
Jül - 4340

M
itg

lie
d 

de
r 

H
el

m
ho

ltz
-G

em
ei

ns
ch

af
t

Institute for Advanced Simulation (IAS)
Jülich Supercomputing Centre (JSC)

Highly-parallel Smoothed Particle  
Hydrodynamics modelling of  
protoplanetary discs

A. Breslau



Berichte des Forschungszentrums Jülich 	 4340



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Highly-parallel Smoothed Particle  
Hydrodynamics modelling of  
protoplanetary discs

A. Breslau



Berichte des Forschungszentrums Jülich; 4340
ISSN 0944-2952
Institute for Advanced Simulation (IAS)
Jülich Supercomputing Centre (JSC)
Jül-4340

Vollständig frei verfügbar im Internet auf dem Jülicher Open Access Server (JUWEL)  
unter http://www.fz-juelich.de/zb/juwel

Zu beziehen durch: Forschungszentrum Jülich GmbH · Zentralbibliothek, Verlag
D-52425 Jülich · Bundesrepublik Deutschland
Z 02461 61-5220 · Telefax: 02461 61-6103 · e-mail: zb-publikation@fz-juelich.de



Zusammenfassung

Sterne entstehen durch gravitativen Kollaps aus molekularen Wolken. Während dieses Prozesses bil-

den sich aufgrund der Erhaltung des Drehimpulses aus Gas und Staub bestehende Scheiben um die

jungen Sterne, sogenannte protoplanetare Scheiben. Aus diesen Scheiben können im Laufe ihrer Ent-

wicklung Planeten entstehen.

Durch Fluktuationen oder externe Störung können sich dichtere Klumpen innerhalb der Scheiben

bilden. Wenn das Material der Klumpen ausreichend kalt ist, überwiegt die Gravitationskraft den ther-

mischen Kräften und das Material wird gebunden. Durch Energieabstrahlung können die Klumpen ih-

re Größe verringern, an Dichte gewinnen und letztendlich möglicherweise Planeten bilden. Scheiben,

deren Massen 10% der Sternmasse überschreiten, verhalten sich näherungsweise wie selbstgravitie-

rende, viskose Flüssigkeiten. Durch die Dissipation von kinetischer Energie in Wärme, bedingt durch

die Viskosität, wird die Scheibe geheizt, was die Fragmentierung möglicherweise verhindern kann,

wohingegen das Kühlen der Scheiben durch Abstrahlung von Energie die Fragmentierung begünstigt.

Das genaue Zusammenspiel dieser und anderer Prozesse ist bislang nicht bekannt.

Ziel dieser Arbeit ist die Entwicklung eines Codes zur Simulation viskoser, selbstgravitierender

Scheiben auf hoch parallelen Superrechnern, um damit zum Verständnis dieser Prozesse beizutragen.

Dazu wird der bisher für Plasma-Simulationen verwendete, hoch skalierende Code PEPC (Pretty

Efficient Coulomb Solver) zunächst für die Berechnung von Gravitationskräften modifiziert. An-

schließend wird der Code um eine “Smoothed Particle Hydrodynamics” (SPH) genannte Methode

zur Lösung von Strömungsgleichungen erweitert.

Um nachzuweisen, dass der neue Code physikalisch korrekte Ergebnisse liefert, wird er auf Test-

probleme angewendet. Es wird gezeigt, dass der neue Code akustische Wellen über 104 Zeitschrit-

te mit nur kleinen Abweichungen von der analytischen Lösung behandeln kann und Schockwellen

ausreichend auflöst. Darüber hinaus wird das korrekte Zusammenspiel der neuen mit der alten Code-

komponente demonstriert.

Die Simulation einer protoplanetaren Scheibe mit dem neuen Simulationscode, wird schließlich

erfolgreich getestet. Dabei zeigt sich, dass zur stabilen Modellierung einer solchen Scheibe die Inte-

gration weiterer physikalischer Prozesse, wie zum Beispiel Kühlung, in den Code unerlässlich ist.





Abstract

Stars form by gravitational collapse of molecular clouds. Due to angular momentum conservation

discs consisting of gas and dust form during this process around the young stars. Due to the potential

of later formation of planets out of the disc-material they are called protoplanetary discs.

Fluctuations in the discs can lead to the formation of dense clumps. When the material inside

the clumps is cold enough, the gravitational force outbalances the thermal forces and the material is

bound. By radiative energy loss the clumps can shrink and may ultimately form planets. Especially

discs with masses Mdisc > 0.1Mstar behave in first approximation like self-gravitating, viscous fluids.

Viscous heating of the disc can suppress fragmentation processes, while radiative cooling can support

them. The exact interplay of these and other processes is still unknown.

The aim of this work is the development of a code for the simulation of viscous, self-gravitating

discs with highly parallel supercomputers, to contribute to the understanding of these processes.

Therefore the highly scalable plasma-code PEPC (Pretty Efficient Coulomb Solver) is modified for

the computation of gravitational forces. Afterwards the code is extended with the Smoothed Particle

Hydrodynamics (SPH) method for fluid computation.

To demonstrate, that the code produces correct physical results, several test problems are inves-

tigated. It is shown, that the code can propagate sound waves over 104 time steps with only small

deviations from the analytical solution and that the code can resolve shock waves sufficiently. Further,

the correct cooperation of the new and old code components is demonstrated.

The simulation of a protoplanetary disc with the new simulation code is tested successfully. Nev-

ertheless it shows, that for the stable modelling of such a disc, the inclusion of additional physical

processes, like cooling, is necessary.
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1 Motivation

Discs around young stars consisting of gas and dust are the starting material for the formation of

planets. In the standard theory of planet formation the µm-sized dust particles grow to planetesimals

(� ≈ 10 km) by coagulation processes. Afterwards, the growth processes is dominated by gravi-

tational interactions. If the disc provides a certain amount of material, the planetesimals are able to

grow further until they reach planet size. If the formed planetary embryos are massive enough, they

can accrete gas from the disc to form gas giant planets with masses up to several MJupiter.

Alternatively, it was proposed that planets might form through gravitational instabilities (GI) in

the gas disc. Given the right conditions, the disc can fragment and form dense clumps. Whether

these clumps can stay stable enough to form planets is an open question. This problem is currently

investigated intensely with computer simulations.

For the simulation of the fragmentation of discs around young stars, codes are needed, solving pri-

marily the gravitational and hydrodynamical interactions among the gas and dust particles. Therefore

gravity solvers are often combined with the Smoothed Particle Hydrodynamics (SPH) method as fluid

solver. This is done, due to advantages of this combination over the combination of the gravity solver

with a grid-based fluid solver. These advantages are the intrinsic resolution adaptiveness of SPH and

that SPH as well as most gravity solvers are particle based methods.

For simulations of fragmenting protoplanetary discs particle numbers of some 106 are needed. This

requirement results from two conditions, which have to be fulfilled. On the one hand the disc height

(H � r) has to be resolved sufficiently to avoid numerical heating suppressing fragmentation. On

the other hand the Jeans mass has to be resolved sufficiently for correct modelling of gravitational

fragmentation. The high particle numbers result in a high computational effort, why highly efficient

codes are needed.

The aim of this work is to develop an efficient simulation code for parallel computers, which

combines SPH with a gravity solver. With this code highly resolved protoplanetary discs will be

investigated to contribute to the understanding of the fragmentation process.
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2 Introduction

2.1 The formation of stars and protoplanetary discs

Only a fraction of the matter in a galaxy like our own Milky Way is bound in stars. Large parts

are confined in cold molecular clouds. These clouds consist mainly of molecular hydrogen (H2) and

can be up to several 10 parsecs1 (pc) in diameter. The clouds are basically stabilised by a balance

between attracting gravitational force and repulsive pressure. The cloud is stable as long as its mass

MC is below the Jeans mass MJ

MJ = 5.46
(

kBT
mMG

)3/2

ρ
−1/2, (2.1)

where ρ is the density of the cloud, T its temperature, kB the Boltzmann constant, G the gravitational

constant and mM the mass of an average gas molecule (e.g. Unsöld & Baschek, 2005, p. 380). Fluctu-

ations in the properties of the gas, like density or temperature, can lead to the local dominance of the

gravitational force resulting in the collapse of this part of the cloud (see Fig. 2.1 a). During such a col-

lapse part of the gas contracts from an extension of several 105 Astronomical Units2 (AU) to a few AU

meanwhile the density increases by several orders of magnitude. Due to the prior inhomogeneity and

motion of the gas, it has an angular momentum which is conserved during the collapse. This leads to

the formation of a rotating disc-like structure with a denser core in the centre (see Fig. 2.1 b).

During these early times in the formation of a star the core has a mass of less than 10−2 MSun while

the disc can have a mass of several MSun. While the core is approximately in hydrostatic equilibrium,

matter from the disc continues falling onto the core. This can only happen, when the angular momen-

tum of the infalling matter is somehow transported outwards. Simultaneously, magnetic fields are

responsible for mass ejections of the protostar perpendicular to the midplane of the disc. The kinetic

and potential energy of this accreted matter is transformed into thermal energy and radiated away. At

that evolutionary stage this is the main source of the luminosity of the core, now called protostar.

During this accretion phase temperature and density in the protostar increase and initiate hydrogen

burning. At this point, there can still be a remaining disc, now having only a fraction of the central

stars mass (MDisc . 0.1MStar) (see Fig. 2.1 c). Eventually accretion stops and the star reaches hydro-

static equilibrium considering the pressure caused by the nuclear fusion. Then the star has reached

11 parsec is the distance from which the distance from the earth to the sun is seen under an angle of 1′′, ≈ 3 · 1016 m or
3.26 light-years.

21 Astronomical Unit is the distance between earth and sun, ≈ 1.5 ·108 km.
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Figure 2.1: Schematic view of the formation of a single star. (McCaughrean, M., n.d.)

the main sequence. The matter forming the disc develops under several influences which can result

either in the destruction of the disc or the formation of planets (see Fig. 2.1 d).

This is the current view of the formation of a single star. However, most stars are not only binaries

or higher multiples, but often part of a cluster of stars containing several 100 to 100000 of stars. In

this case the stellar environment can influence the star formation process significantly.

2.2 Observations and properties of protoplanetary discs

Observations have confirmed above theoretical picture that most, if not all, young stars are surrounded

by a protoplanetary disc (Unsöld & Baschek, 2005). The huge contrast in luminosity between the star

and disc combined with the small angular scale make direct observations of the disc very difficult.

Figure 2.2 shows the Spectral Energy Distribution (SED) of the star disc system WL 18 in Ophi-

uchus (Andrews et al., 2010). The SED is the distribution of the energy flux of radiation depending on

the wavelength or frequency. The black dots are the observational data and the red line is the best fit

of star and disc properties to the data. The dashed blue line shows the stars long-wavelength emission

according to the Rayleigh-Jeans approximation of the Plank-law

Bλ (T ) =
2ckBT

λ 4 , (2.2)

where c is the speed of light and λ the wavelength (Unsöld & Baschek, 2005). This is a typical sample

SED of a star surrounded by a protoplanetary disc. It can be easily seen that in the optical wavelengths

around 0.5 µm the observational data fit the black body radiation of the star (shown by the left part

of the red line and the dashed blue line). There is no noticeable contribution by the discs radiation.
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Figure 2.2: Spectral Energy Distribution of the young star WL 18 in the Ophiuchus star forming region. The
black dots are the observational data and the red line is the best fit of star and disc properties to the
data. The dashed blue line shows the stars long-wavelength emissions. (Image by Andrews et al.
(2010))

Therefore it is almost impossible to observe protoplanetary discs directly in optical wavelengths.

On the other hand the plot shows another property of the SED of a star disc system exploited by

the method primarily used to observe circumstellar discs. According to Wien’s displacement law

λT = 2.90 ·10−3m K, (2.3)

the maximum-flux wavelength of a star with a surface temperature of several 1000 K and a disc with

a surface temperature of some 10 to few 100 K differ by a factor of 10 to 100 (Unsöld & Baschek,

2005).The Infrared3 (IR) to sub-mm wavelength regime of the stars emitted radiation is given by (2.2).

The thermal radiation of a protoplanetary disc in this wavelength regime is often much more luminous

as shown by the red line on top of the stars dashed blue line. The area between these lines is the IR

excess caused by the radiation of the protoplanetary disc. The gap between the data points in the range

[1 : 30] µm and around 1000 µm is due to missing instruments for this wavelength regime. According

to (2.3) the wavelengths of the data points at the left and right side of the IR excess correspond to

temperatures of a few Kelvin at the outer regions of the disc and some 100 K at the inner regions.

Because of our large distance to star forming regions4 (> 100 pc), even large discs with approxi-

mately 1000 AU in diameter are seen very close to their host star (here 5′′ for the outer regions of this

large discs). This small angular separations makes it impossible to image discs around stars more than

a few 1000 pc distant, even with modern high resolution telescopes. For closer star disc systems the

direct imaging of the disc is challenging due to the high contrast between star and disc. Some closer

discs have been imaged by using a coronagraph. This is an attachment to the telescope blocking the

light from the star. Figure 2.3 shows a sample of a direct image of a disc. The image shows the edge

3Infrared light is the light with wavelength between visible light (≈ 750nm) and radio waves (≈ 1mm).
4Ophiuchus-Scorpius and Taurus Auriga are the closest star forming regions to the earth with a distance of≈ 140 pc Ghez

et al. (1993).
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on view of a star surrounded by a protoplanetary disc in the orion nebula, ≈ 400 pc away.

Figure 2.3: Edge on view of a star surrounded by a protoplanetary disc in the Orion Nebula. The star can not
be seen, because it is shadowed by the disc. (Cut from image by Bally & Throop (n.d.))

The observational data are usually fitted to theoretical models to determine specific properties of

the discs. In general, the results cover big ranges of values. This can have various reasons. First,

different observations are in general not in the same wavelength, which makes it difficult to compare

these observations, because in different wavelengths different matter is observed (see Sec. 2.3). When

the observed discs differ in age, it is crucial to determine the age correctly, before the observations can

be compared. Furthermore, the environment of the discs can influence their properties, as described

in the following. And finally, the results depend on the used theoretical model.

