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Preface

Computer simulations of complex particle systems have a still increasing impact in a broad
field of physics, e.g. astrophysics, statistical physics, plasma physics, material sciences,
physical chemistry or biophysics, to name a few. Along with the development of com-
puter hardware, which today shows a performance in the range of PFlop/s, it is essential
to develop efficient and scalable algorithms which solve the physical problem. Since with
more powerful computer systems usually also the problem size is increased, it is impor-
tant to implement optimally scaling algorithms, which increase the computational effort
proportionally to the number of particles.

Especially in fields, where long-range interactions between particles have to be con-
sidered the numerical effort is usually very large. Since most of interesting physical phe-
nomena involve electrostatic, gravitational or hydrodynamic effects, the proper inclusion
of long range interactions is essential for the correct description of systems of interest.
Since in principle, long range interactions are O(N?) for open systems or include infinite
lattice sums in periodic systems, fast implementations rely on approximations. Although,
in principle, various methods might be considered as exact representations of the problem,
approximations with controllable error thresholds are developed. Since different bound-
ary conditions or dielectric properties require the application of appropriate methods, there
is not only one method, but various classes of methods developed. E.g. the inclusion of
different symmetries in the system (1d- ,2d- or 3d-periodic systems), the presence of in-
terfaces or including inhomogeneous dielectric properties, require the implementation of
different electrostatic methods. Furthermore, the interdisciplinary character of the problem
led to the fact that either very similar methods or complementary methods were developed
independently in parallel in different disciplines or were discovered in other research areas
and adopted to other fields.

Therefore the present school does not only focus on one method, but introduces a
spectrum of different fast algorithms:

e Fourier transform based methods

— Particle-particle particle-mesh method (P>M)
— MMM-methods (MMMI1d, MMM2d)

— Fast summation based on non-equidistant Fast Fourier Transform (NFFT)
e Hierarchical methods

— Fast Multipole Method (FMM)
— Barnes-Hut Tree method

— Multigrid based methods
e [ocal cutoff-approximations
— Wolf summation

In addition to the mathematical description of the methods, focus is given to the par-
allelization and implementation on parallel computers. Therefore, also a special session is



devoted to an introduction to parallel programming and various parallelization paradigms
(MPI, OpenMP, PThreads). Practical sessions complement the talks on theoretical founda-
tions and implementation issues of different algorithms.

This first summer school on Fast Methods for Long-Range Interactions in Complex Sys-
tems brings together a number of German experts in the fields of mathematical methods
and development of algorithms. The presented methods and their efficient parallel im-
plementation are part of the German network project ScaFaCoS (Scalable Fast Coulomb
Solvers), sponsored by the German Ministry for Science and Education (BMBF), which
aims to build a publicly accessible parallel library.

Financial support of this school came from the Wilhelm and Else Heraeus Foundation,
which is gratefully acknowledged. This preface also gives the opportunity to thank all the
speakers, having prepared the lectures and practical sessions. Also we would like to ex-
press most cordial gratitudes to Monika Marx, who has put lots of effort in the realization
of the present poster abstracts, lecture notes, WEB pages and lots of plannings. We are
also most grateful to Elke Bielitza who was indispensable for this school by taking care
of logistical details, transports, registration, catering and a lot more. Further thanks are
expressed to Johannes Grotendorst who gave valuable advice and expertise of organiza-
tional details and also to Oliver Biicker, René Halver, Thomas Plaga and Marga Vaef3en for
technical and administrational support.

Jiilich, September 2010

Godehard Sutmann
Paul Gibbon
Thomas Lippert
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Classical Particle Simulations

Godehard Sutmann

Institute for Advanced Simulation (IAS)
Jiilich Supercomputing Centre (JSC)
Forschungszentrum Jiilich, 52425 Jiilich, Germany
E-mail: g.sutmann@fz-juelich.de

An introduction to classical particle dynamics simulation is presented. In addition to some
historical notes, an overview is given over particle models and integrators and pathways are
shown how to build more abstract coarse grain models of particles or groups of particles in order
to reduce the number of degrees of freedom, thereby increasing efficiency and performance.

1 Introduction

Computer simulation methods have become a powerful tool to solve many-body problems
in statistical physics', physical chemistry? and biophysics®. Although both the theoretical
description of complex systems in the framework of statistical physics as well as the ex-
perimental techniques for detailed microscopic information are rather well developed it is
often only possible to study specific aspects of those systems in great detail via simulation.
On the other hand, simulations need specific input parameters that characterize the sys-
tem in question, and which come either from theoretical considerations or are provided by
experimental data. Having characterized a physical system in terms of model parameters,
simulations are often used both to solve theoretical models beyond certain approximations
and to provide a hint to experimentalists for further investigations. In the case of big exper-
imental facilities it is often even required to prove the potential outcome of an experiment
by computer simulations. In this sense it can be stated that the field of computer simula-
tions has developed into a very important branch of science, which on the one hand helps
theorists and experimentalists to go beyond their inherent limitations and on the other hand
is a scientific field on its own. Therefore, simulation science has often been called the third
pillar of science, complementing theory and experiment.

The traditional simulation methods for many-body systems can be divided into two
classes, i.e. stochastic and deterministic simulations, which are largely represented by the
Monte Carlo (MC) method"* and the molecular dynamics®>® (MD) method, respectively.
Monte Carlo simulations probe the configuration space by trial moves of particles. Within
the so-called Metropolis algorithm, the energy change from step n to n + 1 is used as
a trigger to accept or reject a new configuration. Paths towards lower energy are always
accepted, those to higher energy are accepted with a probability governed by Boltzmann
statistics. This algorithm ensures the correct limiting distribution and properties of a given
system can be calculated by averaging over all Monte Carlo moves within a given statistical
ensemble (where one move means that every degree of freedom is probed once on aver-
age). In contrast, MD methods are governed by the system Hamiltonian and consequently
Hamilton’s equations of motion’-3
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are integrated to move particles to new positions and to assign new velocities at these new
positions. This is an advantage of MD simulations with respect to MC, since not only the
configuration space is probed but the whole phase space which gives additional information
about the dynamics of the system. Both methods are complementary in nature but they
lead to the same averages of static quantities, given that the system under consideration is
ergodic and the same statistical ensemble is used.

In order to characterise a given system and to simulate its complex behavior, a model
for interactions between system constituents is required. This model has to be tested
against experimental results, i.e. it should reproduce or approximate experimental find-
ings like distribution functions or phase diagrams, and theoretical constraints, i.e. it should
obey certain fundamental or limiting laws like energy or momentum conservation.

Concerning MD simulations the ingredients for a program are basically threefold:

(1) A model for the interaction between system constituents (atoms, molecules, surfaces
etc.) is needed. Often, it is assumed that particles interact only pairwise, which is exact e.g.
for particles with fixed partial charges. This assumption greatly reduces the computational
effort and the work to implement the model into the program.

(i1) An integrator is needed, which propagates particle positions and velocities from time ¢
to t + dt. It is a finite difference scheme which propagates trajectories discretely in time.
The time step dt has properly to be chosen to guarantee stability of the integrator, i.e. there
should be no drift in the system’s energy.

(iii) A statistical ensemble has to be chosen, where thermodynamic quantities like pressure,
temperature or the number of particles are controlled. The natural choice of an ensemble
in MD simulations is the microcanonical ensemble (NVE), since the system’s Hamiltonian
without external potentials is a conserved quantity. Nevertheless, there are extensions to
the Hamiltonian which also allow to simulate different statistical ensembles.

These steps essentially form the essential framework an MD simulation. Having this
tool at hand, it is possible to obtain exact results within numerical precision. Results are
only correct with respect to the model which enters into the simulation and they have to be
tested against theoretical predictions and experimental findings. If the simulation results
differ from real system properties or if they are incompatible with solid theoretical mani-
festations, the model has to be refined. This procedure can be understood as an adaptive
refinement which leads in the end to an approximation of a model of the real world at least
for certain properties. The model itself may be constructed from plausible considerations,
where parameters are chosen from neutron diffraction or NMR measurements. It may also
result from first principle ab initio calculations. Although the electronic distribution of the
particles is calculated very accurately, this type of model building contains also some ap-
proximations, since many-body interactions are mostly neglected (this would increase the
parameter space in the model calculation enormously). However, it often provides a good
starting point for a realistic model.

An important issue of simulation studies are the accessible time- and length-scales
which can be covered by particle simulations. At this point it is important to consider
different concepts of particles:

e Ab-initio models: particles are described consistently together with the electronic
structure. Interactions are not restricted to a fixed force field description but the inter-
actions are dependent on the configuration of particles in the system. The calculation
of interactions is therefore a many-body problem. Depending on the approximations,



used for the solution of electronic configurations, the computational complexity is
large® 1.

e All-atom model: molecules are resolved on an atomistic level and each atom is rep-
resented with a force-field description. Molecular degrees of freedom may contain
flexible bonds or rigid body constraints.

e Unified-atom model: molecules are again described on an atomistic level, but some
intra-molecular atom-groups are described as single interaction center. This technique
often applies to light atoms, e.g. hydrogens, in order to allow for a larger timestep in
the equations of motion.

e Unified-molecule model: whole molecules or even groups of molecules are consid-
ered as one particle. Interactions are e.g. described by multipole moments, introduc-
ing a non-isotropic interaction between molecules. This description is used e.g. in the
simulation of liquid crystals'!' or polar liquids'>*’.

e Coarse-grain field representation: particles represent large groups of particles, which
exhibit dynamics on mesoscopic time- and length-scales. Fluctuations in particle mo-
tion thereby reflects thermal behavior. Interactions are modeled such to represent
macroscopic behavior, governed by Navier-Stokes equations, as a limiting case.

Since in this review, classical types of particle simulations are considered, ab initio
methods are discarted here. Usually they have such a large complexity that number of
particles and consequently, time and length scales are strongly limited with respect to clas-
sical methods. However, some multiscale methods, being developed during the last years,
allow to couple high resolution methods (ab initio) with atomistic and coarse-grain models,
thereby treating only a small subset of degrees of freedom on a very detailed level.

