000016126 001__ 16126
000016126 005__ 20210129210636.0
000016126 0247_ $$2DOI$$a10.1088/1742-5468/2011/06/P06004
000016126 0247_ $$2WOS$$aWOS:000292252400005
000016126 037__ $$aPreJuSER-16126
000016126 041__ $$aeng
000016126 082__ $$a530
000016126 084__ $$2WoS$$aMechanics
000016126 084__ $$2WoS$$aPhysics, Mathematical
000016126 1001_ $$0P:(DE-Juel1)156196$$aZhang, J.$$b0
000016126 245__ $$aTransitions in pedestrian fundamental diagrams of straight corridors and T-junctions
000016126 260__ $$aBristol$$bIOP Publ.$$c2011
000016126 300__ $$aP06004
000016126 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000016126 3367_ $$2DataCite$$aOutput Types/Journal article
000016126 3367_ $$00$$2EndNote$$aJournal Article
000016126 3367_ $$2BibTeX$$aARTICLE
000016126 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000016126 3367_ $$2DRIVER$$aarticle
000016126 440_0 $$013281$$aJournal of Statistical Mechanics : Theory and Experiment$$x1742-5468
000016126 500__ $$aRecord converted from VDB: 12.11.2012
000016126 520__ $$aMany observations of pedestrian dynamics, including various self-organization phenomena, have been reproduced successfully by different models. But the empirical databases for quantitative calibration are still insufficient, e. g. the fundamental diagram as one of the most important relationships displays non-negligible differences among various studies. To improve this situation, experiments in straight corridors and T-junctions are performed. Four different measurement methods are defined to study their effects on the fundamental diagram. It is shown that they have minor influences for rho < 3.5 m(-2) but only the Voronoi method is able to resolve the fine structure of the fundamental diagram. This enhanced measurement method permits us to observe the occurrence of a boundary-induced phase transition. For corridors of different widths we found that the specific flow concept works well for rho < 3.5 m(-2). Moreover, we illustrate the discrepancies between the fundamental diagrams of a T-junction and a straight corridor.
000016126 536__ $$0G:(DE-Juel1)FUEK411$$2G:(DE-HGF)$$aScientific Computing (FUEK411)$$cFUEK411$$x0
000016126 536__ $$0G:(DE-HGF)POF2-411$$a411 - Computational Science and Mathematical Methods (POF2-411)$$cPOF2-411$$fPOF II$$x1
000016126 588__ $$aDataset connected to Web of Science
000016126 65320 $$2Author$$atraffic and crowd dynamics
000016126 650_7 $$2WoSType$$aJ
000016126 7001_ $$0P:(DE-HGF)0$$aKlingsch, W.$$b1
000016126 7001_ $$0P:(DE-HGF)0$$aSchadschneider, A.$$b2
000016126 7001_ $$0P:(DE-Juel1)132266$$aSeyfried, A.$$b3$$uFZJ
000016126 773__ $$0PERI:(DE-600)2138944-5$$a10.1088/1742-5468/2011/06/P06004$$gp. P06004$$pP06004$$qP06004$$tJournal of statistical mechanics: theory and experiment$$x1742-5468$$y2011
000016126 8567_ $$uhttp://dx.doi.org/10.1088/1742-5468/2011/06/P06004
000016126 909CO $$ooai:juser.fz-juelich.de:16126$$pVDB
000016126 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000016126 9141_ $$y2011
000016126 9132_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data $$vComputational Science and Mathematical Methods$$x0
000016126 9131_ $$0G:(DE-HGF)POF2-411$$1G:(DE-HGF)POF2-410$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lSupercomputing$$vComputational Science and Mathematical Methods$$x1
000016126 9201_ $$0I:(DE-Juel1)JSC-20090406$$gJSC$$kJSC$$lJülich Supercomputing Centre$$x0
000016126 970__ $$aVDB:(DE-Juel1)129821
000016126 980__ $$aVDB
000016126 980__ $$aConvertedRecord
000016126 980__ $$ajournal
000016126 980__ $$aI:(DE-Juel1)JSC-20090406
000016126 980__ $$aUNRESTRICTED