Fitting a surface-density profile of the form

Σ(r) ∝ r−p (2.4)

produced values for p in general in the range [0 : 1](Williams & Cieza, 2011), but also values p < 0

and p > 1 have been found (Isella et al., 2009; Andrews & Williams, 2007). Masses were found

mainly from 10−3 to 10−1Msun (Williams & Cieza, 2011), but here as well other values have been

found. In general younger discs seam to be more massive.

Usually the surface-density profile declines rapidly at some outer cutoff radius. For example Vi-

cente & Alves (2005) have measured the diameters of protoplanetary disc silhouettes against the

bright orion nebula. They found radii from rdisc = 50 to rdisc = 200 AU. Rarely also discs with

rdisc > 1000 AU were observed (Williams & Cieza, 2011).

The typical disc thickness has been found to be ≈ 10% of the discs diameter (Vicente & Alves,

2005).

Surface-temperature Ts profiles of the form

Ts ∝ r−q (2.5)

were fitted to the data. Beckwith et al. (1990) found q = 0.5 and Lynden-Bell & Pringle (1974) found

q = 3/4 far from the star. Temperatures have been found from 10 K at ≈ 100 AU up to 2000 K at the

discs midplane in the inner regions (see Boss, 1998b, for an overview).
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2.3 The evolution of protoplanetary discs

Figure 2.4: Fraction of stars with near-infrared disc emission as a function of the age of the stellar group they
belong to. Open circles and solid symbols represent the disc frequency for stars in the T Tauri
(TTS) mass range (K̃5 or later), derived from different wavelength data. For further description see
original paper. (Image and text by Hernández et al., 2008)

Observations of young stars in star clusters of different age showed that the proportion of stars with

IR excess, indicating a disc, decreases with time (Haisch et al., 2001; Hernández et al., 2008) (see

Fig. 2.4). In clusters of an age of 5 million years (Myr) and above most systems seem to be disc-less.

There are in principle two possible reasons for this observations:

The first reason is, that the discs materials properties change in a way, that it stops radiating in

observable wavelengths. The SED of the radiation emitted by the discs depends basically on the

temperature and size of the dust grains. Thus the observation depend on the chosen wavelength and

these properties of the dust. When a specific wavelength was chosen for an observation and the dust

does not emit light of this wavelength because it is to cold, or the grains are to big, the disc can

not be observed. As mentioned before, observations in wavelengths around 0.1µm are not possible,

because no instruments are available for this wavelength regime. Because km-sized planetesimals

emit mainly in this wavelengths, it is not possible to observe them directly. That means, when the

dust grains become larger due to coagulation processes, the IR radiation declines even though the disc

as a whole remains (see Sec. 2.3.1). This can lead to the effect, that existing disc material is no longer

observable.
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The second reason is, that the protoplanetary discs are destroyed by the removal of their material.

Several processes are known to play a role in this disc destruction.

Viscous disc spreading

The material from the disc can be accreted by the star with a smaller rate than in the protostar phase.

Because the disc is rotating, this can only happen, when the inward migrating matter looses angular

momentum. Due to general angular momentum conservation it can only be transfered to other ma-

terial. A good candidate for causing the outward transport of angular momentum is viscosity. The

faster rotating inner material is decelerated by friction, which accelerates the slower outer material.

The decelerated inner material moves finally into the star, the accelerated outer material moves to a

higher orbit. By this means the disc spreads outward (Pringle, 1981).

Photoevaporation

As the protostar increases its mass, its luminosity increases as well. When the star is luminous enough

the inner regions of the disc are heated so much, that the gas molecules can reach escape velocity and

leave the potential well of the system. This process is called photoevaporation. For very luminous

stars this can lead to the destruction of the disc from the inside outwards.

As well, the radiation from another nearby luminous star can cause the destruction of the disc by

photoevaporation from the outside inwards.

Tidal stripping

Another process is the removal of disc material by encounters with other stars (Pfalzner et al., 2006).

When the star-disc system is located in a star cluster, encounters with other stars are likely to occur.

When an encounter is close enough and the perturber mass is high enough part of the disc material

can become unbound and leave the system. Strong or repeated encounters can even lead to a complete

destruction of the disc.

2.3.1 Two planet formation scenarios

Besides the above mentioned processes, the formation of planetesimals or planets lead to a removal of

observable disc material. While the gas and dust can be observed by its IR radiation the planetesimals

are too large, to be observable in the IR and too small, to be observable in the optical. Even the bigger

and much more massive planets are often difficult to observe.

Two competing planet formation scenarios were proposed.

The core accretion model

The material of a protoplanetary disc consists of ≈ 99% of gas and ≈ 1% of dust. Initially the dust

grains are of µm-size. They feel the pressure of the gas and move with it. These dust grains can
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collide and stick together and form bigger grains. When the grains are of metre-size, they no longer

feel the pressure of the gas and move independent of it. Now the dust grains can sediment to the

midplane of the disc. In the so increased grain density in the midplane, the collision-rate of the grains

is much higher (see top-left image of Fig. 2.5). When the “grains” have grown to 10-kilometre-sized

planetesimals their gravitational attraction is strong enough to boost the growth (see Boss, 1998a)

(see top-right image of Fig. 2.5). When these growing “planetary embryos” reach a certain mass after

approximately 106 years (≈ 10MEarth), they start accreting the discs gas to form gas giant planets

(see bottom-left image of Fig. 2.5). This phase lasts for approximately 107 years (Boss, 1998a).

When there is enough disc gas left at the positions of the planet embryos in this phase the resulting

planets can have up to several MJupiter. At any time of this process, not accreted planetesimals can be

gravitationally slingshot out of the system (see bottom-right image of Fig. 2.5).

Figure 2.5: Schematic view of the core accretion model for planet formation. (Rearranged from image by
NASA/ESA and Feild, A., 2003)

As already mentioned this process lasts for 107 years. On the other hand, the disc lifetime is

only 5 · 106 years (see Sec. 2.3). So there seems to be a problem with the time-scale. Also there

are processes reducing the planet formation efficiency. Small colliding dust grains do not only stick

together. Depending on the relative velocity, they can also destroy each other increasing the time

needed to form planetesimals. While very small dust grains move with the gas and kilometre-sized

rocks barely feel the drag, the metre-sized clumps should be influenced by the gas. This should cause
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the rapid migration of these clumps into the central star. Additionally, the forming planets can produce

gaps in the disc which stops the inflow of gas (see Boss, 1998a). Therefore, the material available in

the inner part of the disc can be insufficient to form gas giant planets. However, gas giant planets are

indeed observed within 1 AU from their star.

The gravitational instability model

The second planet formation scenario is based on the possible gravitational instability of the discs.

Toomre (1964) derived a criterion for the stability of a self-gravitating disc as

Q =
csΩ

πGΣ
, (2.6)

where cs is the sound speed, Ω the local angular frequency, and G the gravitational constant and Σ the

local surface density. This is basically a modified Jeans criterion considering the stabilisation by the

rotation. The disc is stable against gravitational collapse for Q & 1. Since the sound speed is cs ∝
√

T ,

the disc can be destabilised by decrease of temperature or increase of the surface density Σ.

Fluctuations in the disc, for example caused by spiral arms, can lead to the formation of dense

clumps. When the gas is cold enough (Q < 1), the gas becomes gravitationally bound and the clump

is stable (see top-right image of Fig. 2.6). This clump can accrete disc material very fast (within

some 103 years (Boss, 1998a)). Inside the clump, the dust grains can settle to the centre and form a

compact core (see bottom-left image of Fig. 2.6). The clump can shrink by converting gravitational

energy into thermal energy, which is radiated away. While the clump, now called planetary embryo,

accretes more disc material, it can clean its orbit (see bottom-right image of Fig. 2.6).

Various investigations were performed to determine the influence of cooling on the stability of the

discs (Gammie, 2001; Lodato & Rice, 2005; Rice et al., 2003, 2005). Usually cooling is modelled

by the introduction of a cooling-time tcool, which is related to the local angular frequency Ω by the

cooling parameter β = Ωtcool (e.g. Lodato & Clarke, 2011). For β , values were found between 3 and

13 (see Meru & Bate, 2011). In this model, the discs become gravitationally unstable as a natural

outcome of the cooling process. Because in the inner regions of the disc viscous heating balances the

cooling and the equilibrium temperature is too high, the discs tend to fragment at the outer regions

at some 10 AU. In this model, stable clumps can form outside 50 AU, but most extrasolar giant

planets found so far, were found close to their central star (< 5 AU). This can not be explained by

this model. On the other hand, since planets can not be formed out of some 10 AU from the central

star according to the core accretion model (e.g. Levison & Stewart, 2001) the gravitational instability

model is currently the only explanation at hand for planets found that far away from their host star.

Alternatively to the evolution into instability by cooling, some groups (Clarke et al., 2008; Forgan

& Rice, 2009) investigated recently, whether star disc encounters play a role in the fragmentation of

protoplanetary discs. While Clarke et al. (2008) found no significant influence of the encounter on

the susceptibility to fragment, Forgan & Rice (2009) found, that encounters rather stabilise the discs
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with compressive and shock heating, than triggering the fragmentation.

Figure 2.6: Schematic view of the gravitational instability model for planet formation. (Rearranged from image
by NASA/ESA and Feild, A., 2003)
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3 Smoothed Particle Hydrodynamics

Many processes described in the previous chapter can be reduced to the dynamics of a self-gravitating

gas. The numerical solution of the gravitational forces will be described in Sec. 4.1. In this chapter

the SPH method will be described. It is used as fluid-solver in the code developed in this work.

Discretisation of the fluid-equations

In general, fluid flows are described by the Navier-Stokes-equation

∂v
∂ t

=−∇P
ρ
− (v∇)v,

where P is the pressure, ρ the density and v the velocity vector. The first part of the right hand side of

the equation is the acceleration caused by a pressure-gradient, the second part is the acceleration due

to convection. Neglecting the convective part, for the following example, one obtains,

∂v
∂ t

=−∇P
ρ

. (3.1)

This equation has to be discretised to solve it numerically. The classical discretisation is done at the

intersection points of a regular grid (see Fig. 3.1 a) ). The x-component of the velocity at time t +∆t

is then given by

vx,i, j(t +∆t) =−
(

Pi+1, j(t)−Pi−1, j(t)
2∆xρ(t)

)
∆t, (3.2)

where the subscripts i and j enumerate the grid-points in x- and y-direction and ∆x is the x-distance

between two grid-points.

Analog the continuity equation

∂ρ

∂ t
= ∇ρv

is discretised as

ρi, j(t +∆t) = ρi, j(t)
(

vx,i+1, j(t)− vx,i−1, j(t)
2∆x

+
vy,i, j+1(t)− vy,i, j−1(t)

2∆y

)
∆t. (3.3)

The SPH method was introduced as an alternative approach to discretise the fluid-equations by

Gingold & Monaghan (1977) and Lucy (1977). Here, not the space is discretised, but the flow itself
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Figure 3.1: To types of discretisation of the expansion of a stream into a vacuum. a) shows the discretisation
with a regular grid, as used by many numerical fluid solvers. At each point density and velocity is
evaluated according to Eq. 3.2 and 3.3. At the red points density and velocity have to be evaluated
without any gain. b) shows the corresponding SPH-discretisation. Here not the space, but the flow
is discretised.

(see Fig. 3.1 b) ). Each interpolation point is linked to a specific amount of mass. By this means,

pseudoparticles are defined. This makes SPH a particle based fluid method, where the particles have

intrinsic properties like density, temperature etc. The mass associated with the particle is distributed

around the interpolation point with a function called ’kernel’. During the temporal evolution, these

interpolation points and their associated density ’clouds’ move with the fluid, what makes SPH a

Lagrangian method. Because the interpolation points represent a fixed amount of mass, the resolution

automatically increases at denser regions. This intrinsic resolution adaptiveness and the fact, that

it does not depend on a mesh like Eulerian fluid methods, makes SPH ideal for the simulation of

gas flows with strong density gradients and free-surface flows. Another advantage over grid based

fluid-solver is, that mass is conserved exactly.

Additionally, this Lagrangian fluid dynamics method seems the natural counterpart of an also La-

grangian n-body method used for gravitation (see Sec. 4.1). Both methods determine the acceleration

for the particles and then these particles are moved according to a given integration scheme.

3.1 A basic SPH formulation

The here presented derivation of the fundamental equations will basically follow the work of Mon-

aghan (1992). It should be mentioned that there exist a mathematically more consistent version (see

Springel & Hernquist, 2002), but here the more-widely used version by Monaghan is used. First a

basic set of equations needed for the SPH method will be derived, then some improvements will be

presented.
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3.1.1 The SPH principle

The central idea of SPH is that any function f (x) can be expressed with the delta-distribution as

f (x) =
∫

f (x ′)δ (x− x ′)dx ′.

In three dimensions, one can similarly define a function A of the position vector r in the following

way

A(r) =
∫

A(r ′)δ (r− r ′)d3r ′.

Defining a function W , in the following called kernel, with the property

lim
h→0

W (r,h) = δ (r),

where the smoothing length h is a parameter determining the width of the kernel, one can write

A(r) = lim
h→0

∫
A(r ′)W (r− r ′,h)d3r ′.

For a small enough h follows

A(r)≈
∫

A(r ′)W (r− r ′,h)d3r ′. (3.4)

With the relation between mass m and density ρ dm = ρ(r)d3r one finally obtains

A(r) =
∫ A(r ′)

ρ(r ′)
W (r− r ′,h)dm ′.