Fig.1 shows a schematic representation for different types of simulations. It is clear
that the more detailed a simulation technique operates, the smaller is the accessibility of
long times and large length scales. Therefore quantum simulations, where electronic fluc-
tuations are taken into account, are located in the part of the diagram of very short time
and length scales which are typically of the order of A and ps. Classical molecular dy-
namics approximates electronic distributions in a rather coarse-grained fashion by putting
either fixed partial charges on interaction sites or by adding an approximate model for
polarization effects. In both cases, the time scale of the system is not dominated by the
motion of electrons, but the time of intermolecular collision events, rotational motions or
intramolecular vibrations, which are orders of magnitude slower than those of electron mo-
tions. Consequently, the time step of integration is larger and trajectory lengths are of order
ns and accessible lengths of order 10 — 100 A. If one considers tracer particles in a solvent
medium, where one is not interested in a detailed description of the solvent, one can apply
Brownian dynamics, where the effect of the solvent is hidden in average quantities. Since
collision times between tracer particles is very long, one may apply larger timesteps. Fur-
thermore, since the solvent is not simulated explicitly, the lengthscales may be increased
considerably. Finally, if one is interested not in a microscopic picture of the simulated sys-
tem but in macroscopic quantities, the concepts of hydrodynamics may be applied, where
the system properties are hidden in effective numbers, e.g. density, viscosity or sound
velocity.
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Figure 1: Schematic of different time- and length-scales, occurring from microscopic to
macroscopic dimensions. Due to recent developments of techniques like Stochastic Ro-
tation Dynamics (SRD) or Lattice Boltzmann techniques, which are designed to simulate
the mesoscopic scales, there is the potential to combine different methods in a multiscale
approach to cover a broad spectrum of times and lengths.

Itis clear that the performance of particle simulations strongly depends on the computer
facilities at hand. The first studies using MD simulation techniques were performed in 1957
by B. J. Alder and T. E. Wainright'? who simulated the phase transition of a system of hard
spheres. The general method, however, was presented only two years later'*. In these early
simulations, which were run on an IBM-704, up to 500 particles could be simulated, for
which 500 collisions per hour were calculated. Taking into account 200000 collisions for
a production run, these simulations lasted for more than two weeks. Since the propagation
of hard spheres in a simulation is event driven, i.e. it is determined by the collision times
between two particles, the propagation is not based on an integration of the equations
of motion, but rather the calculation of the time of the next collision, which results in a
variable time step in the calculations.

The first MD simulation which was applied to atoms interacting via a continuous po-
tential was performed by A. Rahman in 1964. In this case, a model system for Argon was
simulated and not only binary collisions were taken into account but the interactions were
modeled by a Lennard-Jones potential and the equations of motion were integrated with
a finite difference scheme. This work may be considered as seminal for dynamical calcu-
lations. It was the first work where a numerical method was used to calculate dynamical
quantities like autocorrelation functions and transport coefficients like the diffusion coef-
ficient for a realistic system. In addition, more involved characteristic functions like the
dynamic van Hove function and non-Gaussian corrections to diffusion were evaluated. The



calculations were performed for 864 particles on a CDC 3600, where the propagation of
all particles for one time step took = 45 s. The calculation of 50000 timesteps then took
more than three weeks! &

With the development of faster and bigger massively parallel architectures the accessi-
ble time and length scales are increasing for all-atom simulations. In the case of classical
MD simulations it is a kind of competition to break new world records by carrying out
demonstration runs of larger and larger particle systems!>~!8. In a recent publication, it was
reported by Germann and Kadau'? that a trillion-atom (102 particles!) simulation was run
on an IBM BlueGene/L machine at Lawrence Livermore National Laboratory with 212992
PowerPC 440 processors with a total of 72 TB memory. This run was performed with the
memory optimised program SPaSM?*2! (Scalable Parallel Short-range Molecular dynam-
ics) which, in single-precision mode, only used 44 Bytes/particle. With these conditions a
simulation of a Lennard-Jones system of N = (10000)? was simulated for 40 time steps,
where each time step used ~ 50secs wall clock time.

Concerning the accessible time scales of all-atom simulations, a numerical study, car-
ried out by Y. Duan and P. A. Kollman in 1998 still may be considered as a milestone in
simulation science. In this work the protein folding process of the subdomain HP-36 from
the villin headpiece?®>* was simulated up to 1 ps. The protein was modelled with a 596
interaction site model dissolved in a system of 3000 water molecules. Using a timestep of
integration of 2 x 10~ 1®s, the program was run for 5 x 108 steps. In order to perform this
type of calculation, it was necessary to run the program several months on a CRAY T3D
and CRAY T3E with 256 processors. It is clear that such kind of a simulation is excep-
tional due to the large amount of computer resources needed, but it was nonetheless a kind
of milestone pointing to future simulation practices, which are nowadays still not standard,
but nevertheless exceptionally applied?*.

Classical molecular dynamics methods are nowadays applied to a huge class of prob-
lems, e.g. properties of liquids, defects in solids, fracture, surface properties, friction,
molecular clusters, polyelectrolytes and biomolecules. Due to the large area of applica-
bility, simulation codes for molecular dynamics were developed by many groups. On the
internet homepage of the Collaborative Computational Project No.5 (CCP5)* a number
of computer codes are assembled for condensed phase dynamics. During the last years
several programs were designed for parallel computers. Among them, which are partly
available free of charge, are, e.g., Amber/Sander?®, CHARMM?’, NAMD?, NWCHEM?,
GROMACS?® and LAMMPS?!.

Although, with the development of massively parallel architectures and highly scalable
molecular dynamics codes, it has become feasible to extend the time and length scales to
relatively large scales, a lot of processes are still beyond technical capabilities. In addition,
the time and effort for running these simulations is enormous and it is certainly still far
beyond of standard. A way out of this dilemma is the invention of new simulation of
methodological approaches. A method which has attracted a lot of interest recently is
to coarse grain all-atom simulations and to approximate interactions between individual
atoms by interactions between whole groups of atoms, which leads to a smaller number
of degrees of freedom and at the same time to a smoother energy surface, which on the
one hand side increases the computation between particle interactions and on the other

40n a standard PC this calculation may be done within less than one hour nowadays!



hand side allows for a larger time step, which opens the way for simulations on larger
time and length scales of physical processes®?. Using this approach, time scales of more
than 1 psecs can now be accessed in a fast way>>3*, although it has to be pointed out that
coarse grained force fields have a very much more limited range of application than all-
atom force fields. In principle, the coarse graining procedure has to be outlined for every
different thermodynamic state point, which is to be considered in a simulation and from
that point of view coarse grain potentials are not transferable in a straight forward way as
it is the case for a wide range of all-atom force field parameters.

2 Models for Particle Interactions

A system is completely determined through it’s Hamiltonian H = Hy + H1, where H, is
the internal part of the Hamiltonian, given as

N o N N
Ho = %+Zu(ri,rj)+Zu(3)(ri,rj,rk)+... 2)
i=1 vy i<j

where p is the momentum, m the mass of the particles and u and «(*) are pair and three-
body interaction potentials. 7 is an external part, which can include time dependent
effects or external sources for a force. All simulated objects are defined within a model
description. Often a precise knowledge of the interaction between atoms, molecules or sur-
faces are not known and the model is constructed in order to describe the main features of
some observables. Besides boundary conditions, which are imposed, it is the model which
completely determines the system from the physical point of view. In classical simulations
the objects are most often described by point-like centers which interact through pair- or
multibody interaction potentials. In that way the highly complex description of electron
dynamics is abandoned and an effective picture is adopted where the main features like the
hard core of a particle, electric multipoles or internal degrees of freedom of a molecules are
modeled by a set of parameters and (most often) analytical functions which depend on the
mutual position of particles in the configuration. Since the parameters and functions give
a complete information of the system’s energy as well as the force acting on each parti-
cle through F = —VU, the combination of parameters and functions is also called a force
field® . Different types of force field were developed during the last ten years. Among them
are e.g. MM3%6, MM4%7, Dreiding®, SHARP*°, VALBON*’, UFF*, CFF95*>, AMBER*
CHARMM*, OPLS* and MMFF*¢.

There are major differences to be noticed for the potential forms. The first distinction
is to be made between pair- and multibody potentials. In systems with no constraints, the
interaction is most often described by pair potentials, which is simple to implement into a
program. In the case where multibody potentials come into play, the counting of interaction
partners becomes increasingly more complex and dramatically slows down the execution
of the program. Only for the case where interaction partners are known in advance, e.g.
in the case of torsional or bending motions of a molecule can the interaction be calculated
efficiently by using neighbor lists or by an intelligent way of indexing the molecular sites.

A second important difference between interactions is the spatial extent of the potential,
classifying it into short and long range interactions. If the potential drops down to zero
faster than »~¢, where r is the separation between two particles and d the dimension of



the problem, it is called short ranged, otherwise it is long ranged. This becomes clear by

considering the integral
dr o n<d
I_/r"_{ﬁnite:n>d )

i.e. a particles’ potential energy gets contributions from all particles of the universe if
n < d, otherwise the interaction is bound to a certain region, which is often modeled
by a spherical interaction range. The long range nature of the interaction becomes most
important for potentials which only have potential parameters of the same sign, like the
gravitational potential where no screening can occur. For Coulomb energies, where posi-
tive and negative charges may compensate each other, long range effects may be of minor
importance in some systems like molten salts.

There may be different terms contributing to the interaction potential between particles,
i.e. there is no universal expression, as one can imagine for first principles calculations.
In fact, contributions to interactions depend on the model which is used and this is the re-
sult of collecting various contributions into different terms, coarse graining interactions or
imposing constraints, to name a few. Generally one can distinguish between bonded and
non-bonded terms, or intra- and inter-molecular terms. The first class denotes all contribu-
tions originating between particles which are closely related to each other by constraints or
potentials which guaranty defined particles as close neighbors. The second class denotes
interactions between particles which can freely move, i.e. there are no defined neighbors,
but interactions simply depend on distances.

A typical form for a (so called) force field (e.g. AMBER?%) looks as follows

U= 3 Kolr—ra?+ Y Kol0— 0,7+ Y 2+cos(ns )] @)

bonds angles dihedrals
Aij  Biyj Cij Dy 4iq;
+§: 2 6 |t E: 12~ .10 +§:7
Lt | 1 re. 7y r e ;s
1<J v v H—bonds L %W v i<j Y

In the following, short- and long-range interaction potentials and methods are briefly
described in order to show differences in their algorithmical treatment.

In the following two examples shall illustrate the different treatment of short- and long
range interactions.

2.1 Short Range Interactions

Short range interactions offer the possibility to take into account only neighbored particles
up to a certain distance for the calculation of interactions. In that way a cutoff radius
is introduced beyond of which mutual interactions between particles are neglected. As
an approximation one may introduce long range corrections to the potential in order to
compensate for the neglect of explicit calculations. The whole short range potential may
then be written as

N
U= ZU(TUVU < Re) + Ure 5)

i<j
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Figure 2: Comparison between a Buckingham-, Lennard-Jones (12-6) and Lennard-Jones
(9-6) potential.

The long-range correction is thereby given as

o0
Uire = 27TN[)()/ dr r2g(r)u(r) (6)
where p is the number density of the particles in the system and g(r) = p(r)/po is the
radial distribution function. For computational reasons, g(r) is most often only calculated
up to R, so that in practice it is assumed that g(r) = 1 for r > R., which makes it possible
for many types of potentials to calculate U;,.. analytically.

