature caused by viscous heating in the inner parts
of the disc. In a more realistic setting, cooling mechanisms have to be considered. However, during
the relaxation process, where the temperature was limited, the disc evolved to hydrostatic equilib-
rium. The gravitational collapse perpendicular to the discs midplane was suppressed by stabilising
hydrostatic pressure.

The new code is not the first of its kind. Most similar codes are parallelised for shared-memory
computers, what limits applications to a few thousand CPU cores and the available memory to few
10 TB. There are only two widely used similar codes parallelised for distributed-memory computers
with up to several 10° CPU cores and hundreds of TB memory. One of which is GADGET-2, devel-
oped by [Springel|(2005) and was used for the famous Millenium Simulation. At least the computation
of the gravitational forces is known to be faster with PEPC than with GADGET-2 (P. Gibbon (2011),
private communication). Thus, it is expected that the new code as a whole is faster, too.

The new developed simulation code can also be used for simulations of different astrophysical
processes. Besides simulations of fragmenting protoplanetary discs, it can be used to investigate the
role of viscosity in star-disc encounters. Also the possible recircularisation of the perturbed disc
after such an encounter can be simulated. However, the code can as well be used to investigate
other processes, like the formation of stars by gravitational collapse of molecular clouds (e.g. |Price
& Bate,|2010). The new code increases the resolution and performance of all mentioned simulations
significantly and reduces the computation times. This crucial improvements are required for ongoing

astrophysical research.

8 Prospect

However, even though first results were successfully produced with the new code, further improve-
ments are possible.

From the physical point of view, first of all the energy conservation in the SPH module should be
improved by the implementation of a symmetric force computation. Therefore, basically a slightly
modified next neighbour search is needed. This modification should improve the treatment of strong
density gradients, which occur for example during the fragmentation of a disc. Additionally, more
physical processes like thermal conduction or radiation transport can be implemented for more re-
alistic simulations. Especially radiation transport is important for a more realistic modelling of the
radiative cooling of a protoplanetary disc. Thermal conduction can also provide a cooling mechanism.

From the computational point of view, the performance of the new code can be improved by chang-
ing the implementation to a hybrid scheme. This means, the usage of one MPI (Message Passing
Interface) process and domain per compute-node. Within the MPI process, loops are parallelised with
a shared-memory parallelisation scheme like OpenMP. When only one domain per compute-node is
used, the number of domains is reduced for example by a factor of eight on the supercomputer Ju-
ropa, operated by Forschungszentrum Jiilich, and the size of the domains increase by this factor. As
explained in Sec. [5.3.3] this reduces the communication effort and memory usage and should result
in an enormous performance gain.

Finally, it is planned to include the new code into a library, which can then be used by other

simulation codes.

74

8 Prospect

Bibliography

Amdahl, G. M. 1967, in Proc. of the SJCC, Vol. 30 (AFIPS), 483-485
Andrews, S. M. & Williams, J. P. 2007, AplJ, 659, 705
Andrews, S. M., Wilner, D. J., Hughes, A. M., Qi, C., & Dullemond, C. P. 2010, ApJ, 723, 1241

Bally, J. & Throop, H. n.d., Retrieved from http://hubblesite.org/gallery/album/
pr2001013b//(26.06.2011)

Barnes, J. & Hut, P. 1986, Nature, 324, 446

Beckwith, S. V. W,, Sargent, A. L., Chini, R. S., & Guesten, R. 1990, AJ, 99, 924
Boss, A. P. 1998a, Earth Moon and Planets, 81, 19

Boss, A. P. 1998b, Annual Review of Earth and Planetary Sciences, 26, 53

Breslau, A. 2010, in Proceedings 2010, JSC Guest Student Programme on Scientific Computing, ed.
R. Speck, M. Winkel, 25-35

Clarke, C. J., Harper-Clark, E., Meru, F., & Lodato, G. 2008, in Astronomical Society of the Pacific
Conference Series, Vol. 398, Extreme Solar Systems, ed. D. Fischer, F. A. Rasio, S. E. Thorsett, &
A. Wolszczan, 341—

Forgan, D. & Rice, K. 2009, MNRAS, 400, 2022
Gammie, C. F. 2001, ApJ, 553, 174
Ghez, A. M., Neugebauer, G., & Matthews, K. 1993, AJ, 106, 2005

Gibbon, P. 2003, PEPC: Pretty Efficient Parallel Coulomb-solver, Tech. Rep. FZJ-ZAM-IB-2003-5,
Central Institute for Applied Mathematics

Gibbon, P., Speck, R., Berberich, B., et al. 2010a, in NIC Symposium 2010, ed. G. Miinster, D. Wolf,
M. Kremer, 383-390

Gibbon, P, Speck, R., Karmakar, A., et al. 2010b, Plasma Science, IEEE Transactions on, 38, 2367

Gingold, R. A. & Monaghan, J. J. 1977, MNRAS, 181, 375

http://hubblesite.org/gallery/album/pr2001013b/
http://hubblesite.org/gallery/album/pr2001013b/

76 Bibliography

Haisch, Jr., K. E., Lada, E. A., & Lada, C. J. 2001, ApJ, 553, L153

Hernéndez, J., Hartmann, L., Calvet, N., et al. 2008, ApJ, 686, 1195

Hubber, D. A., Batty, C. P, McLeod, A., & Whitworth, A. P. 2011, A&A, 529, A27+
Isella, A., Carpenter, J. M., & Sargent, A. 1. 2009, ApJ, 701, 260