With this equation it is possible to interpolate any scalar field A at the location r with the value of this

field at different locations r ′. For later computational usage, the integral has to be discretised:

Aa = ∑
b

mb

ρb
AbW (ra− rb,h). (3.5)

Here the subscripts a denotes a specific interpolation point and b enumerates other interpolation

points. From (3.5) one can see, that an arbitrary property Aa of the interpolation point a can be

computed by summing up the properties Ab of the points b weighted with their masses mb, densities

ρb and the function W .
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3.1.2 Density and acceleration

With ρ(r) as function A(r), one obtains an expression for the density at point a as

ρa = ∑
b

mbW (ra− rb,h). (3.6)

Furthermore, the gradient of a function A can be expressed as

∇Aa = ∑
b

mb

ρb
Ab∇W (ra− rb,h). (3.7)

Until here, the derivation was straight forward and the obtained equations are very generic. For later

application, the arbitrary function A has to be identified with physical quantities.

The accelerations a of the interpolation points is given by the Navier-Stokes-equation as

a =−∇P
ρ

.

Straight forward transformations leads to

aa =− 1
ρa

∑
b

mb

ρb
Pb∇W (ra− rb,h). (3.8)

As pointed out by Monaghan (1992), this equation does not guarantee the conservation of linear and

angular momentum. To avoid this, it is better to symmetrize the formula in a way, that the properties

of both interpolation points a and b are taken into account:

∇

(
P
ρ

)
=

∇P
ρ
−P

∇ρ

ρ2

⇒∇P
ρ

= ∇

(
P
ρ

)
+P

∇ρ

ρ2 . (3.9)

Together with (3.7) follows

aa =
(

∇P
ρ

)
a
= ∑

b

mb

ρb

Pb

ρb
∇W (ra− rb,h)+

Pa

ρ2
a
∑
b

mb

ρb
ρb∇W (ra− rb,h)

= ∑
b

mb

(
Pb

ρ2
b

+
Pa

ρ2
a

)
∇W (ra− rb,h).

This gives the force term

Fa =−ma ∑
b

mb

(
Pb

ρ2
b

+
Pa

ρ2
a

)
∇W (ra− rb,h). (3.10)

Using (3.10) instead of (3.8) improves the momentum conservation (see Monaghan, 1992; Monaghan

& Lattanzio, 1985). Because ∇W (ra− rb,h) =−∇W (rb− ra,h), the use of both pressures Pa and Pb
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in (3.10) guarantees, that the forces are symmetric:

Fa→b =−Fb→a.

3.1.3 Thermal energy equation

With the equations 3.6 and 3.10 it is already possible to implement a very basic fluid solver. However,

these equations do not guarantee energy conservation.

When two interpolation points move towards each other with contrary velocities, they both slow

down because their kinetic energy is transformed into thermal energy. The thermal energy u is defined

in terms of pressure, density and velocity as

du
dt

=−P
ρ

∇v.

This can be transformed in a similar way as (3.9):

∇ρv = ρ∇v+v∇ρ

⇒∇v =
∇(ρv)−v∇ρ

ρ

⇒du
dt

=−Pa

ρ2
a
∑
b

mb(vb−va)∇W (ra− rb,h). (3.11)

Here only the pressure of interpolation point a is taken into account. Again, for better conservation

behaviour, another equation has to be derived:

∇

(
Pv
ρ

)
=

P
ρ

∇v+v∇

(
P
ρ

)
⇒P

ρ
∇v = ∇

Pv
ρ
−v∇

(
P
ρ

)
⇒du

dt
=−∑

b

mbPb

ρ2
b

(vb−va)∇W (ra− rb,h). (3.12)

Here only the pressure of interpolation point b is taken into account. By averaging (3.11) and (3.12)

one obtains the symmetric energy-equation as

du
dt

=−1
2 ∑

b
mb

(
Pa

ρ2
a

+
Pb

ρ2
b

)
(vb−va)∇W (ra− rb,h). (3.13)
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3.1.4 Summary

The conservation laws of mass, momentum and energy are now given by the set of equations (3.6), (3.10)

and (3.13), here recalled for an overview. This set of equations are the basis of the SPH method.

ρa = ∑
b

mbW (ra− rb,h)

Fa =−ma ∑
b

mb

(
Pb

ρ2
b

+
Pa

ρ2
a

)
∇W (ra− rb,h)

du
dt

=−1
2 ∑

b
mb

(
Pa

ρ2
a

+
Pb

ρ2
b

)
(vb−va)∇W (ra− rb,h)

3.2 Improvements to the basic formulation

The basic SPH equations derived above can already be used for the simulation of fluids. In the

following an improvement for the application to shock waves will be derived. Additionally, a method

will be introduced, to reduce the computation-time fundamentally.

3.2.1 Artificial viscosity

SPH, as well as many other numerical solver for differential equations, has limited capability to

resolve strong gradients as occurring for example in shocks. Unlike in sound waves, the physical

properties, like temperature, pressure or density, change in shocks very fast and by huge amounts. Due

to the Lagrangian nature of SPH, in shock waves it is possible that the interpolation points approach

very close and even penetrate each other. Since the interpolation points represent macroscopic matter

flows, this is unphysical and should not happen. To avoid this, an artificial viscosity as introduced by

Monaghan & Gingold (1983) is used in most SPH-codes. As the term “artificial” already implies, this

is not strictly analytical derived from the physical viscosity in fluids, but more an empirical approach.

To include this artificial viscosity, the term(
Pb

ρ2
b

+
Pa

ρ2
a

)
in (3.10) and (3.13) is replaced by (

Pb

ρ2
b

+
Pa

ρ2
a

+Πab

)
,
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with

Πab =


−α c̄abµab+β µ2

ab
ρ̄ab

v · r < 0

0 otherwise

and

µab =
hvab · r

r2
ab +η2 ,

where α , β and η are dimensionless parameters, c̄ab is the mean sound speed and ρ̄ab the mean

density.

This viscosity is only non zero, if the two particles move towards each other. In practice, the

parameters α and β are usually chosen as α ≈ 1 and β ≈ 2α . η is just needed to prevent singularities

when rab is close to zero and is usually set to 0.1h (see Monaghan, 1992).

Integrating this improvement one obtains

Fa =−ma ∑
b

mb

(
Pb

ρ2
b

+
Pa

ρ2
a

+ΠNb

)
∇W (ra− rb,h) (3.14)

du
dt

=−1
2 ∑

b
mb

(
Pa

ρ2
a

+
Pb

ρ2
b

+ΠNb

)
(vb−va)∇W (ra− rb,h). (3.15)

3.2.2 The kernel

Up to this point, to calculate a property of an interpolation point the properties of the N− 1 other

interpolation points have to be summed up, which results in an overall computation cost of O
(
N2
)
.

However, by using a function W as kernel, with lim
h→0

W (r,h) = δ (r), the majority of the points will

contribute almost nothing to the properties of point a. The reason is that the distance is large and

so the kernel for this pair of points very small. One can benefit from this by using a kernel function

with compact support1. One such kernel is a spline of the form first used by Monaghan & Lattanzio

(1985):

W (r,h) = σ


1− 3

2

( r
h

)2 + 3
4

( r
h

)3 if 0≤
( r

h

)
≤ 1

1
4(2−

( r
h

)
)3 if 1≤

( r
h

)
≤ 2

0 otherwise,

1A function with compact support is zero everywhere except a small range.
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where

σ =


2

3h 1D

10
7πh2 2D

1
πh3 3D

to fulfil the normalisation criterion
∞∫
∞

W (r,h)ddr = 1. This kernel has compact support, its second

derivative is continuous and the dominant error term in the integral interpolant is O(h2) (Monaghan,

1992).

0
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Figure 3.2: Spline kernel for 1D compared to normalised Gaussian.

Figure 3.2 shows a comparison of the spline kernel with a Gaussian with same normalisation.

While the exact form of the kernel is of minor importance, it is crucial that it is smooth close to the

maximum and where it approaches zero. Both is given for the Gaussian and the spline kernel. For

|x| ≥ 2h the spline kernel equals zero.

Monaghan (2005) noted that various other kernels have been studied but none produced signifi-

cantly better results than this one.

Because the kernel is a polynomial, the first derivative can be easily derived as

∇W (r,h) = σ


(9r−12h

4h3

)
r if 0≤

( r
h

)
≤ 1

−3(2−( r
h))

2

4rh r if 1≤
( r

h

)
≤ 2

0 otherwise,
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with r = |r| and σ as noted above. With this kernel the computation time per interpolation point is

linear in the number of interpolation points within the 2h smoothing-sphere which is a lot better than

O
(
N2
)

for good choices of h.

3.2.3 Choosing the neighbours

By using this spline kernel the sums in the SPH-formulas change from ∑
N
b to ∑

Ñ<<N
b , where Ñ is the

number of interpolation points in the region around a where W (ra−rb,h) 6= 0. In principle, there are

two methods to specify Ñ:

• By choosing one h for all interpolation points. Then Ñ is the number of interpolation points

inside a sphere with radius 2h around interpolation point a. In this case, the algorithm for

finding the interaction partners can be very easy because the interpolation points can be sorted

in equal-sized boxes and then only the neighbouring boxes of an interpolation point have to be

searched for neighbours. On the other hand, this would destroy the resolution adaptiveness and

can result in long computation times if the interpolation points cluster.

• By choosing h individually for each interpolation point for example in a way that there is always

the same mass inside the kernel or that ρh3 = constant. The first would be the same as choosing

a fixed Ñ for all interpolation points. This would reduce the runtime of the force summation to

O
(
N · Ñ

)
.

Even though the SPH-formulas have already been symmetrised above, there is still an error source

in the way how the neighbouring interpolation points of a are determined during the computation.

Using the Ñ closest interpolation points as neighbours for a corresponds to a criterion like

b neighbour of a, if dist(a,b)≤ 2h(a), (3.16)

where h(a) is here defined by the distance to the furthest of the Ñ neighbours.

As shown in Fig. 3.3, it is likely in strong density gradients, that a particle a is neighbour of a

particle b but b is not a neighbour of particle a. That means that the force from b to a is taken into

account, but not vice versa. This corrupts the momentum conservation achieved with the derivation

of the symmetric force equation (3.10) in case of strong density gradients.

To avoid this problem another criterion for the interaction partners of interpolation point a is

needed:

b neighbour of a, if dist(a,b)≤ max(2h(a),2h(b)). (3.17)

This has to be considered when searching the interaction partners.
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ρ

x

n=13

a
b

Figure 3.3: Example of a particle distribution where a symmetric neighbour criterion is needed to avoid viola-
tion of momentum conservation.

3.3 A resolution requirement

In simulations of protoplanetary discs, the discs heated for example by viscosity, are typically cooled

by assuming a cooling-time tcool, which is related to the local dynamical time Ω by the cooling

parameter β = Ωtcool (e.g. Lodato & Clarke, 2011). In the last years several numerical investigations

tried to find reasonable values for β . Recent investigations by Lodato & Clarke (2011) showed that

some results obtained by SPH simulations of fragmenting protoplanetary discs can be reinterpreted

in a way that the effects found in the simulations are caused by insufficient resolution. For a disc with

density ρ

ρ(r,z) =
Σ(r)√
2πH

exp
(
− z2

2H2

)
,

where Σ is the previously used surface-density, z is the coordinate perpendicular to the discs plain and

H is the so called scale height Williams & Cieza (2011), physical fragmentation can occur when

h
H

< 1,

where h is the SPH smoothing length. Together with the Toomre stability parameter

Q =
csΩ

πGΣ
,

where cs is the sound speed and G the gravitational constant Toomre (1964),

m(r) = Σr2/Mstar
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and

ρh3 = ηmp,

where η is a parameter for SPH and mp the mass of one particle according to mp = Mdisc/N, a criterion

for the minimal particle number needed to ensure sufficient resolution can be constructed

h
H
≈
(

η

m(r)

)3/2( 2p
π2Q2N

)1/2

.

For a power-law surface-density with index p = 1 this can be evaluated at the outer edge to obtain

h
H
≈ 0.3

( q
0.1

)−2/3
(

N
2.5 ·105

)
,

where q = Mdisc/Mstar.

To get a vertical resolution at the outer edge of the disc of H/5 for a disc with q = 0.1 approximately

850000 particles are needed. For H/10 nearly 7 ·106 particles are needed.

To simulate such a disc with this resolution a fast simulation code is needed.
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4 The tree-code PEPC

While thermodynamic forces are of short-range character, gravitational or coulomb forces with their

1/r-potential are long-range interactions. This means that a computational solution of these forces

can not be calculated by just taking the properties of the direct environment into account but has

to take the whole simulation volume into account. The equations of motion for N gravitationally

interacting bodies are given by the N coupled differential equations of the form

mi
dr̈i

dt
= F(r1..N),

where mi is the mass of body i, ri its position vector and F is the force caused by all particles at

their positions r1..N . To solve these equations numerically, for each body N − 1 forces have to be

calculated, which leads to a O
(
N2
)

computation-time. This limits the manageable total number of

bodies (or particles) on today’s fastest supercomputers due to limited computation resources. When

many time-steps have to be calculated, only a few 100000 particles can be treated. To simulate more

particles - or the same amount of particles in a more efficient way - a better-scaling method is needed.

Among several such methods which all abstract in some way from the individual particle properties

to a coarser level, tree-codes, as introduced by Barnes & Hut (1986), are often used for the numerical

solution of gravitational interactions in astrophysical simulations.

4.1 Tree-codes in general

In computer sciences a tree is a special type of graph. Graphs are data-structures often used in

computer science to organise a set of elements (nodes). The nodes are connected pairwise with edges

often denoting a relation between the two nodes they connect (see Fig. 4.1 a). When there is always

only one path from each node to all other nodes, this graph is a tree (see Fig. 4.1 c). When the edges

denote directed relations (like a < b, a > b, a ’is child of’ b, a ’contains’ b ), the tree is a directed tree

(see Fig. 4.1 d). In this case the nodes can be rearranged hierarchically (see Fig. 4.1 e).

Tree-codes use trees as data-structures to store and access information about a particle-distribution.

The tree-nodes are spatial subsets of the whole simulation box and the edges denote the relation

’a contains b’. The tree-nodes are linked to information about the particle-distribution inside the

simulation volume they represent.