Besides internal degrees of freedom of molecules, which may be modeled with short
range interaction potentials, it is first of all the excluded volume of a particle which is
of importance. A finite diameter of a particle may be represented by a steep repulsive
potential acting at short distances. This is either described by an exponential function or
an algebraic form, o< r~", where n > 9. Another source of short range interaction is the
van der Waals interaction. For neutral particles these are the London forces arising from
induced dipole interactions. Fluctuations of the electron distribution of a particle give rise
to fluctuating dipole moments, which on average compensate to zero. But the instantaneous
created dipoles induce also dipoles on neighbored particles which attract each other oc 5.
Two common forms of the resulting interactions are the Buckingham potential

D.s

ulls(rij) = Agge™Pormia — 6 )
ij

and the Lennard-Jones potential
- 12 o 6
U (rij) = 4€ag (“ﬁ> - (") ®)
Tij Tij

which are compared in Fig.2. In Eqs.7,8 the indices «, S indicate the species of the
particles, i.e. there are parameters A, B, D in Eq.7 and ¢, o in Eq.8 for intra-species inter-
actions (aw = ) and cross species interactions (o # (). For the Lennard-Jones potential



the parameters have a simple physical interpretation: € is the minimum potential energy,
located at r = 2'/%¢ and o is the diameter of the particle, since for 7 < o the potential
becomes repulsive. Often the Lennard-Jones potential gives a reasonable approximation
of a true potential. However, from exact quantum ab initio calculations an exponential
type repulsive potential is often more appropriate. Especially for dense systems the too
steep repulsive part often leeds to an overestimation of the pressure in the system. Since
computationally the Lennard-Jones interaction is quite attractive the repulsive part is some-
times replaced by a weaker repulsive term, like oc »~?. The Lennard-Jones potential has
another advantage over the Buckingham potential, since there are combining rules for the
parameters. A common choice are the Lorentz-Berelot combining rules

Oaa + a3p

9 5 €aB = VE€aafpp (9)

This combining rule is, however, known to overestimate the well depth parameter. Two
other commonly known combining rules try to correct this effect, which are Kong*’ rules

Oap =

1/13\ 13 1/6
1 Eaaa(lea 655052,3
Oas = | 317 oo (14| 20 (10)
\/ €aaTaa€B30 35 aclaa
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and the Waldman-Kagler*® rule
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In a recent study* of Ar-Kr and Ar-Ne mixtures, these combining rules were tested and it
was found that the Kong rules give the best agreement between simulated and experimental
pressure-density curves. An illustration of the different combining rules is shown in Fig.3
for the case of an Ar-Ne mixture.

Since there are only relatively few particles which have to be considered for the inter-
action with a tagged particle (i.e. those particles within the cutoff range), it would be a
computational bottleneck if in any time step all particle pairs would have to be checked
whether they lie inside or outside the interaction range. This becomes more and more a
problem as the number of particles increases. A way to overcome this bottleneck is to in-
troduce list techniques. The first implementation dates back to the early days of molecular
dynamics simulations. In 1967, Verlet introduced a list>®, where at a given time step all
particle pairs were stored within a range R, + R;, where R; is called the skin radius and
which serves as a reservoir of particles, in order not to update the list in each time step
(which would make the list redundant). Therefore, in a force routine, not all particles have
to tested, whether they are in a range r;; < R., but only those particle pairs, stored in the
list. Since particles are moving during the simulation, it is necessary to update the list from
time to time. A criterion to update the list could be, e.g.

R
m?,x |I‘l(t) — I'Z'(t())| 2 7 (13)
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Figure 3: Resulting cross-terms of the Lennard-Jones potential for an Ar-Ne mixture.
Shown is the effect of different combining rules (Eqs.9-12). Parameters used are 0 4,» =
3.406 A,ep, =119.4 Kand oye = 2.75 A, ene = 35.7 K.

where t( is the time from the last list update. This ensures that particles cannot move
from the outside region into the cutoff sphere without being recognized. This technique,
though efficient, has still complexity O(NN?), since at an update step, all particle pairs have
to be checked for their mutual distances. Another problem arises when simulating many
particles, since the memory requirements are relatively large (size of the list is 47 (R, +
R,)3p N/3). There is, of course also the question, how large the skin radius should be
chosen. Often, it is chosen as Ry = 1.50. In Ref.3! it was shown that an optimal choice
strongly depends on the number of particles in the system and an optimization procedure
was outlined.

An alternative list technique, which scales linearly with the number of particles is the
linked-cell method>?>>3. The linked-cell method starts with subdividing the whole system
into cubic cells and sorting all particles into these cells according to their position. The size
of the cells, L., is chosen to be L, < Lp,,/floor(Lp.:/R.), where Lp,, is the length
of the simulation box. All particles are then sorted into a list array of length N. The list
is organized in a way that particles, belonging to the same cell are linked together, i.e. the
entry in the list referring to a particle points directly to the entry of a next particle inside
the same cell. A zero entry in the list stops the search in the cell and a next cell is checked
for entries. This technique not only has computational complexity of O(N), since the
sorting into the cells and into the N-dimensional array is of O(N), but also has memory
requirements which only grow linearly with the number of particles. These features make
this technique very appealing. However, the technique is not well vectorizable and also
the addressing of next neighbors in the cells require indirect access (e.g. i=index (1)),
which may lead to cache misses. In order not to miss any particle pair in the interactions
every box has to have a neighbor region in each direction which extends to R.. In the
case, where L. > R, every cell is surrounded by 26 neighbor cells in three dimensional
systems. This gives rise to the fact that the method gives only efficiency gains if Lp,, >
4R., i.e. subdividing each box direction into more than 3 cells. In order to approximate the
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Figure 4: Contour plots of the performance for the combination of linked-cell and Verlet list as a function
of the cell length and the size of the skin radius. Crosses mark the positions predicted from an optimization
procedure>*. Test systems were composed of 4000 Lennard-Jones particles with R. = 2.5 o at temperature
T = 1.4¢/kp. Left: p = 0.75/03. Right: p = 2.0/03.

cutoff sphere in a better way by cubic cells, one may reduce the cell size and simultaneously
increasing the total number of cells. In an optimization procedure’!, it was found that a
reduction of cell sizes to L. = R./2 or even smaller often gives very much better results.

It is, of course, possible to combine these list techniques, i.e. using the linked-cell
technique in the update step of the Verlet list. This reduces the computational complexity
of the Verlet list to O(N) while fully preserving the efficiency of the list technique. It is
also possible to model the performance of this list combination and to optimize the length
of the cells and the size of the skin radius. Figure 4 shows the result of a parameter study,
where the performance of the list was measured as a function of (L., Rs). Also shown is
the prediction of parameters coming out of an optimization procedure>*.

2.2 Long Range Interactions

Long range interactions essentially require to take all particle pairs into account for a proper
treatment of interactions. This may become a problem, if periodic boundary conditions
are imposed to the system, i.e. formally simulating an infinite number of particles (no
explicit boundaries imply infinite extend of the system). Therefore one has to devise special
techniques to treat this situation. On the other hand one also has to apply fast techniques
to overcome the inherent O(N?) complexity of the problem, since for large numbers of
particles this would imply an intractable computational bottleneck. In general one can
classify algorithms for long range interactions into the following system:

e Periodic boundary conditions

— Grid free algorithms, e.g. Ewald summation method®>~>’

— Grid based algorithms, e.g. Smoothed Particle Mesh Ewald>, Particle-
Particle Particle-Mesh method®*-62

e Open boundary conditions

11




— Grid free algorithms, e.g. Fast Multipole Method®*-%® (FMM), Barnes-Hut Tree
method® 7

— Grid based algorithms, e.g. Particle-Particle Particle-Multigrid method”!
(P>Mg), Particle Mesh Wavelet method’? (PMW)

In the following two important members of these classes will be described, the Ewald
summation method and the Fast Multipole Method.

2.2.1 Ewald Summation Method

The Ewald summation method originates from crystal physics, where the problem was to
determine the Madelung constant’3, describing a factor for an effective electrostatic energy
in a perfect periodic crystal. Considering the electrostatic energy of a system of IV particles
in a cubic box and imposing periodic boundary conditions, leads to an equivalent problem.
At position r; of particle ¢, the electrostatic potential, ¢(r;), can be written down as a
lattice sum

; Z e ] (1

where n = (ng, ny,n.),n, € Zis a vector along cartesian coordinates and L is the length
of the simulation box. The sign ”{” means that ¢ # j for ||n|| = 0.

Eq. (14) is conditionally convergent, i.e. the result of the outcome depends on the order
of summation. Also the sum extends over infinite number of lattice vectors, which means
that one has to modify the procedure in order to get an absolute convergent sum and to get
it fast converging. The original method of Ewald consisted in introducing a convergence
factor e="*, which makes the sum absolute convergent; then transforming it into different
fast converging terms and then putting s in the convergence factor to zero. The final result
of the calculation can be easier understood from a physical picture. If every charge in
the system is screened by a counter charge of opposite sign, which is smeared out, then
the potential of this composite charge distribution becomes short ranged (it is similar in
electrolytic solutions, where ionic charges are screened by counter charges - the result is
an exponentially decaying function, the Debye potential’*). In order to compensate for
the added charge distribution it has to be subtracted again. The far field of a localized
charge distribution is, however, again a Coulomb potential. Therefore this term will be
long ranged. There would be nothing gained if one would simply sum up these different
terms. The efficiency gain shows up, when one calculates the short range interactions as
direct particle-particle contributions in real space, while summing up the long range part
of the smeared charge cloud in reciprocal Fourier space. Choosing as the smeared charge
distribution a Gaussian charge cloud of half width 1/« the corresponding expression for
the energy becomes

erfc(al|r;; +nLl|)
t J 1
Z Z 4qj |I_Z —|—nL|| ( 5)

Z Z oIkl /40? gtery 20
K3
o= ||k||2 VT
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The last term corresponds to a self energy contribution which has to be subtracted, as it is
considered in the Fourier part. Eq. (15) is an exact equivalent of Eq. (14), with the differ-
ence that it is an absolute converging expression. Therefore nothing would be gained with-
out further approximation. Since the complimentary error function can be approximated
for large arguments by a Gaussian function and the k-space parts decreases like a Gaussian,
both terms can be approximated by stopping the sums at a certain lattice vector n and a
maximal k-value k,,,,. The choice of parameters depends on the error, € = exp(fp2),
which one accepts to tolerate. Setting the error tolerance p and choosing the width of the
counter charge distribution, one gets

log(R.) 1

2 c) __ 2

R: 4+ = g(p —log(2)) (16)
4

k7w + 802 10g(kmaz) = 40°p* + log <L3> (17)

This can be solved iteratively or if one is only interested in an approximate estimate for the
error, i.e. neglecting logarithmic terms, one gets

R.=L (18)
o
Emaz = 20p (19)

Using this error estimate and furthermore introducing execution times, spent for the real-
and reciprocal-space part, it is possible to show that parameters R., « and k4, can be
chosen to get a complexity of O(N3/2) for the Ewald sum’>7°. In this case, parameters
are

C Lkma:r -
Re \ /# . alL~ — /7 N1/3 (20)

L 21

Figure 5 shows the contributions of real- and reciprocal parts in Eq. (15), as a func-
tion of the spreading parameter o, where an upper limit in both the real- and reciprocal-
contributions was applied. In the real-space part usually one restricts the sum to [n| = 0
and applies a spherical cutoff radius, R.. For fixed values of R, and &, there is a broad
plateau region, where the two terms add up to a constant value. Within this plateau region,
a value for « should be chosen. Often it is chosen according to & = 5/L. Also shown is
the potential energy of a particle, calculated with the Ewald sum. It is well observed that
due to the periodicity of the system the potential energy surface is not radial symmetric,
which may cause problems for small numbers of particles in the system.