Levison, H. F. & Stewart, G. R. 2001, Icarus, 153, 224

Lodato, G. & Clarke, C. J. 2011, MNRAS, 413, 2735

Lodato, G. & Rice, W. K. M. 2005, MNRAS, 358, 1489

Lucy, L. B. 1977, AJ, 82, 1013

Lynden-Bell, D. & Pringle, J. E. 1974, MNRAS, 168, 603

McCaughrean, M. n.d., Retrieved from |http://www.gps.caltech.edu/~gab/
astrophysics/astrophysics.html|(24.06.2011)

Merlin, E., Buonomo, U., Grassi, T., Piovan, L., & Chiosi, C. 2010, A&A, 513, A36+
Meru, F. & Bate, M. R. 2011, MNRAS, 410, 559

Monaghan, J. J. 1992, ARA&A, 30, 543

Monaghan, J. J. 2005, Reports on Progress in Physics, 68, 1703

Monaghan, J. J. & Gingold, R. A. 1983, Journal of Computational Physics, 52, 374
Monaghan, J. J. & Lattanzio, J. C. 1985, A&A, 149, 135

NASA/ESA and Feild, A. 2003, Retrieved from fhttp://www.spacetelescope.org/
images/opo0319f//(26.06.2011)

Pfalzner, S. & Gibbon, P. 1996, Many-body tree methods in physics (Cambridge University Press), ix
+ 168

Pfalzner, S., Olczak, C., & Eckart, A. 2006, A&A, 454, 811

Price, D. J. & Bate, M. R. 2010, in American Institute of Physics Conference Series, Vol. 1242,
American Institute of Physics Conference Series, ed. G. Bertin, F. de Luca, G. Lodato, R. Pozzoli,
& M. Romé, 205-218

Pringle, J. E. 1981, ARA&A, 19, 137

PSC. n.d., Retrieved from http://blacklight.psc.edu/|(25.07.2011)

http://www.gps.caltech.edu/~gab/astrophysics/astrophysics.html
http://www.gps.caltech.edu/~gab/astrophysics/astrophysics.html
http://www.spacetelescope.org/images/opo0319f/
http://www.spacetelescope.org/images/opo0319f/
http://blacklight.psc.edu/

Rice, W. K. M., Armitage, P. J., Bate, M. R., & Bonnell, I. A. 2003, MNRAS, 339, 1025
Rice, W. K. M., Lodato, G., & Armitage, P. J. 2005, MNRAS, 364, L56

Sod, G. A. 1978, Journal of Computational Physics, 27, 1

Springel, V. 2005, MNRAS, 364, 1105

Springel, V. 2010, ARA&A, 48, 391

Springel, V. & Hernquist, L. 2002, MNRAS, 333, 649

Toomre, A. 1964, Apl, 139, 1217

Toro, E. F. 1997, Riemann Solvers and Numerical Methods for Fluid Dynamics (Berlin Heidelberg:
Springer)

Truelove, J. K., Klein, R. 1., McKee, C. F,, et al. 1998, ApJ, 495, 821

Unsold, A. & Baschek, B. 2005, Der neue Kosmos — Einfiithrung in die Astronomie und Astrophysik,
7th edn. (Berlin: Springer)

Vicente, S. M. & Alves, J. 2005, A&A, 441, 195

Warren, M. S. & Salmon, J. K. 1993, in Proceedings of the 1993 ACM/IEEE conference on Super-
computing, Supercomputing *93, 12-21

Warren, M. S. & Salmon, J. K. 1995, Computer Physics Communications, 87, 266
Williams, J. P. & Cieza, L. A. 2011, ArXiv e-prints

Winkel, M., Speck, R., Hiibner, H., et al. 2011, Computer Physics Communications, submitted

Acknowledgements

First of all, I would like to thank my supervisors, Prof. Dr. Susanne Pfalzner and Dr. Paul Gibbon,
for giving me the opportunity to write this thesis. Without their guidance, support and patience this
work would not have been possible.

Furthermore, I want to thank all those who have been my colleagues during this time and supported
this work with competent advice: Lukas Arnold, Christina Hovel, Helge Hiibner, Thomas Kaczmarek,
Robert Speck, Manuel Steinhausen, Mathias Winkel.

And last but not least, I want to thank my family, my girlfriend, and my friends for their support,

encouragement, endurance.

Jul-4340
August 2011

ISSN 0944-2952 \’) J l.J L I C H

FORSCHUNGSZENTRUM

	1 Motivation
	2 Introduction
	2.1 The formation of stars and protoplanetary discs
	2.2 Observations and properties of protoplanetary discs
	2.3 The evolution of protoplanetary discs

	3 Smoothed Particle Hydrodynamics
	3.1 A basic SPH formulation
	3.2 Improvements to the basic formulation
	3.3 A resolution requirement

	4 The tree-code PEPC
	4.1 Tree-codes in general
	4.2 Parallel tree code - PEPC
	4.3 The tree-walk in detail

	5 PEPC with SPH
	5.1 Smoothed Particle Hydrodynamics equations
	5.2 Implementation details
	5.3 The neighbour search

	6 Testing the new code
	6.1 1D sound wave
	6.2 1D sound wave in 2D volume
	6.3 1D shock-tubes
	6.4 Sphere collapse
	6.5 A protoplanetary disc

	7 Conclusion
	8 Prospect