To build the tree a box enclosing the whole simulation volume is identified with the root of the

tree and then the box is consecutively subdivided into smaller child boxes, which are linked with the
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Figure 4.1: Samples for graphs and trees: a) graph b) directed graph c) tree d) directed tree e)
Nodes from d) rearranged.

parent box. If one box contains only one particle, the subdivision is stopped and the particle is linked

to this box. This can be done by dividing the dimensions in a rotating manner or by dividing each

dimension at every step. The first would result in a binary-tree, the second in a binary-, quad- or

oct-tree depending on the dimensionality of the problem. For a 2D sample of a particle distribution

with associated quad-tree see Fig. 4.2.

Figure 4.2: 2D particle distribution with corresponding quad-tree. The root of the tree is the full simulation-box
and the subdivision is stopped, when there is only one particle in a cell. At every level, the order of
the nodes is bottom-left, bottom-right, top-left, top-right.

For each box, pseudoparticles are constructed representing the particle-distribution inside the box.

In the simplest case, these pseudoparticles have the total mass of all particles in the box and are

located at their centre of mass.

Then for the force computation particle-pseudoparticle interactions are taken into account rather

than particle-particle interactions. To decide which pseudoparticle to use for the interaction, a crite-

rion is constructed based on the distance d between particle and pseudoparticle and the size s of the
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box associated with the pseudoparticle

s/d ≤ θ , (4.1)

where θ is a dimensionless parameter which has to be chosen adequately (e.g. Pfalzner & Gibbon,

1996). θ = 0 results in a direct particle-particle force summation with O
(
N2
)

run-time. For θ > 0,

only for close interactions highly resolved pseudoparticles are used, for distant interactions a few

big pseudoparticles are used. This reduces the computational effort for the force-summation to an

O (N logN) run-time.

From a physical point of view, the total mass pseudoparticle at the centre of mass associated with

a tree-node is the first order of the multipole expansion of the gravitational potential caused by the

particles in the box.

Figure 4.3: Interaction of particle j with a pseudoparticle. R is the vector from the particle j to the centre of
mass of the pseudoparticle. ri is the vector from a particle contributing to the pseudoparticle to its
centre of mass.

For a particle j, the gravitational potential caused by the particles in a tree-node is given by

Φ(R) = ∑
i

Φ(R− ri),

where R is the vector from the particle to the centre of mass of the particles in the tree-node and ri is

the vector from the particle i to the centre of mass (see Fig. 4.3). For a 1/r potential, the multipole

expansion is given by

Φ(R) =−∑
i

mi

[
1− ri

∂

∂r
+

1
2

riri
∂

∂r
∂

∂r
+ ...

]
1
R

with the masses mi of the particles in the tree-node (e.g. Pfalzner & Gibbon, 1996). The terms in the

square brackets are, from left to right, the monopole, the dipole and the quadrupole moment. For a

pure gravitational tree-code, the dipole moment vanishes. The force on particle j can then be obtained
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with

F j(R) =−m j
∂

∂r
Φ(R).

The multipole moments of a tree-node only depend on the mass distribution inside the node. This

makes it possible to pre-compute the multipole moments. This is important, because the multipoles

are used very often and pre-computing them once saves a lot of computation time. To calculate the

multipole moments of a bigger tree-node, the multipole moments of its child-nodes can be used (see

Pfalzner & Gibbon, 1996).

In more sophisticated tree-codes, higher multipole moments of the potential are used to reduce

errors in the force summation instead of reducing θ . This needs more memory but is often faster.

Because the computation time of a multipole moment of order1 l has an O
(
l2
)

dependence (see

Pfalzner & Gibbon, 1996), a good compromise between the highest used multipole moment and the

choice of θ has to be found. In practice θ . 0.6 is often sufficient. In PEPC (Pretty Efficient Coulomb

Solver) the multipoles up to the quadrupole term are implemented.

4.2 Parallel tree code - PEPC

4.2.1 Parallel computing

To simulate large physical problems in a reasonable (wall) time, there are recently three possible ways.

At first, there are the classical supercomputers. These are basically standard computer components

like CPUs and main memory with some kind of fast interconnect. The problem is then split into small

pieces and computed on the CPUs in parallel. The available supercomputers belong in principle to

two different types.

Shared-memory computers

The first type are so called shared-memory computers. They have several CPUs connected in a way,

that they can access the same memory. Such the processes running in parallel on the CPUs can work

on the same data simultaneously. Recent shared-memory supercomputers like the SGI ALTIX UV

provide up to 4096 CPUs accessing up to 32 TB of shared main memory (PSC, n.d.). Programs for

these types of supercomputers are easier to parallelise because all processes have the same data. It

is possible to parallelise loops over big arrays in a way, that the parallel processes work on different

regions of the arrays, e.g. process 1 of p processes computes array entry 1 to N/p, process 2 computes

array entry N/p + 1 to 2N/p and so on. With modern programming techniques like OpenMP the

parallelisation of the most expensive loops in the program can normally be achieved within hours.

1The monopole moment has l = 0, the dipole moments l = 1, and so on.
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Distributed-memory computers

The other type are the distributed-memory computer. These are in principle several shared-memory

computers, called nodes, connected through a very fast network. The processes running on one nodes

can only access the data in their local shared-memory and if they need information from a process

running on another node they have to retrieve this information via the network. One widely used

programming technique for this type of computers is MPI (Message Passing Interface). It provides

functions to send data, e.g. particle coordinates, to another process. The programmer has to take care

of the correct collection of the data from the local arrays of the source process, as well as to include

the received data into the local arrays of the target process. Because the bandwidth of the network

communication is limited and it is affected by latency, every communication has to be well-considered

and optimised. On the other hand the local memory of the nodes is limited, so that it is in general not

possible to communicate all information to all processes. Hence it can be quite challenging to write a

program, that scales good on huge distributed-memory computers. But reward for the higher effort it

a program, that in principle can benefit from a higher number of processors and more memory.

Hardware accelerators

The alternative to supercomputers for fast computing is the use of hardware accelerators like those

developed from recent high-end graphic-cards. These cards have their own memory and a processor

capable of computing large sets of data in parallel. When a problem is small enough to fit in the

memory of an accelerator and the computational expensive parts of the problem can be transformed

in a way that it can be handled by the accelerator, the performance gain can be very large. When the

problem does not fit into the memory of one accelerator it is possible to combine the accelerators with

the classical shared- or distributed-memory supercomputers. In this case data exchange between two

accelerators via the shared-memory or via the network can be quite time consuming compared to the

computation time. This can nullify the performance gain.

The type of code developed in this work requires a lot of communication (see Sec. 5.3.3). Therefore

it is expected that this code would benefit from accelerator cards.

Scaling

When a program runs on a parallel computer with p processes in parallel, it is in general not exactly

p-times faster. As first described by Amdahl (1967) the speedup of a parallel program is limited by

these serial components. The speedup of a program running on a distributed-memory computer is

often limited by the communication. Additionally, the run-time of most algorithms does not increase

linearly with problem size. The dependence of the program run-time on the problem size or number

of parallel processes is called scaling.
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4.2.2 Parallel tree code - PEPC

During this work the parallel tree-code PEPC was extended with a SPH-module for hydrodynamics.

PEPC is parallelised with MPI for distributed memory computers, In the following the parts most

important for this work will be described in detail.

PEPC is a so-called hashed-oct-tree based tree-code written by Gibbon (2003) for plasma-simula-

tions. It follows the implementation described by Warren & Salmon (1995) and is parallelised with

MPI to optimise it for distributed-memory-computers. As noted in Gibbon et al. (2010a) it is capable

of simulating more than 108 particles with up to ≈ 8000 parallel processes. However, recent changes

made PEPC capable of running on all 73728 compute-nodes (with 294912 cores) of Jugene (see

Winkel et al., 2011). Because Jugene is still the supercomputer with the highest number of nodes in

the world2, this makes PEPC the highest scaling tree-code. In Fig. 4.4, the scaling of the latest version

for homogeneous particle distributions with different particle numbers N can be seen. The solid lines

represent the total run-times. A linear decrease of run-time with increasing number of cores is ideal.

Note the near ideal decrease of run-time with increasing number of cores of the blue solid line, almost

up to the full machine.

Figure 4.4: Runtime of PEPC for simulations of homogeneous particle distributions with different particle num-
bers N. The solid lines represent the total run-times. A linear decrease of run-time with increasing
number of cores is ideal. Note the near ideal scaling for huge particle numbers (blue line). (Image
courtesy of Winkel et al., 2011)

For any parallel program on a distributed memory machine, it is necessary to distribute the data

somehow to the processes. To reduce communication to a minimum, frequently used date should be

2For the full list of the fastest computers see http://www.top500.org.

http://www.top500.org
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kept together. For particles distributed homogeneously in the simulation box this means, that the data

of one process preferentially cover a contiguous space region. The distribution of simulated space

across the main-memory of the processors is called domain decomposition.

4.2.3 Domain decomposition and tree construction

To identify particles and tree-nodes over process-boundaries, unique identifier are needed, provided

by coordinate-based keys.

Key construction

To construct these keys, first the maximum extension of the three dimensions boxsize is determined.

With a maximum number of nlev tree-levels, the bisection of every dimension per level leads to the

box-length3 s on the finest level with s = boxsize/2nlev . The finest level can be filled with up to

2nlev tree-nodes per dimension. Then the three floating-point coordinates of the particles are trans-

formed into three integers giving the number of finest-level-box-lengths s which fit between the lower

simulation-box-border and the particle with

ix = (x− xmin)/s,

where xmin is the minimum x-coordinate of all particles (iy and iz likewise). From the binary repre-

sentations of these integers, the oct-tree can now be derived with simple arithmetic operations because

each of these integers already has the form of a one-dimensional binary tree: If the most significant

bit4 equals 0, the particle is located in the left half of the simulation-box, if it equals 1 the particle is

located in the right half. If the n-th most significant bit equals 0 the particle is located in the left half

of the n-th level box, if it equals 1 the particle is located in the right half of that box.

Figure 4.5 shows how in the 2D-case a quad-tree is constructed from the integer-coordinates. The

x-coordinate of a column can be found by reading the digits written under this column from the outer

to the inner one as a binary number. For example, for the column with the red 2 one finds 10102, where

the subscript denotes the numeral system. As denoted above, this equals the number of columns left

of that box, here 1010. The leading 1 (in binary notation) tells that the box lies in the right half of the

top-level box. Similarly one obtains 10012 for the y-coordinate of this box, which corresponds to 910.

Here the leading 1 tells that the box lies in the upper half of the top level box. Enumerating the four

quarter-boxes on every level with 0 to 3, one can transform the bits of the integer-coordinates directly

into the digit sequence called key k via

k = p+
nb−1

∑
j=0

4 j(2 ·bit(iy, j)+bit(ix, j)), (4.2)

3The edge length of a tree-node.
4The most significant bit is the bit with the highest value.



32 4 The tree-code PEPC

Figure 4.5: Sketch for the key construction from integer coordinates. The box with the red 2 is the 11th box
from left and the 10th box from bottom. Because counting starts from 0 here, the box has the integer
coordinates (10,9) as shown in the sketch (the subscript denote the numeral system). The bits from
these coordinates binary representation are then interleaved to construct the cells key.

where the function bit(i, j) selects the j-th bit of the integer coordinate i, nb is the total number of

bits (here 4) and p is a placeholder to distinguish between the keys 002 and 0002 which are written as

1002 and 10002 with the placeholder bit (see Gibbon et al., 2010b). So for the red 2, one obtains the

key k = 10110000010102 = 130124. Conversely one can learn from that key that the box is a fourth-

level box (five digits minus one for the placeholder), in the top-level-box it is located in the top-right

quarter (enumerated with 3), in this quarter it is located in the bottom-left quarter (enumerated with 0)

and so on.

For the 3D-code, the keys are computed as

k = p+
nb−1

∑
j=0

8 j(4 ·bit(iz, j)+2 ·bit(iy, j)+bit(ix, j)). (4.3)

By this means a single integer-key can be constructed from the three floating-point coordinates to

identify each particle. In PEPC the three 8-byte floating-point coordinates are transformed into one

8-byte integer. Without the placeholder-bit, 63 bits of the integer are used for position-information

instead of the 3 ·64 = 192 bits of the three real numbers. Because only 21 of these 63 bits can be used

per dimension, the spatial resolution of the key-space is limited to 221 ≈ 2 ·106 finest-level-boxes per

dimension within the simulation-box. Therefore, the maximum particle-density contrast is limited by

the code-design.
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Domain decomposition and hashing

For the domain-decomposition, the particles are sorted according to the integer-values of the keys

(see e.g. Gibbon et al., 2010b). This 1D particle distribution is divided into p (p is the number of

processes) equal-load chunks by weighting the particles with their computational effort, determined

in the previous time-step. Each of these particle chunks is assigned to one process and the particles

and their properties are sent to their associated processes. Figure 4.6 shows the resulting space-filling-

curve in case of a fully filled finest level and the assignation to five domains.

Figure 4.6: Quad-tree with particles filling the finest tree-level (a) and corresponding space-filling-curve (b).
The colours denote five different domains over which the curve is distributed.

In general, the keys of particles relatively close to each other differ mainly in the least significant

bits. The keys of particles from opposite parts of the whole simulation box differ mainly in the most

significant bits. For example, all particles in the red domain in Fig. 4.6 have 112 as most significant

bits. This provides a method for rapid access of the information associated with a tree-node. Because

the particles of one domain are in general relatively close to each other (not true for all particles of

the green domain in Fig. 4.6), their keys are equal in the most significant bits. By removing part of

the most significant bits the keys can be mapped to memory addresses within a previously allocated

memory area. With this technique, a tree-node can be accessed very quickly compared to an indirect

addressing scheme. Because of this method, called ’hashing’, and the subdivision of a tree-node into

eight child-nodes, this type of code is called ’hashed-oct-tree’.