The present form of the Ewald sum gives an exact representation of the potential energy
of point like charges in a system with periodic boundary conditions. Sometimes the charge
distribution in a molecule is approximated by a point dipole or higher multipole moments.
A more general form of the Ewald sum, taking into account arbitrary point multipoles was
given in Ref.”’. The case, where also electronic polarizabilities are considered is given in
Ref.”8.

In certain systems, like in molten salts or electrolyte solutions, the interaction between
charged species may approximated by a screened Coulomb potential, which has a Yukawa-
like form

e—#llrill

1N
U= 3 Z 4G9 — 2D

= l[rs
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Figure 5: Left: Dependence of the calculated potential on the choice of the scaled inverse width, o L,
of the smeared counter charge distribution. Parameters for this test were N = 152, R. = 0.5 L and
kmazL/2m = 6. Right: Surface plot and contours for the electrostatic potential of a charge, located in the
center of the simulation volume. Picture shows the xy-plane for z = L /2. Parameters were R, = 0.25 L,
aL =122 and kmas L/27 = 6.

The parameter « is the inverse Debye length, which gives a measure of screening strength
in the system. If k < 1/L the potential is short ranged and usual cut-off methods may
be used. Instead, if K > 1/L, or generally if u(r = L/2) is larger than the prescribed
uncertainties in the energy, the minimum image convention in combination with truncation
methods fails and the potential must be treated in a more rigorous way, which was pro-
posed in Ref.”®, where an extension of the Ewald sum for such Yukawa type potentials was
developed.

2.2.2 The Fast Multipole Method

In open geometries there is no lattice summation, but only the sum over all particle pairs
in the whole system. The electrostatic energy at a particle’s position is therefore simply
calculated as

N

o) =y — 2 (22)

2y

Without further approximation this is always an O(N?) algorithm since there are N (N —
1)/2 interactions to consider in the system (here Newton’s third law was taken into ac-
count). The idea of a multipole method is to group particles which are far away from a
tagged particle together and to consider an effective interaction of a particle with this par-
ticle group®®-#2. The physical space is therefore subdivided in a hierarchical way, where
the whole system is considered as level 0. Each further level is constructed by dividing the
length in each direction by a factor of two. The whole system is therefore subdivided into a
hierarchy of boxes where each parent box contains eight children boxes. This subdivision
is performed at maximum until the level, where each particle is located in an individual
box. Often it is enough to stop the subdivision already at a lower level.

In the following it is convenient to work in spherical coordinates. The main principle
of the method is that the interaction between two particles, located at r = 7,6, and
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a = (a, o, B) can be written as a multipole expansion®3

IIr*aH (I [m]trt+t

) l

Z Z ( |m| )} —— Py (cosa) Py (cosf) e —im(f=¢) (23)
1=0 m=—1

where Py, () are associated Legendre polynomials®*. This expression requires that a/r <
1 and this gives a lower limit for the so called well separated boxes. This makes it necessary
to have at least one box between a tagged box and the zone, where contributions can be
expanded into multipoles. Defining the operators

Oun(a) = a' (I = |m|)! Py (cos ) e~ 24)
1 1
Mi (x) = 7L (11 [m))! Pin(cos ) e™¢ 25)

with which Eq. (23) may simply be rewritten in a more compact way, it is possible to write
further three operators, which are needed, in a compact scheme, i.e.

1.) a translation operator, which relates the multipole expansion of a point located at a to a
multipole expansion of a point located at a + b

l i
Om(a+b)=>" Z w@ ., A(Db) =01 m-r(b)  (26)

7=0 k=—

2.) a transformation operator, which transforms a multipole expansion centered at the
origin into a Taylor expansion centered at location b

Min(a—b Z Z Bl (@) ,  BY(b)=Mjmrd) @7
j=0 k=—1

3.) a translation operator, which translates a Taylor expansion of a point r about the origin
into a Taylor expansion of r about a point b

Mlm(r_ Z Z lm (I‘) , CJZZL( ) Alrn( ) (28)

7=0 k=—1

The procedure to calculate interactions between particles is then subdivided into five
passes. Figure 6 illustrates four of them. The first pass consists of calculating the multipole
expansions in the lowest level boxes (finest subdivision). Using the translation operator
Ojm(a + b), the multipole expansions are translated into the center of their parent boxes
and summed up. This procedure is repeated then subsequently for each level, until level 2
is reached, from where no further information is passed to a coarser level. In pass 2, using
operator M;,,, (a — b), multipole expansions are translated into Taylor expansions in a box
from well separated boxes, whose parent boxes are nearest neighbor boxes. Well separated
means, that for all particles in a given box the multipole expansion in a separated box is
valid. Since the applicability of Eq. (23) implies > a, well separateness means on level
| that boxes should be separated by a distance 2. This also explains, why there is no
need to transfer information higher than level 2, since from there on it is not possible to
have well separated boxes anymore, i.e. multipole expansions are not valid any more. In
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Figure 6: Schematic of different passes in the Fast Multipole Method. Upper left: Pass 1, evaluation of
multipole terms in finest subdivision and translating information upwards the tree. Upper right: Pass 2,
transforming multipole expansions in well separated boxes into local Taylor expansions. Lower left: Pass
3, transferring multipole expansions downwards the tree, thus collecting information of the whole system,
except nearest neighbor boxes. Lower right: Pass 5, direct calculation of particle-particle interactions in
local and nearest neighbor boxes.

pass 3, using the operator M;,, (a — b), this information is then translated downwards the
tree, so that finally on the finest level all multipole information is known in order to inter-
act individual particles with expansions, originating from all other particles in the system
which are located in well separated boxes of the finest level. In pass 4 this interaction be-
tween individual particles and multipoles is performed. Finally in pass 5, explicit pair-pair
interactions are calculated between particles in a lowest level box and those which are in
nearest neighbor boxes, i.e. those boxes which are not called well separated.

It can be shown® that each of the steps performed in this algorithm is of order O(NN),
making it an optimal method. Also the error made by this method can be controlled rather
reliably®®. A very conservative error estimate is thereby given as®%6%85

i (ayr 29)

T r—a\r

q
[[r — all

‘qs(r) -
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At the current description the evaluation of multipole terms scales as O(I2, ), when L,
is the largest value of [ in the multipole expansion, Eq.(23). A faster version which scales
as O(I3,,.) and therefore strongly reducing the prefactor of the overall scheme, was pro-
posed in Ref %, where multipoles are evaluated in a rotated coordinate frame, which makes
it possible to reduce calculations to Legendre polynomials and not requiring associated
Legendre polynomials.

Also to mention is that there are approaches to extend the Fast Multipole Method to

periodic systems3®37,

2.3 Coarse Grain Methods

The force field methods mentioned so far treat molecules on the atomic level, i.e. re-
solving heavy atoms, in most cases also hydrogens, explicitly. In the case, where flexible
molecular bonds, described e.g. by harmonic potentials, are considered the applied time
step is of the order of 6t ~ 107! secs. Considering physical phenomena like self as-
sembling of lipid molecules®-8, protein folding or structure formation in macromolecular
systems’*2, which take place on time scales of microseconds to seconds or even longer,
the number of timesteps would exceed the current computational capacities. Although
these phenomena all have an underlying microscopic background, the fast dynamics of
e.g. hydrogen vibrations are not directly reflected in the overall process. This lead to the
idea to either freeze certain degrees of freedom, as it is done for e.g. rigid water mod-
els?>, or to take several degrees of freedom only into account effectively via a pseudo
potential, which reflects the behavior of whole groups of atoms. It is the latter approach
which is now known as coarse graining*>!'%°7 of molecular potentials and which opens the
accessibility of a larger time and length scale. Mapping groups of atoms to one pseudo
atom, or interaction site, leads already to an effective increase of the specific volume of
the degrees of freedom. Therefore, the same number of degrees of freedom of a coarse
grain model, compared with a conventional force field model, would directly lead to larger
spatial scale, due to the increase of volume of each degree of freedom. On the other hand,
comparing a conventional system before and after coarse graining, the coarse grained sys-
tem could cover time scales longer by a factor of 100-1000 or even longer compared with a
conventional force field all-atom model (the concrete factor certainly depends on the level
of coarse graining).

Methodologies for obtaining coarse grain models of a system often start from an atom-
istic all-atom model, which adequately describes phase diagrams or other physical proper-
ties of interest. On a next level, groups of atoms are collected and an effective non-bonded
interaction potential may be obtained by calculating potential energy surfaces of these
groups and to parametrize these potentials to obtain analytical descriptions. Therefore,
distribution functions of small atomic groups are taken into account (at least implicitly)
which in general depend on the thermodynamic state point. For bonded potentials be-
tween groups of atoms, a normal mode analysis may be performed in order to get the most
important contributions to vibrational-, bending- or torsional-modes.

In principle, one is interested in reducing the number of degrees of freedom by sepa-
rating the problem space into coordinates which are important and those which are unim-
portant. Formally, this may be expressed through a set of coordinates {r} € R™ and
{f} € R™, where n; and n, are the number of degrees of important and unimportant
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degrees of freedom, respectively. Consequently, the system Hamiltonian may be written
asH=H(ry,...,mn,,71,...,7n, ). From these considerations one may define a reduced
partition function, which results from integrating out all unimportant degrees of freedom

Z:/ dry...dry,dry ... diy, exp{—BH(r1,...,Tn, T1,- - yTn,)} (30)

:/ dry...dry, exp{—ﬂHCG(rl,...,rni)} 31

where a coarse grain Hamiltonian has been defined

HCG(rl,...,r,,,i):—log/ diy ... din, exp{=BH(r1, ..., n,, 71, 70, )} (32)

which corresponds to the potential of mean force and which is the free energy of the non-
important degrees of freedom. Since the Hamiltonian describes only a subset of degrees
of freedom, thermodynamic properties, derived from this Hamiltonian will be different
than obtained from the full Hamiltonian description (e.g. pressure will correspond to the
osmotic pressure and not to the thermodynamic pressure). This has to be taken into ac-
count when simulating in different ensembles or if experimental thermodynamic properties
should be reproduced by simulation.

The coarse grained Hamiltonian is still a multi-body description of the system, which
is hard to obtain numerically. Therefore, it is often approximated by a pair-potential, which
is considered to contribute the most important terms

HOO(ry o) =Y Viglryy) , ryg = [Ie — (33)
i>j

According to the uniqueness theorem of Henderson®®, in a liquid where particles in-
teract only through pair interactions, the pair distribution function g(r) determines up to a
constant uniquely the pair interaction potential V;;. Therefore, V;; may be obtained point-
wise by reverting the radial pair distribution function®'%!, e.g. by reverse Monte Carlo
techniques'®? or dynamic iterative refinement'®*. This approach directly confirms what
was stated in Sec. 1 about the limited applicability of coarse grained potentials. It is clear
that for different temperatures, pressures or densities the radial distribution functions of
e.g. cation-cation, cation-anion and anion-anion distributions in electrolytic solutions will
be different. If one wants to simulate ions in an effective medium (continuum solvent), the
potential, which is applied in the simulation will depend on the thermodynamic state point
and therefore has to be re-parametrized for every different state point.

3 The Integrator

The propagation of a classical particle system can be described by the temporal evolution
of the phase space variables (p, q), where the phase space I'(p,q) € RV contains all
possible combinations of momenta and coordinates of the system. The exact time evolution
of the system is thereby given by a flow map

D519 ROV — ROV (34)

18



which means

®s:.4(p(1),q(t)) = (p(t) + dp,a(t) + dq) (35)

where
p+ép=p(t+dt) q+0q = q(t + dt) (36)

For a nonlinear many-body system, the equations of motion cannot be integrated exactly
and one has to rely on numerical integration of a certain order. Propagating the coordinates
by a constant step size h, a number of different finite difference schemes may be used for
the integration. But there are a number of requirements, which have to be fulfilled in order
to be useful for molecular dynamics simulations. An integrator, suitable for many-body
simulations should fulfill the following requirements:

e Accuracy, i.e. the solution of an analytically solvable test problem should be as close
as possible to the numerical one.

e Stability, i.e. very long simulation runs should produce physically relevant trajecto-
ries, which are not governed by numerical artifacts

e Conservativity, there should be no drift or divergence in conserved quantities, like
energy, momentum or angular momentum

e Reversibility, i.e. it should have the same temporal structure as the underlying equa-
tions

e Effectiveness, i.e. it should allow for large time steps without entering instability and
should require a minimum of force evaluations, which usually need about 95 % of
CPU time per time step

e Symplecticity, i.e. the geometrical structure of the phase space should be conserved

It is obvious that the numerical flow, ¢s; 7, of a finite difference scheme will not be
fully equivalent to ®s; 4, but the system dynamics will be described correctly if the items
above will be fulfilled.

In the following the mentioned points will be discussed and a number of different
integrators will be compared.

3.1 Basic Methods

The most simple integration scheme is the Euler method, which may be constructed by a
first order difference approximation to the time derivative of the phase space variables

0
n = n*é‘ti ny Un 7
Pni1 =P aqH(p dn) (37)
0
n = (n ot— ny UYn
dnt1 = dn + 8pH(p dn) (38)

where 6t is the step size of integration. This is equivalent to a Taylor expansion which is
truncated after the first derivative. Therefore, it is obvious that it is of first order. Knowing
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all variables at step n, this scheme has all relevant information to perform the integration.
Since only information from one time step is required to do the integration, this scheme
is called the one-step explicit Euler scheme. The basic scheme, Eqgs. (37,38) may also be
written in different forms.

The implicit Euler method

0

Pnt+1 = Pn — 5t671H(Pn+17 dn+1) (39)
0

Qn+1 =dn + &%H(PnH? dn+1) (40)

can only be solved iteratively, since the derivative on the right-hand-side (r#s) is evaluated
at the coordinate positions on the left-hand-side (/hs).

An example for a so called partitioned Runge-Kutta method is the velocity implicit
method

0

Pn+1 = Pn — 6taTlH(pn+17 qn) (41)
0

dn+1 = dn + §t%H(pn+17 Qn) (42)

Since the Hamiltonian usually splits into kinetic X and potential I/ parts, which only de-
pend on one phase space variable, i.e.

1
H(p,a) = 5p" M~ p +U(q) (43)

where M~ is the inverse of the diagonal mass matrix, this scheme may also be written as

0
n = ’fL_étiu n 44
Pni1 =D a (dn) (44)
5t
dnt1 = Qn + Pt (45)

showing that it is not necessary to solve it iteratively.
Obviously this may be written as a position implicit method

0
Pn+1 = Pn — 6t87qu(qn+l) (46)
ot
m

Applying first Eq. (47) and afterwards Eq. (46) also this variant does not require an iterative
procedure.

All of these schemes are first order accurate but have different properties, as will be
shown below. Before discussing these schemes it will be interesting to show a higher order
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scheme, which is also based on a Taylor expansion. First write down expansions

q(t +0t) = q(t) + st qt) + % 5t2q(t) + O(6t%) (48)
= alt) + (1) + 5 6 p(r) + O(5r) 49)
p(t+dt) = p(t) + 5t p(t) + % 52 P(t) + O(t?) (50)
= p(0) + 5 (b(1) + Bl + 1) + O(61°) 61

where in Eq. (49), the relation ¢ = p/m was used and in Eq. (51) a first order Taylor
expansion for p was inserted. From these expansions a simple second order, one-step
splitting scheme may be written as

ot

Pnt1/2 = Pn + 35 F(qn) (52)
ot
dnt+1 = dn + — Pnt1/2 (53)
ot
Pn+1 = Pnt1/2 + 5 F(qn41) (54)

where the relation p = —90H /0q = F was used. This scheme is called the Velocity Verlet
scheme. In a pictorial way it is sometimes described as half-kick, drift, half-kick, since the
first step consists in applying forces for half a time step, second step consists in free flight
of a particle with momentum p,, ;1,7 and the last step applies again a force for half a time
step. In practice, forces only need to be evaluated once in each time step. After having
calculated the new positions, q,, 1, forces are calculated for the last integration step. They
are, however, stored to be used in the first integration step as old forces in the next time
step of the simulation.

This algorithm comes also in another flavor, called the Position Verlet scheme. It can
be expressed as

ot
Un+1/2 = An+ 5P (55)
Pnt1 = Pn + 0t F(dni1/2) (56)
ot
= — Pn 57
dni1/2 = Qni1/2 T o Pt (57)

In analogy to the description above this is sometimes described as half-drift, kick, half-
drift. Using the relation p = ¢/m and expressing this as a first order expansion, it is
obvious that F(qy,41/2) = F((dn + dn+1)/2) which corresponds to an implicit midpoint
rule.

3.2 Operator Splitting Methods

A more rigorous derivation, which in addition leads to the possibility of splitting the prop-
agator of the phase space trajectory into several time scales, is based on the phase space
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description of a classical system. The time evolution of a point in the 6N dimensional
phase space is given by the Liouville equation

T'(t) = ' T(0) (58)
where I' = (q,p) is the 6N dimensional vector of generalized coordinates, q =
qi,---,qn, and momenta, p = p1, ..., py. The Liouville operator, £, is defined as

N
. dq; O op; 0
L={.. H}= At A 59
L={ ;<8t8qj+atapj (>9)

In order to construct a discrete timestep integrator, the Liouville operator is split into two

parts, L = £ + L5, and a Trotter expansion'* is performed
eiﬁét — 6i(£1+£2)5t (60)
_ eiﬁlét/26i£26t6i£16t/2 + O(&tg) (61)

The partial operators can be chosen to act only on positions and momenta. Assuming usual
cartesian coordinates for a system of IV free particles, this can be written as

Yoo

iLy = ZFja—pj (62)
j=1
AR

iLy = Zng (63)
j=1 !

Applying Eq.60 to the phase space vector T" and using the property e*?/9% f(z) = f(x+a)
for any function f, where a is independent of x, gives

. _ F;(t) 6t
vi(t+t/2) = v(t) + 2 (64)
Vit +0t) = vi(t + 6t/2) + W% 66)

which is the velocity Verlet algorithm, Eqs. 52-54. In the same spirit, another algorithm
may be derived by simply changing the definitions for £; — L5 and £5 — £4. This gives
the so called position Verlet algorithm

vi(t+dt) =v(t) + W (68)
ri(t+0t) =r;(t+0t/2) + (v(t) +vi(t+5t))% (69)

Here the forces are calculated at intermediate positions r; (¢t + d¢/2). The equations of both
the velocity Verlet and the position Verlet algorithms have the property of propagating
velocities or positions on half time steps. Since both schemes decouple into an applied
force term and a free flight term, the three steps are often called half-kick/drift/half kick
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for the velocity Verlet and correspondingly half-drift/kick/half-drift for the position Verlet
algorithm.

Both algorithms, the velocity and the position Verlet method, are examples for sym-
plectic algorithms, which are characterized by a volume conservation in phase space.
This is equivalent to the fact that the Jacobian matrix of a transform =’ = f(z,p) and

p' = g(x, p) satisfies
fe fo 0OI\ (fafp\ [ OI
<gz gp) <_IO) (ga: gp)<_10> 70

Any method which is based on the splitting of the Hamiltonian, is symplectic. This does
not yet, however, guarantee that the method is also time reversible, which may be also be
considered as a strong requirement for the integrator. This property is guaranteed by sym-
metric methods, which also provide a better numerical stability'®. Methods, which try
to enhance the accuracy by taking into account the particles’ history (multi-step methods)
tend to be incompatible with symplecticness!?® 197 which makes symplectic schemes at-
tractive from the point of view of data storage requirements. Another strong argument for
symplectic schemes is the so called backward error analysis'® 10, This means that the
trajectory produced by a discrete integration scheme, may be expressed as the solution of
a perturbed ordinary differential equation whose rhs can formally be expressed as a power
series in 6t. It could be shown that the system, described by the ordinary differential equa-
tion is Hamiltonian, if the integrator is symplectic!!*112 In general, the power series in &t
diverges. However, if the series is truncated, the trajectory will differ only as O(6t?) of the
trajectory, generated by the symplectic integrator on timescales O(1/6t)!13.