Tree construction

After the domain decomposition, each process constructs its local tree. During this process a parent-

node’s key is obtained by shifting the child-node’s key by the number of dimension bits in the direc-

tion of the least significant bit. Contrary, the child-node’s keys can be constructed from the parent-

node’s key by attaching the binary representation of the numbers 0− 7. At each node, information

about the present child-nodes are stored. If a tree-node contains only one particle this is attached to
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Figure 4.7: The tree from Fig. 4.2 where each node has a link to the “next” node. Following the red line each
node is visited exactly once.

the node, else the node is subdivided into eight child-nodes (see Gibbon et al., 2010b). Additionally,

at each node a link to the “next” node is stored to line up the nodes (see Fig. 4.7).

Then the multipole moments are computed for each local tree-node.

4.2.4 Tree-walk and force summation

When the preparations are done, for each local particle a list of pseudoparticles fulfilling the criterion

(4.1) is built for the force-summation. Because these lists can contain several hundreds of pseudopar-

ticles, storing the lists for all local particles can be very memory-consuming. To avoid this problem,

the present version of PEPC creates interaction-lists for chunks of local particles at a time. After the

force summation for each chunk the interaction-lists for the next chunk of particles is built and stored

in the same memory area. Because the routine building the interaction-lists ’walks’ through the tree

from node to node, basically according to the order shown in Fig. 4.7, this routine is called tree-walk.

After computing the forces for all particles, the particles’ velocities and positions are advanced by

the integrator. Here a leapfrog integrator is used. This is a second order accurate integration scheme,

which conserves momentum and energy accurate. Here the velocity is evaluated for a point in time

between two coordinate evaluations.

xi+1 = xi +ui+1/2 ·∆t

ui+1/2 = ui−1/2 +a(xi) ·∆t,

where x is the coordinate, u the velocity, a the acceleration and the subscript denotes the time-step.

After the coordinates and velocities have been updated, the code proceeds with the next time-step.

For a simplified work scheme of PEPC see Lst. 4.1.
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1 f o r each t ime−s t e p

2 do domain d e c o m p o s i t i o n

3 b u i l d t r e e

4 compute m u l t i p o l e moments

5

6 f o r each chunk

7 f i n d p s e u d o p a r t i c l e s f o r g r a v i t a t i o n a l i n t e r a c t i o n

8 sum f o r c e s

9 end chunks

10

11 compute new v e l o c i t i e s

12 compute new p o s i t i o n s

13 end t ime−s t e p

Listing 4.1: Simplified work scheme of PEPC

4.3 The tree-walk in detail

The newly implemented neighbour-search algorithm for SPH is based on PEPCs tree-walk. The

neighbour search itself will be described later, but first the tree-walk will be described here in more

detail.

Because PEPC is designed for distributed-memory computers, the particles needed for the force

summation are not necessarily stored in the memory of the process doing the actual force summation.

Thus, this information has to be retrieved from another process and copied into the local tree. In a

typical run, a lot of multipole moments have to be imported by a process, so that this communication

is very sensitive to network latency. To minimise the impact on the total runtime, PEPC uses a latency-

hiding scheme (see Warren & Salmon, 1993) for searching and retrieving the information needed for

the force evaluation. It is based on an alternating execution of communication code and the local

search (see Lst. 4.2).

The interaction lists for long-range interactions can become quite long depending on the parti-

cle distribution and the parameter θ chosen for the acceptance criterion (Eq. 4.1). Therefore, the

interaction-lists are not built for all particles at the same time. For a given number of particles, an

array is filled with the indexes of the actual particles to be processed. The entries of this array named

pshort (see Lst. 4.2 and Fig. 4.8) point to the actual particle coordinates, masses etc. For example

the x-coordinate of the first particle in this list can now be accessed with x(pshort(1)).

At the beginning of a local walk a separate array called plist is filled with the indexes of

the pshort array. Now, the x-coordinate of the first particle in this list can be accessed with

x(pshort(plist(1))) (see Lst. 4.2 and Fig. 4.8).

For all particles i in plist the local walk walks through the tree searching for interaction partners
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Figure 4.8: PEPCs tree-walk uses arrays containing indexes of other arrays for the book-keeping. Here the
most important arrays are shown. x is an array containing for example the x-coordinates of the
particles but could be another array containing velocities or masses as well. This array is global for
the whole tree-code. The red rectangle denotes the whole tree-walk for one chunk of particles. The
green rectangle represents the inner loop (see Lst. 4.2).

for the particle pshort(plist(i)) starting at the root-node and and following the order formerly

described (see Fig. 4.7). In the innermost loop for all particles in plist only one node is checked.

When a tree-node fulfils the acceptance criterion (4.1), it is added to the interaction list of plist(i)

otherwise in the next iteration the walk proceeds with the next node. When the walk reaches a tree-

node where the acceptance criterion is not fulfilled and tries to access a child-node which is not

locally present, this child-node is appended to a ’nodes-to-get’-list for later retrieval and the particle

is removed from plist. This is repeated until plist is empty, which means that the walk cannot

proceed without node-information from other processes.

This is acquired via the following steps:

1. All processes notify the other processes they need information from.

2. Buffers are created for receiving requests from other processes.

3. The requests are collected by the owner-process and sent to the requesting process.

4. Buffers are created for receiving requested data.

5. The data requested by the other processes are packed and sent.

6. The processes wait for incoming data.

7. When data are received in the buffers they are integrated into the local trees.

After the communication is finished for all particles in pshort, the walk status is tested. If

the walk is not finished for a particle it is added to the new plist. Then the walk is resumed

with plist, which will become shorter and shorter every iteration. It is important to note that the
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interaction lists are associated with pshort, so plist only contains pointers to the unfinished

particles.

When the walk is finished for all particles, plist does not contain any more particles. Then for

all particles in pshort, pseudoparticles for the gravitational interaction are stored in lists. These

lists are used by the force summation. All pseudoparticles with their multipole information needed

for this force summation for particles of the actual chunk have already been imported to the local tree.

For a simplified work scheme of the tree-walk see Lst. 4.2.

1 IN : p s h o r t ! i n d i c e s o f a c t u a l p a r t i c l e s i n l o c a l a r r a y s

2 IN : n p s h o r t = # p s h o r t

3 m a x a c t i v e = MPI_MAX( n p s h o r t )

4 p l i s t = i n d i c e s i n p s h o r t

5 n l i s t = # p l i s t

6

7 DO WHILE ( m a x a c t i v e > 0)

8 DO WHILE ( n l i s t >0 )

9 DO i =1 , n l i s t

10 l o c a l _ i n d e x = p s h o r t ( p l i s t ( i ) )

11

12 IF ( mac ok ) use t h i s node

13 ELSE r e s o l v e node

14 END IF

15

16 END DO

17 p l i s t = i n d i c e s o f n o t f i n i s h e d p a r t i c l e s i n p s h o r t

18 n l i s t = # p l i s t

19 END DO

20 g e t remote d a t a

21 p l i s t = i n d i c e s o f n o t f i n i s h e d p a r t i c l e s i n p s h o r t

22 n l i s t = # p l i s t

23 m a x a c t i v e = MPI_MAX( n l i s t )

24 END DO

Listing 4.2: Simplified work scheme of PEPCs tree-walk.
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5 PEPC with SPH

In this work, the existing hierarchical tree-code PEPC has been extended to include the treatment of a

hydrodynamical component with a smoothed particle hydrodynamics algorithm. When combining a

tree-code with SPH, it is natural to identify the particles used by the tree-code with the interpolation

points used for SPH. In the tree-code, the particles already have coordinates x, y, z, velocities vx, vy,

vz and masses m. As SPH-particles contain as well intrinsic properties like density ρ and temperature

T or energy u, additional information have to be introduced. Depending on how the code is designed,

a smoothing-length h - fixed or individual - is required. Together with the force F or acceleration a

affecting the particles, the temperature change has to be returned for later integration.

5.1 Smoothed Particle Hydrodynamics equations

Before implementing the equations derived in Chap. 3, some more adaptions are needed. To simulate

gas-discs around stars, temperature is more important than internal energy, because it is used to com-

pute pressure and, as output, can be compared to observations. Therefore, the temperature is used as

one of the independent variables. The SPH-equations have to be adjusted for explicit dependence on

temperature rather than other physical quantities.

From the equation of state for an ideal gas follows

P =
ρ

mM
kBT, (5.1)

where P is the pressure, ρ is the density, mM is the mass of one molecule of the gas, kB is the

Boltzmann constant and T the temperature. Combining this with (3.14), one obtains

Fa =−ma ∑
b

mb

(
kBTb

mMρb
+

kBTa

mMρa
+Πab

)
∇W (ra− rb,h). (5.2)

With the energy per particle with Z degrees of freedom of u = Z
2 kBT and the relation between heat

capacity ratio γ and the degrees of freedom of γ = Z+2
Z , one obtains the relation between temperature

T and energy per particle u as

kBT = (γ−1)u.
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Together with (3.15) and the transformation above, one obtains for the temperature change

dT
dt

=−(γ−1)
1
2 ∑

b
mb

(
Ta

mMρa
+

Tb

mMρb
+

Πab

kB

)
(vb−va)∇W (ra− rb,h). (5.3)

Equation 3.6 for the density can be implemented as derived earlier.

5.2 Implementation details

The SPH-routines are implemented as a module in PEPC which can be included easily into the rest

of the code. The entire SPH-part is basically started by just one function call inside PEPC. However,

some changes to parts of the existing code were still necessary: Particle properties like density, tem-

perature and temperature change have to be included. Also several new physical constants have be

introduced.

The additional program components were implemented as shown in Lst. 5.1 (for comparison see

Lst. 4.1). The gravitational force summation results in an array with the forces for all particles. In

the SPH-force-summation, the thermal forces are just added to the gravitational forces in that array.

Additionally, the temperature changes are written to another array. These arrays are passed back to

the integrators for the particle coordinates and the temperature.

Since the equations 5.2 and 5.3 need the density ρ , it is computed first, which however needs the

neighbours of the particles to be determined first. This results in the necessary sequence:

1. search neighbours

2. compute density

3. compute force

The temperature change is computed together with the force, as properties already calculated for the

force can be reused. Because PEPC is a distributed-memory program, the computed density of a

particle has to be sent to all processes which have requested this particle during the neighbour search.

This has necessarily to be done between the density computation and the force computation which

results in the flow seen in Lst. 5.1.

The summations according to the equations 3.6, 5.2 and 5.3 for a fixed number of neighbours has

a complexity of O (N ·Nnn). The most expensive part of the SPH-method is the neighbour-search. In

the simulation code developed in this work, a neighbour-search exploiting the already present oct-tree

is used with a complexity of O (N logN).
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1 f o r each t ime−s t e p

2 do domain d e c o m p o s i t i o n

3 b u i l d t r e e

4 compute m u l t i p o l e moments

5

6 f o r each chunk

7 f i n d p s e u d o p a r t i c l e s f o r g r a v i t a t i o n a l i n t e r a c t i o n

8 sum f o r c e s

9 end chunks

10 BEGIN SPH

11

12 f o r each chunk

13 s e a r c h n e i g h b o u r s

14 ( v a l i d a t e n e i g h b o u r s )

15 compute d e n s i t y

16 end chunks

17

18 u p d a t e remote d e n s i t y

19

20 f o r each chunk

21 compute sph f o r c e

22 end chunks

23

24 END SPH

25 compute new v e l o c i t i e s

26 compute new p o s i t i o n s

27 compute new t e m p e r a t u r e

28 end t ime−s t e p

Listing 5.1: Simplified work scheme of PEPC with SPH

5.3 The neighbour search

The implemented neighbour-search algorithm follows the idea described by Warren & Salmon (1995).

It corresponds basically to a modified version of the tree-walk as described in Sec. 4.3.
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1 s e a r c h _ n e i g h b o u r s _ o f _ p a r t i c l e _ i ( r ) {

2

3 walk t h r o u g h t r e e from r o o t t o l e a v e s

4 1 ) p a r t i c l e s w i t h i n r p u t on n e x t n e i g h b o u r l i s t

5 2 ) i g n o r e nodes / p a r t i c l e s o u t s i d e r

6 3 ) f o r nodes wi th o v e r l a p wi th r

7 i f c h i l d r e n l o c a l l y p r e s e n t , r e s o l v e

8 e l s e g e t c h i l d r e n from remote p r o c e s s

9 end

10 }

Listing 5.2: The first version of the neighbour search algorithm. It is just capable of finding neighbour particles

within a fixed radius around the particle i.

The implementation was done in several steps. The first step is to find all particles within a given

radius around a particle (see Lst. 5.2).

Figure 5.1: Sketch for the neighbour acceptance criterion. The node j (here illustrated as red cube) can contain
neighbour particles for the particle i inside the blue sphere, if the sphere with radius bd/2 around
the centre of the cube and the blue sphere overlap. This is the case, when (5.4) is fulfilled.

For every particle i, the algorithm walks through the tree from the root down to the leaves as

described before. The acceptance criterion for a node is changed from the original node-size-distance-

ratio (Eq. 4.1) to a criterion taking the distance and both smoothing lengths into account. Here only

particles within the radius 2h, which is here equal for all particles, are accepted as neighbours, because

the kernel vanishes outside (see Sec. 3.2.2). This means that a node j with body diagonal bd can

contain potential neighbour particles for particle i, if

di, j ≤ 2h+bd/2, (5.4)

where di, j is the distance between particle i and geometrical centre of node j (see Fig. 5.1). In this



5.3 The neighbour search 43

case, the child-nodes have to be checked with the same criterion. Like in the normal tree-walk, the

non-local data has to be requested from other processes. If a node is a leaf and the acceptance criterion

is positive, the associated particle is added to the neighbour list of particle i.

The validity of the implementation was tested as described in Sec. 5.3.1. Figure 5.2 shows a sample

particle distribution where the neighbours of one particle were removed for better contrast.