3.3 Multiple Time Step Methods

It was already mentioned that the rigorous approach of the decomposition of the Liouville
operator offers the opportunity for a decomposition of time scales in the system. Supposing
that there are different time scales present in the system, e.g. fast intramolecular vibrations
and slow domain motions of molecules, then the factorization of Eq.60 may be written in
a more general way

; o e . () ()
ez[,At ez[,l At/2ezﬁl At/Qez[,gétez[,l At/261£1 At/2 (71)
S p(s) i) , e P
eily” At/2 {eml 8t/2 GiL25t il 6t/2} eiL1” At/2 (72)

where the time increment is At = pd. The decomposition of the Liouville operator may
be chosen in the convenient way

0 0 0

i) =F . ic) = Fgf)a—pi o iLa=vig o (3)
where the superscript (s) and (f) mean slow and fast contributions to the forces. The
idea behind this decomposition is simply to take into account contributions from slowly
varying components only every p’th timestep with a large time interval. Therefore, the
force computation may be considerably speeded up in the the p — 1 intermediate force
computation steps. In general, the scheme may be extended to account for more time
scales. Examples for this may be found in Refs.!'*!16. One obvious problem, however,
is to separate the timescales in a proper way. The scheme of Eq.72 is exact if the time
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scales decouple completely. This, however, is very rarely found and most often timescales
are coupled due to nonlinear effects. Nevertheless, for the case where At is not very
much larger than §t (p ~ 10), the separation may be often justified and lead to stable
results. Another criteria for the separation is to distinguish between long range and short
range contributions to the force. Since the magnitude and the fluctuation frequency is very
much larger for the short range contributions this separation makes sense for speeding up
computations including long range interactions'!”.

The method has, however, its limitations' 3119, As described, a particle gets every n’th
timestep a kick due to the slow components. It was reported in literature that this may
excite a system’s resonance which will lead to strong artifacts or even instabilities'?% 2!,
Recently different schemes were proposed to overcome these resonances by keeping the
property of symplecticness'?>~128,

3.4 Stability

Performing simulations of stable many-body systems for long times should produce con-
figurations which are in thermal equilibrium. This means that system properties, e.g. pres-
sure, internal energy, temperature etc. are fluctuating around constant values. To measure
these equilibrium properties it should not be relevant where to put the time origin from
where configurations are considered to calculate average quantities. This requires that the
integrator should propagate phase space variables in such a way that small fluctuations do
not lead to a diverging behavior of a system property. This is a kind of minimal requirement
in order to simulate any physical system without a domination of numerical artifacts. It is
clear, however, that any integration scheme will have its own stability range depending on
the step size dt. This is a kind of sampling criterion, i.e. if the step size is too large, in order
to resolve details of the energy landscape, an integration scheme may end in instability.
For linear systems it is straight forward to analyze the stability range of a given numer-
ical scheme. Consider e.g. the harmonic oscillator, for which the equations of motion may
be written as (t) = p(t) and p(t) = —w?q(t), where w is the vibrational frequency and it
is assumed that it oscillates around the origin. The exact solution of this problem may be

written as
wq(t)\ [ coswt sinwt w q(0)
( p(t) > (—sinwt coswt) ( p(0) ) (74)

For a numerical integrator the stepwise solution may be written as

W dn+1 W gn
= M(dt 75
<pn+1> ()<pn> (73)
where M (6t) is a propagator matrix. It is obvious that any stable numerical scheme re-
quires eigenvalues |A(M)| < 1. For |A| > 1 the scheme will be unstable and divergent, for
|A| < 1 it will be stable but will exhibit friction, i.e. will loose energy. Therefore, in view
of the conservativity of the scheme, it will be required that |A(M)| = 1.

As an example the propagator matrices for the Implicit Euler (IE) and Position Verlet
(PV) algorithms are calculated as

1 1wt
M g(dt) = T2 (_w st 1 ) (76)
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Mpy (6t) = 17

—wdt

It is then straight forward to calculate the eigenvalues as roots of the characteristic polyno-
mials. The eigenvalues are then calculated as

App = 1+ iwst (78)

1
1+ w26t

Avw = s = Aprs = 1 Lu2er? \/_74
/\PV—/\VV—/\VIE—)‘PIE—I QOJ ot <1Z|: 1 w2512 (80)

This shows that the absolute values for the Explicit Euler (EE) and the Implicit Euler
methods never equals one for dt # 0, i.e. both methods do not produce stable trajectories.
This is different for the Position Verlet, the Velocity Verlet (VV), the Position Implicit
Euler (PIE) and the Velocity Implicit Euler (VIE), which all have the same eigenvalues.
It is found that the range of stability for all of them is in the range w?§t?> < 2. For
larger values of dt the absolute values of the eigenvalues bifurcates, getting larger and
smaller values than one. In Figure 7 the absolute values are shown for all methods and
in in Figure 8 the imaginary versus real parts of A are shown. For EE it is clear that the
imaginary part diverges linearly with increase of d¢. The eigenvalues of the stable methods
are located on a circle until w?6t2 = 2. From there one branch diverges to —oo, while the
other decreases to zero.

M\ = (1 + iwdt) (79)

10
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2 4 6 8 10 0 2 4 6 8
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Figure 7: Absolute value of the eigenvalues A as function of the time step d¢. Left: Explicit and implicit
Euler method. Right: Velocity and Position Verlet as well as Velocity Implicit and Position implicit Euler
method. All methods have the eigenvalues.

As a numerical example the phase space trajectories of the harmonic oscillator for
w = 1 are shown for the different methods in Figure 9. For the stable methods, results
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Figure 8: Imaginary versus real part of eigenvalues A of the propagator matrices. Left: Implicit and Explicit
Euler. Right: Velocity and Position Verlet as well as Velocity Implicit and Position implicit Euler method.
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Figure 9: Phase space trajectories for the one-dimensional harmonic oscillator, integrated with the Velocity
Implicit Euler, Position Implicit Euler, Velocity Verlet, Position Verlet and integration step size of 6t = 1.8
(left) and the Implicit Euler and Explicit Euler and step size 6t = 0.01 (right).

for a time step close to instability is shown. All different methods produce closed, stable
orbits, but it is seen on the other hand that they strongly deviate from the exact solution,
which is shown for reference. This demonstrates that stability is a necessary, but only a
weak criterion for correct results. Numerically correct results are only obtained for much
smaller time steps in the range of ¢ ~ 0.01. Also shown are the results for EE and IE.
Here a very much smaller time step, 6t = 0.01 is chosen. It is seen that the phase space
trajectory of EE spirals out while the one of IE spirals in with time, showing the instable
or evanescent character of the methods.

Another issue related to stability is the effect of a trajectory perturbation. If initial
conditions are slightly perturbed, will a good integrator keep this trajectory close to the
reference trajectory? The answer is No and it is even found that the result is not that
strong dependent on the integrator. Even for integrators of high order, trajectories will
not stay close to each other. The time evolution of the disturbance may be studied similar
to the system trajectory. Consider the time evolution for I + 6T", where I' = (p, q) and
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0T = (6p, dq) is a small disturbance. Then

dar
P r 1
7 VrH(T) (81)
Similarly one can write for small §T°
d
%(I‘ +0I') = VrH(I' +6T) (82)
= VrH(T) + Vr(VrH())oT (83)

where the second line is a truncated Taylor series. Comparing terms one simply gets as
equation of motion for a perturbation
dér

e 2
- = ViH(D)er (84)

It is found that the disturbance develops exponentially, with a characteristic, system depen-
dent exponent, which is the Ljapunov exponent'?% 130,

Now consider the following situation where identical starting configurations are taken
for two simulations. They will be carried out by different yet exact algorithms, therefore
leading formally to the same result. Nevertheless it may happen that different orders of
floating-point operations are used in both algorithms. Due to round off errors, floating-
point arithmetic is not necessarily associative, i.e. in general

ad(boc)#(adb)oc (85)

where 6 is a floating-point machine operation (+, —, /, *). Therefore, both simulations
will be different by round off errors. According to the above discussion, this may be
considered as the slightest disturbance of a system trajectory, 61',,;,, and the question is,
what effect such a round off error will have. A different method to study difference in
system trajectories is the calculation of the difference

N
)= 50> Y @)~ 1) (86)

1=1 a=z,y,z

where N is the number of particles, x(¢) a certain property, e.g. the coordinates or mo-
menta, and ¥ the same property of a disturbed trajectory. In Figure 10 results are shown
for a system of Lennard-Jones particles, where the disturbance was induced by reversing
the order of summation in the force routine, thereby provoking round off errors in the first
time step. Shown are results for the coordinates, the velocities and the forces and it is seen
that all quantities diverge exponentially from machine accuracy up to a certain behavior at
long times, which is shown in the inset. To understand the long time behavior, v, (t) can
be written as average property

Y2(t) = ((2(t) — 2(0) — Z(t) +2(0))?) (87)
= (lz(t) = 2(0)*) + (|2 (t) — 2(0)[*) (88)
—2(x(t)Z(t)) + 2(x(0)Z(t)) + 2((t)z(0)) - 2(x(0)?)

In the second equation the first two terms are mean square displacements of x in the two
systems (note that Z(0) = xz(0) since the same starting configurations are used), the next
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Figure 10: Divergent behavior of trajectories due to round off errors, induced by different summation order
in the force routine. From top to bottom: coordinates, velocities, forces. The insets show on a linear scale
the long time behavior of the trajectory differences, i.e. when the two systems get uncorrelated.
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term is a cross correlation between the systems. This will vanish if the systems become
independent of each other. The next two systems consist of auto-correlation functions of x
in each system. For long times they will also decrease to zero. Finally, the last term gives
a constant offset which does not depend on time. Therefore the long time behavior will be
governed for coordinates, momenta and forces by

Jim ,(t) = 2(Jq(t) — q(0)|*) = 12Dt (89)
Jim 7, (t) = 2(p(t)?) = mkpT (90)
Jim 7y (t) = 2(F(t)%) = 2(YW)? 1)

where D is the diffusion coefficient, T" the temperature and JV the potential of mean force.

That the divergent behavior of neighbored trajectories is a system dependent property
is shown in Figure 10 where results for Lennard-Jones systems at different temperatures
are shown.

In conclusion, the individual trajectories of a physical complex system will end up at
different places in phase space when introducing round off errors or small perturbations.
Round off errors cannot be avoided with simple floating-point arithmetic (only discrete
calculations are able to avoid round off errors; but then the physical problem is transformed
into a different space). Since one cannot say anything about a frue summation order, the
location in phase space cannot have an absolute meaning. Therefore, the solution to come
out of this dilemma is to interpret the phase space location as a possible and allowed
realization of the system, which makes it necessary, however, to average over a lot of
possible realizations.

3.5 Accuracy

For an integrator of order p > 1, the local error may be written as an upper bound®
1ot — ¢l < MotPH! 92)

where M > 0 is a constant, ®4; 7 is the exact and ¢s; the numerical flow of the system.
The global error, i.e. the accumulated error for larger times, is thereby bound for stable
methods by®

ID(tn) =Tyl < K (e —1) 6t* |, t,=nét 93)

where K > 0is a constant, L > 0 the Lipschitz constant, I'(¢,,) = (p(¢n), a(t,)) the exact
and T';, = (pn, ) the numerically computed trajectory at time ¢,,. This estimate gives of
course not too much information for Lt,, 1 unless &t is chosen very small. Nevertheless,
qualitatively this estimate shows a similar exponential divergent behavior of numerical and
exact solution for a numerical scheme, as was observed in Section 3.4.

A different approach to the error behavior of a numerical scheme is backward error
analysis, first mentioned in Ref.!®' in the context of differential equations. The idea is
to consider the numerical solution of a given scheme as the exact solution of a modified
equation. The comparison of the original and the modified equation then gives qualitative
insight into the long time behavior of a given scheme.

It is assumed that the numerical scheme can be expressed as a series of the form

¢5¢(Cn) = T + 6t f(T) + 6t°ga(T) + 6t°g3(T) £ . .. (94)
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where the g; are known coefficients and for consistency of the differential equation it must

hold
ﬂD=($ﬁ>(%)H@a) 95)

On the other hand it is assumed that there exists a modified differential equation of the
form

%f:ﬂ>+&h(wwﬂh() : (96)

where I will be equivalent to the numerically obtained solution. In order to construct the
modified equation, the solution of Eq. (96) is Taylor expanded, i.e.

Tt + 6t) = ( +6t(f( )+ 6t fo (T )+5t2f3(f)+...) 97)
(f’ y+otf@®) ) (1) (FE) + )+
5t3{
.

(7(E) + 6t 5(0) + . )((‘f}))(f(f)+5tf2(f)+...))2
(r@
><<f ) + 6t fo(T) + )}

F1(D) + ot f5(T) + )(((j}))(f'(r)+5tf;(r)+...))
The procedure to construct the unknown functions f; proceeds in analogy to perturbation
theory, i.e. coefficients with same powers of 0t are collected which leads to a recursive
scheme to solve for all unknowns.

To give an example the Lennard-Jones oscillator is considered, i.e. a particle perform-
ing stable motions in negative part of a Lennard-Jones potential. As was observed already
for the harmonic oscillator, the Explicit Euler method will gain energy during the time,
i.e. the particle will increase kinetic energy which finally will lead to an escape of the
Lennard-Jones potential well. Solving for the modified equation of the Explicit Euler, one
gets as a first correction

+..

OH 6t OH
1= % "2 9q ©8)
. OH &t 0*H
P="9q T 2P ap o)

Figure 11 shows results for the integration of equations of motion with the Explicit Euler
scheme. Different time steps for integration were applied which show a faster escape from
a stable orbit with increasing time step. Also plotted in the same figure is the solution of
the modified equations with a high order symplectic scheme, which can be considered as
exact on these time scales. It is found that the trajectories more or less coincide and cannot
be distinguished by eye. A more quantitative analysis (Figure 11) shows that for relatively
long times the solution is rather well approximated by the modified equation, although with
increasing time the differences between solutions become more pronounced. This means
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Figure 11: Phase space trajectories of the Lennard-Jones oscillator calculated with the Explicit Euler
scheme and different time steps of integration. The exact solution (numerical solution of a high order
composition scheme with small time step) is shown as a reference - it forms closed orbits. Superimposed
to the solutions are results, obtained with a Velocity Verlet scheme, applied to the modified equations,
Eqs. (98,99). The right figure shows the differences in coordinates between the calculation with Explicit
Euler scheme applied to Lennard-Jones oscillator and Velocity Verlet applied to the modified equation,

laee(t) — Amod(t)]-

that for longer times it would be necessary to include more terms of higher order in ¢ into
the modified equation. It should be mentioned that, in general, the series expansion of the
modified equation diverges.
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Fourier transform-based methods for the calculation of electrostatic interactions were devel-
oped by Ewald as a tool for the calculation of crystal lattice energies in the 1920’s, long before
the appearance of computers. Nevertheless, the Ewald summation is still widely used for com-
puter simulations of small systems. For larger systems, there are several extensions using fast
fourier transforms, the so-called mesh-based Ewald methods, such as P2M, PME or SPME.
This methods are used in most classical molecular dynamics simulations, especially of biolog-
ical and other soft matter. We will review the classical Ewald sum and the P3M approach, as
well as extensions for systems with partially periodic boundary conditions or dipolar interac-
tions. We provide error formulas which allow to tune the algorithm for optimal computational
speed at given accuracy.

1 Introduction

Computer simulations are by now an established tool to determine material properties ab
initio or in general to investigate processes on the nano scale. On this scale, it is often
crucial to include the long-ranged electrostatic interaction, especially when simulating bi-
ological matter. However, the system sizes that can be handled in simulations are small
compared to the real, physical dimensions, which drastically enhances the influence of
boundary effects. To avoid this, one typically uses of periodic boundaries.

For this kind of boundary conditions, the famous Ewald sum'™ does a remarkable job
in splitting the very slowly converging sum over the Coulomb potential into two expo-
nentially converging sums. Moreover, this methods reduces the computational complexity
from O(N?) if the interaction of all charges with all charges were to be calculated, to a
more favorable scaling of O(N?3/2). This requires the use of cutoffs which are optimized
with respect to the splitting parameter; this is easily done since error formulas for the Ewald
truncation errors exist®.

By replacing the charges with a regular mesh, one can use FFT methods to speed up
the Ewald method to a computation time of O(N log V). Since there are various possible
schemes to interpolate the charges onto the mesh and to calculate the forces from the
mesh, several different schemes of mesh-based Ewald methods exist, such as P3M, PME or
SPME. We will discuss here the P*M method, since it is known to be the computationally
optimal variant®”.

Thin polyelectrolyte films or interactions of charged species with membranes cannot
be studied by fully periodic boundary conditions. For these systems, partially periodic
boundary conditions with only two periodically replicated dimensions are required, while
the third one has a finite extend h (2D + h geometry). In this geometry, the Ewald formula
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is only slowly convergent and has an unfavorable O(N?) scaling and no a priori error
estimates exist®. Because of the superior scaling of the methods for fully periodic systems,
there have been early attempts to use the fully 3D Coulomb sum also for slab problems by
leaving a gap in the non-periodic dimension’!'. We will present the ELC approach'> 3
which allows to subtract numerically the contributions of the image layers again and to
estimate the error that one makes by introducing them.

As a last example of a Fourier-based method, we want to present the extension of the
Ewald method to systems which can be modeled by interacting point dipoles. Substances
of that kind are ferrofluids, which are basically dispersed magnetic particles'#, magneto-
rheological (MR), electro-rheological (ER) fluids or solvents which can be modeled ap-
proximately by dipolar interactions like water. The computational O (N 3/ 2)-scaling of the
Ewald method still applies, and a priori error formulas exist'.

The material in this article has been mainly collected from the sources 6,7,12,13,15,16.
A review article on the general topic of long-range interactions in soft matter can be found
in 17. As good textbooks for background material we recommend the second edition of
Frenkel and Smit'® and the book by Allen and Tildesley'®.

2 The Standard 3D Ewald Method

We consider a system of IV particles with charges g; at positions r; in an overall neutral
and, for simplicity, cubic simulation box of length L and volume V = L3. If periodic
boundary conditions are applied, the total electrostatic energy of the box is given by

~ N
1 ! qiq;
U= - — 1
2 Z Z |I'ij +ml| ’ M
meZ3 i,j=1

where r;; = r;—r;, m counts the periodic images, and the prime denotes that the summand
for i = j has to be omitted for m = 0. Due to the long-range nature of the Coulomb
interaction, this sum is only conditionally convergent. Therefore its value is not well-
defined unless one specifies the precise way in which the cluster of simulation boxes should
fill the R3, i.e., its shape>*2%2! Usually a spherical limit is applied, i. e.

qiq;
Z 2 Z oo+ mL] @

S’ O0m?2=S1,j=1

The energies and forces differ from this spherical limit by some function of the total dipole
moment of the system, if another summation order is chosen.

However, the conditional convergence of the Coulomb sum is not the only complication
in the treatment of electrostatic interactions. In fact, the Coulomb potential bears two
intrinsic difficulties. It is slowly decaying at large distances, and strongly varying at small
distances. It is the combination of these two properties which leads to severe problems.
If only one of them was present, everything would be comparatively easy, since a short-
range potential could be treated by a simple cutoff, as it is done, e. g., for interactions of
the Lennard-Jones type, and a long-range potential, which is periodic and slowly varying
everywhere, can accurately be represented by the first few terms of its Fourier series.
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Obviously, each of the two complications forbids the simple solution of the other, and
the slowly decaying long-range part of the Coulomb potential renders a straightforward
summation of Eqn. (1) impracticable. The trick is thus to split the problem into two parts
by the trivial identity

lszrl—f(r)' (3)
T T T
The underlying idea is to distribute the two complications between the two terms in
Eqn. (3) by a suitable choice of the splitting function f. In particular:

e The first part @ should be negligible, or even zero, beyond some cutoff r,,x, SO
that the summation up to the cutoff is a good approximation to (or the exact result of)
this contribution to the total electrostatic potential.

e The second part %(T) should be a slowly varying function for all r, so that its
Fourier transform can be represented by only a few k-vectors with |k| < kpax. This
permits an efficient calculation of this contribution to the total electrostatic potential
in reciprocal space.

Since the field equations are linear, the sum of these two contributions gives the solution
for the potential of the original problem.

The two requirements on the splitting function f mentioned above leave a large
freedom of choice>?*23. The traditional selection is the complementary error function

erfe(r) := % froo dte~*". This results in the well known Ewald formula for the electro-
static energy of the primary box:

U=um + Uk + U + U(d), %)
where U (") is the contribution from real space, U %) the contribution from reciprocal space,
U(®) the self energy and U@ the dipole term. They can be written as'®-'8

erfc a|r +ml|)
U =_ iq J 5
DI R ®
m€Z3 i,
11 4
v =25 —”e-“/‘*ag ) ©)
2V k2
k#0
@
U — — L3 7
7 Z a. (7
where the Fourier transformed charge density or the structure factor p(k) is defined as
pk) = [ & p(r Z qj e ik where ke 2123 8)
1% ! L
The dipole term

U@ — 1+2 (qurz> )

is special. First of all note that the term is independent of «, which is due to the fact that
this term is not specific to the Ewald approach, but rather a consequence of the conditional
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Figure 1: Schema of the spherical (left) and planewise (right) summation orders. The numbers give the order
in which the contributions are added up; in the right graph, this is done in lexicographic order, that is first
all contributions 0, 0. .. oo, then contribution 1,0...0c0 and so on. In the planewise summation order, the
summation in the x, y—plane is in fact spherical, which cannot be seen in the presented cut.

convergence. The form (9) is specific for the spherical summation order and assumes that
the medium outside this sphere is a homogeneous dielectric with dielectric constant €',
whereas inside we assume € = 1 (see Fig. 1 left). Due to the surrounding medium, the
particles of the growing ball will feel a polarization force. This leads to an additional con-
tribution that will not vanish even in the limit of an infinite ball, although then the complete
space is filled by copies of the simulation box. The term does not vanish when embedding
the system in vacuum, that is, when perform the purely mathematical, spherical summa-
tion, but rather under metallic boundary conditions, i. €. € = oo. This solution of the sum
is frequently called intrinsic, since it corresponds to a truly periodic electrostatic potential,
whereas the dipole term is obviously a non-periodic function of the particle coordinates.
Its non-periodicity also means that one has to use itinerant, that is continuous, particle
coordinates in a simulation to avoid a discontinuous energy contribution’’. For systems
that contain free ions, this has unwanted effects, so that one should always use metallic
boundary conditions. A detailed discussion of this term can be found in Refs. 3,4,21.