Figure 5.2: Visualisation of the results of the next neighbour search with 100000 particles distributed in a two
dimensional disc with a r−2 density run with 32 processes. This is a zoom on the inner part. The
different colours represent the process domains. In the big white circle in the centre are no particles
to avoid to high particle densities caused by the r−2 density distribution. In the other white circle
the next neighbours within the radius 2h around the particle in the centre of this circle were removed
to have a better contrast.
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1 w h i l e t h e r e a r e p a r t i c l e s wi th l e s s t h a n N_nn found n e x t n e i g h b o u r s

2 s e a r c h _ n e i g h b o u r s _ o f _ p a r t i c l e _ i ( r _ i )

3

4 i f found n e x t n e i g h b o u r s < N_nn

5 i n c r e a s e r _ i f o r t h i s p a r t i c l e

6 p u t p a r t i c l e on l i s t t o s e a r c h n e i g h b o u r s a g a i n

7 end

8 end

9

10 f o r a l l p a r t i c l e s

11 w h i l e n_found > N_nn

12 move f u r t h e s t p a r t i c l e t o t h e end of t h e l i s t

13 s h o r t e n l i s t by one

14 end

15

16 move f u r t h e s t p a r t i c l e t o t h e end of t h e l i s t

17 new s e a r c h r a d i u s r _ i i s 1 . 1 * d i s t a n c e t o t h i s p a r t i c l e

18 end

Listing 5.3: Modified neighbour search to find exactly Nnn neighbours.

Next the search was refined to obtain exactly Nnn neighbours for a particle i. This is done by first

searching neighbours within a sphere with a given radius ri around particle i. For the first time-step,

these radii are set to an initial value specified in the configuration file. For all other time-steps, the

value determined in the previous time-step is used. After all particles in this sphere are found, they

are counted to check whether at least Nnn neighbours are found. If not, the search radius is increased

by 10% for this particle and the search is repeated (see Lst. 5.3).

When the number of located neighbours N f fulfils N f ≥ Nnn, the furthest neighbour is moved to

the end of the list. While N f > Nnn, the list is then shortened by one and the next furthest particle

moved to the end of the list, until exactly Nnn neighbours are left. When this is finished the furthest

among the Nnn neighbours is at the end of the list. The separation between this furthest neighbour and

particle i is used as the new individual search radius for particle i during the next time-step.

This version is basically one more loop around the first version, that is executed while there are

still particles with less than Nnn found neighbours.

To test the SPH-code, it was necessary to make simulations of a periodic medium possible. Switches

in the configuration-file allow one, two or three dimensional periodicity or open boundaries1 to be se-

lected. The periodic boundaries have been implemented by modifying the neighbour search and

the integrator. When the particles are moved, it is tested whether the particles are still inside the

1The periodicities of all three dimensions can be chosen individually. However, because in case of reduced dimensionality
first the x-, then the y- and then the z-dimension is used, the periodicity has to be enabled according to the choice of
dimensionality.
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simulation-box. Therefore, the minimum x-, y- and z-coordinate and the x-, y- and z-box-length have

to be specified in the configuration-file. When a particles coordinate is smaller (bigger) than the corre-

sponding minimum (maximum) coordinate the particle is shifted by the box-length so that it is inside

the box again.

Figure 5.3: To find all neighbours of the red particle in the circle in case of 2D-periodicity also the virtually
shifted simulation boxes (gray particles) have to be tested.

In the case of a periodic boundary problem, the neighbour search has to look for neighbouring

particles also in simulation boxes virtually shifted by the box-lengths (see Fig. 5.3). In 1D 3 boxes, in

2D 9 boxes, and in 3D 27 boxes respectively have to be searched for neighbours. Therefore, according

to the periodicity, shift-vectors for the virtual simulation boxes are constructed2. Then for all shift-

vectors the overlap of search-sphere and particle-coordinate shifted by the shift-vector is tested. In

case a neighbour is found, the neighbours node-number and the shift-vector are stored in a list. The

particles are again virtually shifted by the shift-vectors when density and forces are computed.

The search in all virtual boxes is realised as an additional loop over all copies of the simulation box.

Searching for neighbours in up to 27 copies of the simulation box needs up to 27 times the normal

run-time. This is very slow and could be solved way better, but since it is just for tests and not for real

simulations this is not necessary here.

A visualisation of the neighbours of a particle for a 3D particle distribution with 3D-periodicity

can be found in Fig. 5.4.

The final neighbour search algorithm is implemented as shown in Lst. 5.4. The loop over the

periodic copies is the innermost loop and done for every single comparison. Here lies potential

for improvement. When a comparison is negative for one periodic copy of a node and positive for

another one, the test for the child-nodes is only necessary for the children of that copy where the test

2The first shift-vector is (0,0,0) for the real simulation-box, another one could be (- x-box-length, 0, z-box-length).
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Figure 5.4: Neighbours (red) of a particle (green) in a three dimensional periodic simulation-volume. Because
the green particle is located in one corner of the simulation box and the periodicity in all three
dimensions is activated, the neighbours lie in all corners.

was positive. This will be improved in the next version.
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1 IN : p s h o r t ! i n d i c e s o f a c t u a l p a r t i c l e s i n l o c a l a r r a y s

2 IN : n p s h o r t = # p s h o r t

3

4 not_enough_nn = i n d i c e s i n p s h o r t , n_not_enough_nn = # not_enough_nn

5 p l i s t = i n d i c e s i n not_enough_nn , n l i s t = # p l i s t

6 max_n_not_enough_nn = MPI_MAX( n_not_enough_nn )

7 DO WHILE ( max_n_not_enough_nn > 0)

8 m a x a c t i v e = MPI_MAX( n_not_enough_nn )

9

10 DO WHILE ( m a x a c t i v e > 0)

11 DO WHILE ( n l i s t >0 )

12 DO i =1 , n l i s t

13

14 l o c a l _ i n d e x = p s h o r t ( no t_enough_nn ( p l i s t ( i ) ) )

15 DO p e r i o d i c _ s h i f t = 1 , n u m _ p e r i o d i c _ s h i f t s

16

17 IF ( mac ok )

18 IF ( node i s p a r t i c l e ) use t h i s p a r t i c l e

19 ELSE r e s o l v e node

20 END IF

21 ELSE i g n o r e t h i s node

22 END IF

23

24 END DO ! p e r i o d i c

25

26 END DO ! do n l i s t

27 p l i s t = i n d i c e s o f n o t f i n i s h e d p a r t i c l e s i n not_enough_nn

28 n l i s t = # p l i s t

29 END DO ! w h i l e n l i s t

30 g e t remote d a t a

31 p l i s t = i n d i c e s o f n o t f i n i s h e d p a r t i c l e s i n not_enough_nn

32 n l i s t = # p l i s t

33 m a x a c t i v e = MPI_MAX( n l i s t )

34 END DO ! m a x a c t i v e

35

36 not_enough_nn = i n d i c e s o f p a r t i c l e s wi th l e s s t h a n nn n e i g h b o u r s

i n p s h o r t

37 n_not_enough_nn = # not_enough_nn

38 p l i s t = i n d i c e s i n not_enough_nn , n l i s t = # p l i s t

39 max_n_not_enough_nn = MPI_MAX( n_not_enough_nn )

40 END DO ! n o t enough

Listing 5.4: The final neighbour search algorithm with periodicity.
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The previously described reiteration of the neighbour search for particles with N f < Nnn is re-

alised similar to the loops over a subset of the particle chunks in the original tree-walk. One more

array containing indexes of another array is introduced called not_enough_nn with its length

n_not_enough_nn. The entries of this array point to the entries of pshort (see Fig. 5.5). All

particles with pshort(not_enough_nn(i)), with i between 1 and n_not_enough_nn ful-

fil N f < Nnn. For example, during the inner loop, the coordinates of the first particle can be accessed

with x(pshort(not_enough_nn(plist(1)))).

Figure 5.5: Also the new implemented neighbour search algorithm uses arrays containing indexes of other
arrays for the book-keeping. Here the most important arrays are shown. x is an array containing
for example the x-coordinates of the particles but could be another array containing velocities or
masses as well. This array is global for the whole tree-code. The red rectangle denotes the whole
neighbour search for one chunk of particles. The blue rectangle shows the reiteration of particles
with N f < Nnn. The green rectangle represents the inner loop (see Lst. 5.4).

As shown in Lst. 5.4, the array not_enough_nn is filled with all particles in line 4. In the

’maxactive’-loop from line 10 to line 34, the search is performed with fixed search radii for all par-

ticles in not_enough_nn. In line 36 not_enough_nn is filled again with the particles fulfilling

N f < Nnn. For those particles the search radius is increased as described before. Then the search is

started again for these particles.

5.3.1 Validation of the neighbour search

To check the correctness of the neighbour lists for all particles, a validation subroutine was imple-

mented. This routine computes all N−1 distances between one particle and all others and stores them

in a list. This list is then sorted and the closest Nnn neighbours are compared to the results from the

tree-based neighbour search.

Storing the distances from all particles to all other particles needs O
(
N2
)

memory. For huge

particles numbers this is not possible. Therefore, the validation is performed in chunks similar to the

neighbour search. All processes send their particles to all other processes one after the other. The

processes compute the distances for all particles in the actual chunk to the received remote particles.
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The distances are sorted and only the closest Nnn neighbours are stored. When the distances to the

particles from the next process are computed, these Nnn closest neighbours are appended to the list

before sorting it. In the end the closest Nnn neighbours among all particles are known.

The result from this routine is compared to the result from the tree-based neighbour search and the

number of differences, if any, is written out to a log-file. With this routine, the validation of periodic

neighbour lists is also possible.

Final tests of the periodic neighbour search with random particle distributions with up to 106 par-

ticles and all combinations of dimensionalities and periodicities worked without errors.

5.3.2 Symmetric neighbour search

As already noted above (see Sec. 3.2.3), the neighbours have to be chosen according to the symmetric

neighbour criterion (3.17) for a better momentum conservation. Since the density computation is

done with the neighbours based on simple neighbour criterion (3.16), this makes another neighbour

search necessary just before the force computation. To implement the symmetric criterion, the tree-

construction has to be modified. To allow the comparison with

max(hi,h j),

the maximum h beneath each node has to be stored as a node-property - a refinement beyond the

scope of this work which will be included in future.

5.3.3 Scaling

An analytical estimate

Assuming that the density is constant within the whole simulation volume, one can estimate the

number of particles to be fetched by one process (Breslau, 2010). A total number of particles N in

the volume V result in a mean-density of ρ = N/V . If simulated on p processes, the average volume

of one domain is Vp = V/p. Assuming that the domain is spherical, its radius can be expressed as

Rdomain =
(

3πVp

4

) 1
3

.

With the mean-density, the radius of the sphere containing all Nnn next neighbours of a particle can

be written as

rsearch =
(

3Nnn

4πρ

) 1
3

.

As shown in Fig. 5.6, the search spheres of all particles close to the domain border form a shell

around the domain, in which next neighbours of particles from the domain can be found. All these
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r

Figure 5.6: Sketch for the estimation. The inner big circle with the radius R1 represents one process domain. If
there are many particles near the domain border, the search spheres with radius r of these particles
overlap and fill the area between the two bigger circles. All particles in this area have to be fetched
from other processes.

particles have to be fetched during the next neighbour search and stored in the local memory. Their

number can be calculated as

Nfetch =
4
3

πρ

[
(R+ r)3−R3

]
=
(

27
NnnN2

p2 +27
N2

nnN
p

+N3
nn

) 1
3

.

It is easy to see that this leads to the asymptotic complexities

O(Nnn), O(N2/3), O(p−2/3), (5.5)

for large Nnn, N and p respectively.

In case of a fixed number of particles per process Np, one finds

Nfetch =
(
27NnnN2

p +27N2
nnNp +N3

nn
) 1

3 ,

which leads to the complexities

O(Nnn), O(N2/3
p ). (5.6)

However, this is only for the communication effort and the memory space needed locally to store

the fetched particles. Additionally requested memory can lead to problems when simulating with

too few particles per process, because the size of the locally allocated memory is initially calculated

depending on the number of local particles. As shown in Tab. 5.1, the fraction of additional memory

needed, increases with decreasing particles per process. This can lead to out-of-memory problems
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even though the memory is almost unused.

Nnn Np Nfetch Nfetch[%]

50 10000 6000 61

50 50000 17000 33

50 200000 40000 20

Table 5.1: Estimated number of particles to fetch from remote processes depending on the number of particles
per process.

Benchmarks

For benchmarking the new algorithm, several sets of time measurements have been performed each

with one configuration parameter varying. In each case the time needed by the neighbour search

algorithm for the local walk (’nn walk’), the time to fetch data from other processes (’nn fetch’) and

the time needed by the rest of the program (’rest’) was measured.

The measurements were performed without periodicity because the periodic search is known to be

slow and is just for test scenarios and not for real simulations.
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Figure 5.7: Weak scaling on Juropa using 150000 particles per process and 50 next neighbours to find. The
data were fitted with functions of the form f (x) = a log(bx)+ c, where c is a constant overhead, b
is an overhead per particle and a is the cost-factor for each particle.

• For the weak scaling, the number of particles per process was fixed to 150000 and the number

of neighbours required set to 50. The number of processes was varied from 80 to 800, which
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Figure 5.8: Strong scaling on Juropa using 12 M particles and 50 next neighbours to find.

results in 1.2 · 107 to 1.2 · 108 particles in total. For the log-log plot of the absolute run-

time see Fig. 5.7. Due to the theoretical O(N logN) scaling of the tree-algorithm, the weak

scaling, where N = Np · p, should be close to O(log(Np p)). Therefore the data were fitted with

functions of the form f (x) = a log(bx)+c. Fits with a function of the form f (x) ∝ xa, according

to what is expected from the analytical estimate (Eq. 5.6) resulted in values for a below 0.25.

That means that the time for the communication is here not dominated by the number of fetched

particles.

• For the strong scaling, the total number of particles was fixed to 1.2 · 107 and the number

of neighbours set to 50. The number of processes was varied from 80 to 400, which results

in 30000 to 150000 particles per process. For the log-log plot of the absolute run-time see

Fig. 5.8. Ideal strong scaling means that if the number of processes is multiplied by a factor a

the run-time is divided by a, which results in a p−1 dependence of the run-time, where p is the

number of processes. As can be seen in the figure, the local next neighbour search (’nn walk’)

scales almost ideal with a p−0.96 dependence. The ’nn fetch’, which is the time for the next

neighbour communication, scales like p−0.79. This is close to the estimated p−2/3 (Eq. 5.5).

• For the N scaling, the number of processes was fixed to 240 and the number of neighbours set to

50. The total number of particles was varied from 6 · 106 to 3.6 · 107, which results in 25000

to 150000 particles per process. For the log-log plot of the absolute run-time see Fig. 5.9. The

fitted functions show that all three measured program parts scale like O(log(Np p)), which is

in excellent agreement with the expectations.
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Figure 5.9: N scaling on Juropa using 240 processes and 50 next neighbours to find. The data were fitted with
functions of the form f (x) = ax log(x)+b, where b is a constant overhead and a is the cost-factor
for each particle.

• For the Nnn scaling, the number of particles per process was fixed to 50000 and the number of

processes set to 80. The number of next neighbours to find was varied from 25 to 150. For the

log-log plot of the absolute run-time see Fig. 5.10. According to the expected linear dependence

on Nnn (Eq. 5.6 and Eq. 5.5) the data were fitted with functions of the form f (x) = axb. There

is a good agreement for the ’nn fetch’-time. The walk is even better. The run-time increase of

the rest of the program is probably due to a fuller hash-table.
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Figure 5.10: Nnn scaling on Juropa using 50000 particles per process and 80 processes.



6 Testing the new code

Several tests were performed to verify the correctness of the code. Among them are one-dimensional

sound-waves propagating in a periodic simulation box. After these tests succeeded, further features

like the artificial viscosity were implemented. Its validity was tested with one-dimensional shock

problems. Finally, a test involving gravity and pressure was performed to show that both components

are working correctly together.

Generating start configurations

Before starting the test series, one has to solve the problem of generating start conditions. There are in

principle two methods to setup a density distribution with SPH. The first one is to distribute particles

with different masses equally-spaced in the simulation box. This is straight forward but destroys the

intrinsic resolution adaptiveness. The other method is to use equal-mass particles and distribute them

with variable distances. This method is more complex but the resolution adaptiveness is preserved.

Therefore, this method is preferred.

For one-dimensional setups the density ρ(x) can be integrated over the whole length L of the

simulation box to obtain the mass M in the box

M =
∫
L

ρ(x)dx.

For a given number of particles N in the simulation box the mass of an individual particle m is given

by m = M/N. To place the first particles in the simulation box, the density-function ρ(x) is integrated

again with the upper limit x1 fulfilling

x1∫
0

ρ(x)dx = m.

The particle is then placed in the middle between 0 and x1. For the other particles i the integration has

to fulfil

xi∫
0

ρ(x)dx = i ·m.

The particle i is placed in the middle between xi and xi−1. With this method start-conditions for any



56 6 Testing the new code

density-distribution in one dimension ρ(x) can be obtained.

6.1 1D sound wave
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Figure 6.1: 1D sound-wave propagating in a periodic simulation box of length L = 1. The plots show the
simulated density and the deviation from the analytical density for t = 0, t = 0.3 and t = 1.

In fluids, sound waves are small density disturbances that obey the (here one-dimensional) wave-

equation

∂ 2ρ

∂ t2 = c2 ∂ 2ρ

∂x2 , (6.1)

where c is the sound-speed. Besides the wave equation, sound waves have to satisfy the one-

dimensional Euler equations, which are given by

∂ρ

∂ t
=−∂ (ρv)

∂x
,

∂v
∂ t

=− 1
ρ

∂P
∂x

with the velocity v of the medium and the pressure P. For small disturbances, ρ1 << ρ0, and with

the equation of state for an ideal gas P = kBT ρ (here the mass of the molecules mM is included in kB)

they can be transformed to

∂ρ

∂ t
=−ρ0

∂v
∂x

,

∂v
∂ t

=−kBT
ρ0

∂ρ

∂x
.
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It can be easily shown that

ρ(x, t) = ρ0 +ρ1 sin
(

2π
x
λ

+ωt
)

(6.2)

v(x, t) =−c
ρ1

ρ0
sin
(

2π
x
λ

+ωt
)

(6.3)

solve these equations and the wave-equation (6.1), with c = ωλ/2π and c2 = kBT . Here ω is the

angular frequency and λ the wave-length of the wave.

For the time t = 0, the start parameters for a simulation are

ρ(x) = ρ0 +ρ1 sin
(

2π
x
λ

)
, (6.4)

v(x) =−c
ρ1

ρ0
sin
(

2π
x
λ

)
. (6.5)

The box-length L has to be chosen as a multiple of the wave-length λ as L = kλ , with the wave-

number k, because of the periodicity of the simulation box.

A one-dimensional wave was set up with wave-number k = 1. For the here performed tests, the

simulation box of length L = 1 contained N = 1000 particles (see Fig. 6.1, left plot). The sound-speed

was chosen as c = 1. This setup was advanced with a time-step size of ∆t = 0.0001 for a total time

t = 1. Figure 6.1 shows a comparison of the results at t = 0.3 and t = 1 together with the analytical

solutions (see Eq. 6.2). The upper plots show the densities obtained from the simulation. The lower

plots show the relative deviation from the analytical density (ρsim−ρanalytic)/ρsim. The relative error

increases with time, but after 10000 time-steps it is still below 4 · 10−6 which is satisfying. Further

tests could measure the dependence of the error of the number of particles and the size of the time-

step.

6.2 1D sound wave in 2D volume

The sound wave test was also performed in a two-dimensional periodic simulation volume. Therefore,

the particles distributed along the x-axis from the previous test were replicated in y-direction to fill

the x-y-plane. The start velocities were obtained as in the one-dimensional case. Figure 6.2 shows

the results. The wave is only stable until t ≈ 0.32, corresponding to time-step 32 for the time-step

size ∆t = 0.01 in the case visualised here. With smaller time-steps the result is almost the same. This

problem is still not fully understood, but the wave collapses probably because the whole setup is very

sensitive to perturbations. The particle positions deviate from a regular lattice with spacing d only by

a factor of 0.001d.

However, the code presented here is not designed for solving exact problems. The stability of the

wave until t = 0.32 can be interpreted as a good result.
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Figure 6.2: One-dimensional sound wave propagating in a two-dimensional periodic simulation volume. The
upper plots show the view on the x-y-plane. The colour denote the density, where blue is low and
red is high. The lower plots show the density versus x-coordinate, colours as in the upper plots.
The squares delimit the real simulation volume, the rest are shifted copies to show the periodicity.
The graphics show the initial conditions (a), for t = 0.32 (b), t = 0.38 (c) t = 0.48 (d). The wave
propagates in the negative x-direction.

6.3 1D shock-tubes

In the next step, it should be tested in how far the code is capable to resolve shocks. As already

mentioned, shocks occur, when the fluid properties, like temperature, density of pressure, change by

huge amounts. This results in large accelerations. The tests presented here were introduced by Sod

(1978). Toro (1997) described them in detail and presented numerical solutions obtained with several

different solvers. Springel (2010) and Hubber et al. (2011) performed similar tests with their SPH-

codes. In Springel (2010) three different problems were investigated. In Tab. 6.1 the initial conditions

are shown. All three test problems are one dimensional, hence shock tubes, with a discontinuity in

density, pressure or velocity. Figure 6.3 shows the results from that paper.

Here only the problems 1 and 3 are used. Problem 1 is investigated with the two alternative setup

methods described in Sec. 6. Figure 6.4 shows the results. They can be compared to Fig. 6.3. Results
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Test ρL vL PL ρR vR PR

Problem 1 1.0 0.0 1.0 0.125 0.0 0.1

Problem 2 1.0 −2.0 0.4 1.0 2.0 0.4

Problem 3 1.0 0.0 1000 1.0 0.0 0.01

Table 6.1: Initial conditions for shock tests from Springel (2010).

Figure 6.3: Results of the 1D shock tests with SPH from Springel (2010) for comparison.

for similar tests can for example be found in Hubber et al. (2011) or Merlin et al. (2010).

• Test 1a (see Fig. 6.4, left) corresponds to Problem 1 from Tab. 6.1, set up with equal mass parti-

cles distributed according to above described method. The initially higher pressure and density

in the left half of the box causes a shock wave propagating to the right and a rarefaction wave

propagating to the left. In the rarefaction front the particles are accelerated to the right, what

can be seen in the velocity plot. Due to the simple neighbour search which does not produce
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Figure 6.4: Results for all three performed shock tests. Test 1a and test 1b correspond to Problem 1 in Tab. 6.1.
Test 1a is set up with equal mass particles and test 1b with equidistant distributed particles. Test 2
corresponds to Problem 3 set up with equidistant distributed particles. (Explanation see text.)

neighbour lists for a symmetric force computation the momentum is not fully conserved. This

is probably the cause of the difference of the results in Fig. 6.4 to the results by Springel (see

Fig. 6.3).

• Test 1b (see Fig. 6.4 middle) corresponds to Problem 1 from Tab. 6.1, set up with equidistant

distributed non-equal mass particles. The result is basically the same as in test 1a with some

small differences in the density, pressure and velocity behind the shock wave. Additionally

there is a discontinuity in the pressure at x ≈ 0.65 that is not shown by the analytical solution

in Fig. 6.3.

• Test 2 (see Fig. 6.4 right) corresponds to Problem 3 from Tab. 6.1, set up with equidistant dis-

tributed non-equal mass particles. In the initial conditions there was only a huge discontinuity

in the pressure, here corresponding to temperature for the continuous density. This leads to a

rightward propagating peaked shock front and a leftward propagating rarefaction wave. The

rarefaction wave propagates faster because it is moving in the hotter medium, which has a

higher sound speed.

• All three tests were also performed with lower resolution. The results showed basically the

same features but not as sharp as the high resolution simulations.
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In principle, the equal mass particle distribution is to prefer for example for the simulation of

protoplanetary discs, because of the intrinsic resolution adaptiveness. But here the discontinuity in

the density in test 1a leads to serious problems caused by the simple neighbour criterion (see Eq. 3.16)

explained in the following.

Figure 6.5 a) shows a sample distribution of equal mass particles with a discontinuity in the density

and the effect on the neighbour lists. In the upper part of the image a 1D density distribution with a

jump in the density by a factor of 3 is shown. The lower part shows the corresponding particle distri-

bution with a jump in the particle distances by a factor of 1/3. The circles have radii corresponding

to the local smoothing length for Nnn = 4. The particles 1 to 8 and 12 to 20 have two left and two

right neighbours within the kernel. Because the simple neighbour criterion from Eq. 3.16 is used the

4 closest particles are used as neighbours. This produces problems for the particles 9, 10 and 11.

These particles have one left and 3 right neighbours.

Figure 6.5 b) shows the corresponding neighbour lists. For example a force from particle 14 is

effecting particle 11 but not vice versa. This asymmetry destroys the momentum conservation. For the

shock tests the jump in density is a lot higher. Therefore, for test 1b and test 2 equidistant distributed

particles are used.

This problem with the simple neighbour criterion shows that further improvements of the neighbour

search are needed to allow symmetric force computations. The symmetric neighbour criterion (3.17)

should be implemented.
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Figure 6.5: 1D sample distribution of equal mass particles with a discontinuity in the density (a) and corre-
sponding interaction table (b). (Explanation see text.)

6.4 Sphere collapse

In the previous sections it was described, how the newly implemented SPH part of the code was

tested. Next, the combination of the SPH part with the tree part has to be investigated. One possible

test for this is the gravitational collapse of a uniform density sphere with pressure. This problem is

analytically well understood. The analytical solution as can be found in (Truelove et al., 1998)will be

summarised in the following.

A sphere with uniform density ρ0 collapses under gravitational force and without pressure in the

free-fall time tff

tff =

√
3π

32Gρ0
, (6.6)

with the gravitational constant G to a singularity. This process is independent of the size of the sphere.

As noted by Hubber et al. (2011) an amount of mass initially in the distance r0 from the centre of
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the sphere has moved to a distance r < r0 from the centre in the time

t(r) = tff
2
π

(
cos−1

√
r
r0

+
√

r
r0

√
1− r

r0

)
. (6.7)

Particle tracks from the simulation can be compared to this analytical relation.

6.4.1 Collapse with pressure

When pressure is considered in the collapse of the sphere, the collapse will be superimposed by the

thermal spreading of the sphere into the surrounding vacuum. The total energy of the sphere deter-

mines, to which extend it will dissolve. While the sphere is collapsing a rarefaction wave propagates

inwards. This rarefaction wave is faster than a inward propagating sound wave because the matter

itself is flowing inward. The speed of the rarefaction wave is the sum of the local flow speed and the

sound speed. The time dependence of the position of the rarefaction wave can be found in (Truelove

et al., 1998).

The time needed by the collapsing sphere to reach a density ρ > ρ0 is given by

t(ρ) = tff
2
π

(
η +

1
2

sin(2η)
)

,

with

cos(η) =
(

ρ

ρ0

)−1/6

.

The mass Mrf inside the rarefaction front is given by

Mrf = M

1−2
cs

vff
arctan

[(
ρ

ρ0

)1/3

−1

]1/2


3

, (6.8)

where M is the total initial mass of the sphere and vff the free-fall velocity

vff = R

√
8
3

πGρ0

with the initial radius R of the sphere. With

M(r) =
4
3

πr3
ρ

follows the radius rrf of the rarefaction front

rrf(ρ) =
(

3Mrf

4πρ

)1/3

.
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For a given ρ > ρ0 the radial position rrf(ρ) of the rarefaction front can be calculated as well as

the time t(ρ) when this density is reached. So rrf(t) can be obtained numerically and compare to the

results of the simulation.

6.4.2 Test setup and results

To set up a uniform density sphere, particles are distributed on a regular three-dimensional grid with

50 particles in each dimension. From this cube a sphere is cut with a diameter of 1 AU resulting in

approximately 65000 particles. For later use with astrophysical problems, all physical constants like

the gravitational constant and the Boltzmann constant are converted into the units Year, Msun, K and

AU.

The masses of the particles are scaled so that the whole mass of the sphere is 1 Msun. The mean

density of this sphere is ρ ≈ 1.9011Msun/AU3, which results in a free-fall time of tff ≈ 0.063 y.

For the simulation, the time-step size is chosen as ∆t = 1/1000tff. The gravitational collapse of the

sphere without pressure is shown in Fig. 6.6 together with the analytical solution according to (6.7).

The points denote the radial positions of particles initially outside of 90%, 50% and 10% mass.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1

r/
r 0

t/tff

Numerical solution
Analytical solution

Figure 6.6: Free-fall collapse of a uniform density sphere involving only gravitational force. The points denote
the radial positions of particles initially outside of 90%, 50% and 10% mass. The analytical solution
is obtained with Eq. 6.7.

For the collapse with pressure, the temperature was chosen so that the inward propagating rarefac-

tion wave can reach the centre within tff. Figure 6.7 shows the results of the simulation together with

the analytical solution for the rarefaction wave. The green points show the radial positions of parti-

cles initially outside of 90%, 50% and 10% mass. The red lines show the collapse without pressure as

presented in Fig. 6.6. The dotted line shows the analytical solution for the inward propagation of the



6.5 A protoplanetary disc 65

rarefaction front. The good agreement of the numerical results with the analytical solution is obvi-

ous. This agreement proves, that the code can treat the gravitation as well as the thermodynamics for

example of a protoplanetary disc correctly. Now the code can be applied to real physical problems.
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Figure 6.7: Collapse of a uniform density sphere involving gravitational and thermal forces. The green points
show the radial positions of particles initially outside of 90%, 50% and 10% mass. The red lines
show the collapse without pressure as presented in Fig. 6.6. The dotted line shows the analytical
solution for the inward propagation of the rarefaction front.

6.5 A protoplanetary disc

After the tests were successful a first protoplanetary disc was simulated. Here a high-mass disc with

Mdisc = 0.1Mstar around a solar mass star was used. As described before (see Sec. 2.3), such a disc is

expected to fragment and form planets.

The density distribution ρ(r,z) for the disc was chosen as

ρ(r,z) ∝ r−p−1 exp
(
−z2H2

r2

)
, (6.9)

where z is the height in cylindrical coordinates, H(r) is the discs scale height with H(r) = r/H0, and

p index of the density distribution (see Sec. 2.2). Here H0 = 10 AU and p =−1 were used, because

they fit the observations.

The initial particle distribution is here obtained with a Monte-Carlo approach. The particles are

placed at random coordinates with a probability proportional to the density. The so obtained physical

system is not in equilibrium and has to be relaxed before used for simulations.

For the initial set up, 105 particles were distributed according tho the density distribution given by
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(6.9) with a maximum extension of the disc rmax = 100 AU. As the singularity in the density close to

r = 0 would cause numerical problems, a central region of radius r = 10 AU was devoid of simulation

particles.

For cold protoplanetary discs of low mass, self-gravitation and thermal forces can be neglected. In

this case, the initial particle orbits around the star are approximately Keplerian. The Kepler velocities

vk are given by

vk =

√
GMstar

r
.

For high-mass discs (Mdisc ≈ 0.1Mstar), the self-gravitation can no longer be neglected and the orbits

can no longer be approximated to be keplerian. Under the assumption, that a particle moves on a

circular orbit, the centripetal force Fc is provided by the attracting forces of star and disc.

Fc =
mv2

φ

r
,

where m is the mass of the particle and vφ the tangential velocity. Then the tangential velocity of a

particle can be obtained with

vφ =

√
(Fstar +Fdisc)r

m
, (6.10)

where Fstar is here the gravitational force of the star and Fdisc the gravitational force of the whole disc.

When as well thermal forces are taken into account, the orbits are even more complex. Due to the

random placing of particles, strong numerical density fluctuations are likely to occur. The tremendous

forces arising from the density gradients can accelerate particles to velocities high enough to leave

the gravitational well of the system. To avoid this non-physical effect, the disc is set up with initial

velocities following (6.10) and then the particle distribution is relaxed, which is described in the

following. In Tab. 6.2 the setup parameters are summarised. They were chosen according to typical

observed parameters (see Sec. 2.2).

Parameter Mstar Mdisc rdisc, inner rdisc, outer H p N T ∆t

Value 1Msun 0.1Msun 10 AU 100 AU 10 AU −2 100000 20 K 0.1 year

Table 6.2: Setup parameter for the protoplanetary disc.

During the relaxation process the thermal forces Ft are taken into account with a factor τ

F = Fg + τFt
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Figure 6.8: The relaxation process of a protoplanetary disc. The particles are coloured by density, from low
(blue) via intermediate (white) to high density (red). a) shows the face on view on the disc. b)
shows the edge-on view, where the front half of the disc is removed. c) shows a zoom on the inner
part of the disc. d) shows a slice around the x-z-plane.

with

τ = i/trelax,

where F is the total force, Fg is the gravitational force, i is the actual time-step and trelax is the whole

number of relaxation time-steps. That means, that the thermal forces are totally neglected at the

beginning of the relaxation. Then their effect is increased linearly until they are fully considered at

the end. For the relaxation 10000 time-steps with a time-step size of ∆t = 0.1 years were used. The

temperature increase due to viscous heating is limited by T ≤ 50 K.

Figure 6.8 shows the disc at the beginning of the relaxation process. The particles are coloured by

density, from low (blue) via intermediate (white) to high density (red). a) shows the face on view on

the disc. The light blue close to the centre denotes the higher density. b) shows the edge on view with

the front half removed. c) shows a zoom on the inner part of the disc. Here even the densest regions,

coloured in red, can be seen. As can be distinguished from the black background, the particles are

distributed inhomogeneous at small scales. d) shows a slice through the x-y-plane. Here the vertical

structure of the disc can be seen.
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The result of the relaxation is shown in Fig. 6.9. The four views and the colouring scheme are

the same as in Fig. 6.8. In a) it can be seen, that the disc has expanded and that there is a complete

light blue ring around the central hole. In c) it can be seen, that the colour gradient is much smoother

than in Fig. 6.8. The particles are distributed much more homogeneous. In d) the vertical density

profile can be seen. The disc is in hydrostatic equilibrium at least at the inner regions (r . 40 AU).

The settling of particles to the discs midplane is prohibited by the pressure gradient resulting from

the vertical density profile.

Figure 6.9: The relaxed protoplanetary disc. The particles are coloured by density, from low (blue) via in-
termediate (white) to high density (red). Comparison with Fig. 6.8 shows, that the particles are
distributed much more homogeneous. The colour gradient is much smoother. a) shows the face on
view on the disc. b) shows the edge-on view, where the front half of the disc is removed. c) shows
a zoom on the inner part of the disc. d) shows a slice around the x-y-plane.

After the relaxation the disc was evolved with full consideration of the thermodynamics. Due to

viscous heating the temperature in the inner parts of the disc increases. With the here chosen values

for the mass of the disc, the density distribution, the time-step size and the viscosity parameters α

and β (see Sec. 3.2.1) the temperature increases at the inner edge of the disc from T = 50 K to

T > 10000 K within 10 years (or 100 time-steps) after the relaxation. These high temperatures lead

to the dissolution of the disc within some 100 years. By implementing certain cooling mechanisms

for example as described by Meru & Bate (2011) these inconvenient heating can be avoided.

Figure 6.10 shows the disc 100 years after the relaxation process. The four views and the colouring
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scheme are the same as before. In a) and c) it can be seen, that the particles are pushed in the central

hole. The density decreased compared to Fig. 6.9. In d) on can see, that the inner part of the disc

is no longer in hydrostatic equilibrium as seen in Fig. 6.9 d). The increasing pressure, due to the

high temperatures, accelerates the particles perpendicular to the discs midplane. 1000 years after the

relaxation the disc will have lost approximately 10% of its mass due to this process. By that time the

shape of the disc will have changed more to a flat torus, with a temperature of some 1000 K inside

this torus. However, the heating without cooling mechanisms or thermal conduction is not physical.

For a more physical evolution of the disc further work is needed. The stable modelling and evolution

of a protoplanetary disc with SPH codes is subject of ongoing research and far beyond the scope of

this work.

Figure 6.10: The protoplanetary disc after 100 years of evolution with full consideration of the thermodynam-
ics. The particles are coloured by density, from low (blue) via intermediate (white) to high density
(red). a) shows the face on view on the disc. b) shows the edge-on view, where the front half of
the disc is removed. c) shows a zoom on the inner part of the disc. d) shows a slice around the
x-y-plane. Comparison with Fig. 6.9 d) shows, that the previously thin and dense inner part of the
disc is thicker and sparser. Some particles are already pushed out of the disc.
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7 Conclusion

In this work, a numerical code was developed for simulations of self-gravitating protoplanetary discs

on highly parallel computers. The new code, which is based on the existing code PEPC (Pretty

Efficient Coulomb Solver), is expected to simulate up to 2 ·109 particles on highly parallel machines

like the supercomputer Jugene operated by Forschungszentrum Jülich. Tests with up to 106 particles

- our envisaged application to protoplanetary discs - were successfully performed. The capability to

handle more particles has to be demonstrated in the future.

The previously existing code PEPC is mainly used for the computation of Coulomb forces in

plasma physics applications. The new code has been adapted for the computation of gravitational

forces. Obviously, this means an adjustment of the force constant. In contrast to the simulation of

Coulomb forces, characterised by forces between two types of charged particles, for gravitational

simulations the mass is the force determining property and therefore only one type of particles is

used. With these modifications it is possible to simulate a self-gravitating disc in high resolution.

However, thermal and viscous forces are neglected in this first version.

The main objective of this work was to model as well the fluid component of the disc. Therefore a

module, implementing a basic Smoothed Particle Hydrodynamics (SPH) formulation, was developed

for fluid computations. This method allows to model the hydrodynamical forces based on a particle

algorithm. Here, the simulation particles have intrinsic properties like density, pressure and tempera-

ture. As most important part of the SPH module a parallel tree-based neighbour search algorithm was

implemented. It has been demonstrated that its scaling is at least as good as the scaling of the code

PEPC it is combined with, which is dominated by the O(N logN) scaling of the force summation.

The evaluation of the density, pressure induced acceleration and change of temperature was imple-

mented. Afterwards, tests were performed to show that the code describes all the relevant physical

effects correctly. For protoplanetary discs these effects are sound waves, shocks and gravitation.

Simulating sound waves, it was demonstrated that the code can reproduce the analytical solu-

tion sufficiently. The relative deviation of the numerical solution for the density from the analytical

solution was below 4 · 10−6 after 10000 time-steps. This is more than sufficient for the planned

applications.

It was demonstrated, that the code is capable of resolving shocks. Here, one dimensional discon-

tinuities in density and pressure were used. The solutions for two different types of shock problems

were compared to numerical solutions of other codes. It was demonstrated, that the physical phenom-

ena can be reproduced correctly with the new code.
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With a three-dimensional problem incorporating gravitation and hydrodynamics it was investigated

whether the two code-parts work together correctly. The results obtained from the simulation were

compared to analytical solutions, confirming the correctness of the new code.

Finally, a first test simulation of a high-mass protoplanetary disc was performed successfully. As

expected, the disc dissolves due to increasing temperature caused by viscous heating in the inner parts

of the disc. In a more realistic setting, cooling mechanisms have to be considered. However, during

the relaxation process, where the temperature was limited, the disc evolved to hydrostatic equilib-

rium. The gravitational collapse perpendicular to the discs midplane was suppressed by stabilising

hydrostatic pressure.

The new code is not the first of its kind. Most similar codes are parallelised for shared-memory

computers, what limits applications to a few thousand CPU cores and the available memory to few

10 TB. There are only two widely used similar codes parallelised for distributed-memory computers

with up to several 105 CPU cores and hundreds of TB memory. One of which is GADGET-2, devel-

oped by Springel (2005) and was used for the famous Millenium Simulation. At least the computation

of the gravitational forces is known to be faster with PEPC than with GADGET-2 (P. Gibbon (2011),

private communication). Thus, it is expected that the new code as a whole is faster, too.

The new developed simulation code can also be used for simulations of different astrophysical

processes. Besides simulations of fragmenting protoplanetary discs, it can be used to investigate the

role of viscosity in star-disc encounters. Also the possible recircularisation of the perturbed disc

after such an encounter can be simulated. However, the code can as well be used to investigate

other processes, like the formation of stars by gravitational collapse of molecular clouds (e.g. Price

& Bate, 2010). The new code increases the resolution and performance of all mentioned simulations

significantly and reduces the computation times. This crucial improvements are required for ongoing

astrophysical research.
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However, even though first results were successfully produced with the new code, further improve-

ments are possible.

From the physical point of view, first of all the energy conservation in the SPH module should be

improved by the implementation of a symmetric force computation. Therefore, basically a slightly

modified next neighbour search is needed. This modification should improve the treatment of strong

density gradients, which occur for example during the fragmentation of a disc. Additionally, more

physical processes like thermal conduction or radiation transport can be implemented for more re-

alistic simulations. Especially radiation transport is important for a more realistic modelling of the

radiative cooling of a protoplanetary disc. Thermal conduction can also provide a cooling mechanism.

From the computational point of view, the performance of the new code can be improved by chang-

ing the implementation to a hybrid scheme. This means, the usage of one MPI (Message Passing

Interface) process and domain per compute-node. Within the MPI process, loops are parallelised with

a shared-memory parallelisation scheme like OpenMP. When only one domain per compute-node is

used, the number of domains is reduced for example by a factor of eight on the supercomputer Ju-

ropa, operated by Forschungszentrum Jülich, and the size of the domains increase by this factor. As

explained in Sec. 5.3.3, this reduces the communication effort and memory usage and should result

in an enormous performance gain.

Finally, it is planned to include the new code into a library, which can then be used by other

simulation codes.
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