In subsection 4 we will consider a different summation order from the spherical limit,
namely slab-wise summation. We add up the particles along z slab—wise, i. e. ordered by
increasing z—distance, but radially in « and y (see Fig. 1 right). Smith has shown that the
dipole term now takes the form?*

2T 2
U@ = v (Zqizi> . (10)

Note that in this case, the dielectric medium at infinity does not play a role; the deeper
reason is that the the summation in each z, y-plane is no longer shape-dependent.

If the system under investigation is not electrostatically neutral, the infinite sum in
Eqn. (1) diverges. It can be made convergent by adding a homogeneously distributed back-
ground charge which restores neutrality — a typical situation for one-component plasma
simulations. This results in an additional electroneutrality-term U™ to be included in
Eqn. (4), which reads (see, e. g.,°)

2
U™ = *zazv (Z%) : (11)

i
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Since the neutralizing background is homogeneous, the correction term in Eqn. (11) is
independent of the particle positions. However, the correction term is a-dependent. This
means that it is crucial to include it — otherwise, the result will depend on the non-physical
parameter «. Note that the neutralizing background also has a dipole moment and con-
tributes to the dipole term. Like the particles, its absolute position during the summation
matters. If we assume that the background is distributed homogeneously in the central
simulation box [0, L], then the dipole term for spherical summation should read

2
(d) — _
U 1+2E [Zqz (rz )] : (12)

where (L/2)e is the center of the simulation box. If the dipole moment of the background
is omitted, the dipole term depends on the absolute position of the particles in space, which
is certainly unphysical.

The advantage of Eqn. (4) over Eqn. (1)) is that the exponentially converging sums
over m and k in (5,6) allow the introduction of comparatively small cutoffs 7, and kpax
without much loss in accuracy. Typically one chooses « large enough as to employ the
minimum image convention in Eqn. (5). The inverse length «, which is often referred
to as the Ewald (or splitting) parameter, tunes the relative weights of the real space and
the reciprocal space contributions. However, the final result of the exact equation (4), not
terminating the sums at some finite cut-off value, is independent of «.

The force F; on particle 7 is obtained by differentiating the electrostatic potential en-
ergy U with respect to r;, i.e.,

0
F,=——U. 13
i ar, 13)
Using Eqns. (4-8) one obtains the following Ewald formula for the forces:
F,=F" +F" +F", (14)

with the real space, Fourier space and dipole contributions given by:

Fy a0 > (ﬁexm o’ Jr; +mL[’)

mezZ3 (15)
erfc(a|rij + mL|)> r;j + mL
|rij +mL| |rij +mL|2
k 1« 4rk kN
FE ) = qi Z %’V P 72 exp (_4(12 sin(k - r;;) (16)

@ _ _ _ 4mqg o
F, T3 20) qu( ) (17)

Since the self energy in Eqn. (7) and the neutralizing contribution in Eqn. (11) are inde-
pendent of particle positions, they do not contribute to the force.

2.1 Why and how to control errors

An investigation of the errors connected with any method to calculate the Coulomb sum
(or, in fact, any interaction) is important for three reasons:
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1. One has to ensure that the errors are small enough so that they don’t influence the
outcome of the simulation. Most importantly, results have to be independent of the
applied summation technique and its tuning parameters.

2. The tuning parameters should be chosen in such a way as to run the algorithm at its
optimal operation point to save computing time.

3. Comparing the efficiency of different methods is only fair if it is done at the same
level of accuracy.

Errors can tell us if we might see artifacts in simulations due to too small cut-offs, or if
our observations have some other, maybe even physical origin. They can tell us how the
algorithm scales at its optimal point and they can help us save a lot of expensive computer
time. Therefore, error estimates are an required tool to apply any numerical method in
computer simulations.

For given finite real- and reciprocal space cutoffs there exists an optimal « such that
the accuracy of the approximated Ewald sum is the highest possible. Note that there is
no unique or optimal measure of accuracy. In molecular dynamics simulations, the main
interest lies in force errors, which we will consider here, while in Monte Carlo simulations,
one is concerned with the errors in the energy. One can be interested in either absolute or
relative errors; we will consider the first. The reason is again practical — most applications,
particulary in soft matter research, include a considerable level of thermal noise on the
forces. As long as the absolute error in the electrostatic force is significantly below this
noise level, errors should not influence the system, even if the relative errors are large.

In the following, we discuss the force error estimates by Kolafa and Perram for the
Ewald sum?. Giving a general expression for the expected error is difficult; there are
always pathological cases, in which the errors of the used methods are unusually high.
However, this are only a few special configurations, which we will rarely encounter in a
thermal simulation. Therefore, we assume the most common case, namely that the charges
are homogeneously and randomly distributed within the periodic cell V. Our goal is to
calculate the root mean square (RMS) error

AF = \/<(Fexact _ FEwald)2> — (18)
where AF; = F&ct — FEWald denotes the error in the force on particle number .
It is reasonable to assume that the error in the force on particle ¢ can be written as
AF; = ¢ ;X (19)

J#i
that is, we assume that the error on Fj is a sum of errors stemming from the N — 1 inter-

actions with the other charges. x;; is a pairwise error, which is algorithm dependent; we
assume that

<Xij “Xik) = Ojk <X12j> =6i x>, (20)

i. e. that the contributions from different particles are uncorrelated and that the magnitude is
independent of the particle properties, except for the charge prefactor. The first assumption
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is justified only for random systems, as we have assumed. Inserting into Eqn. (19) gives

N
(AF) =23 qgian(xi; - xa) = @ X2 D 0 @1)
j=1

J#i k#i
which shows that the RMS force error has the form

N
AF =~ UN X (22)
where the factor  is the only constant that is algorithm-dependent®.

Coming back to the Ewald sum, we further simplify the problem by assuming that the
real and Fourier space errors, stemming from truncating Eqns. (15) and (16), respectively,
are uncorrelated; this is sensible, since the parts are calculated by very different types of
algorithms. In this case, we can calculate their contributions separately:

@
VN

By replacing the sums over n and k in Eqns. (15) and (16) by integrals, the constants
Xreal a0 XFourier can be estimated. The resulting errors are2®

AF AFrial + AFFQourier ~ (Xreal + XFourier) . (23)

2
AFeq = E q’2\/Ner exp (—azrfnax) and 24)
20 k2.
AF’F()urier ~ E ql2 Nﬂ_kmaxv exp (_ 4&2 > . (25)

This error estimates allow to estimate the error at given Ky ax, "max and «, so that one
can numerically determine the optimal value o with minimal overall error at given fixed
kmax and ryax. Moreover, we can estimate the computation time scaling of the Ewald sum:
from the equations, it is easy to see that when changing «, the real space cutoff r,,x should
be inversely proportional to « to maintain a constant truncation error, while &y, should be
proportional to it. Assuming homogeneously distributed particles at a fixed density p, the
computation time for the evaluation of the real space sum using a cell list-like approach is
O(Nprd,..). The number of k-vectors we need to sum over in Eqn. (6) grows proportional
to VK3 ..., so the computation time of the Fourier space sum is O (k2. N?/p). Inserting
the expected relations between « and 7y, and kpax, the overall computation time is 2

T = O(Na?) 4+ O(N?a?), (26)

which is minimal for « = N~1/6. Therefore, the optimal scaling of the Ewald sum is
O(N 3/ 2). This, however, may require that 7., > L/2, prohibiting the simple minimum
image convention in real space and rendering this procedure less tempting.

The error estimates can also be used to tune the Ewald sum to consume as little com-
puter time as possible for a given error goal AF = 7. A good approximation to the optimal
« with the minimal error can be found by simply requiring the real space and k-space er-
rors to be equal. Therefore, given a Fourier-cutoff k., one can determine «v numerically
from Eqn. (25), such that A Fpopier =~ 7/ v/2. Then, Eqn. (24) allows to determine the
cutoff r,.x, such that also the real space error is ~ 7/ v/2, and the total error is AF ~ 7.
By this, one can try different values for £y, ,x, determine optimal values for o and 7y,
and measure the required computation time for this combination. Since one can assume
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that the computation time has one minimum with respect to ky,.x, one can easily find the
optimal value for the given hardware.

3 Mesh-Accelerated Ewald Methods (P3M)

The Fourier transformations involved in Eqn. (6) are the most time consuming part of the
Ewald sum. Mesh-accelerated Ewald methods are based on the idea to modify the problem
in such a way that it permits application of the Fast Fourier Transformation (FFT). This
reduces the complexity of the reciprocal part of the Ewald sum to O(N log N) and allows
a constant real space cutoff, so that the real space computation time scales like O(N).

Performing the Fourier transformations in the reciprocal space part of the Ewald sum
by FFT routines is by no means straightforward, and consists of four main steps:

1. The point charges with continuous coordinates have to be replaced by a grid based
charge density, since the FFT is a discrete and finite transformation.

2. The potential has to be calculated in the discrete Fourier space by solving Poisson’s
equation; that is, by multiplication of the Fourier transformed charge density with the
Green’s function. It is neither obvious nor true that the best grid approximation to
the continuum solution of the Poisson equation is achieved by using the continuum
Green’s function 47 /k?.

3. The electric field has to be calculated by differentiation from the electric potential.
There are at least three possibilities for implementing this differentiation, which differ
in accuracy and speed.

4. Finally, the forces on the particle have to calculated from the electric field that is
known only on the discrete grid points. This can — under certain circumstances — lead
to unwanted violations of Newton’s third law. They can be anything between harmless
and disastrous.

There exist three major mesh-based Ewald summation methods — similar in spirit but dif-
ferent in detail, namely in how the four steps above are performed. The oldest is the
original particle-particle—particle-mesh (P>M) method of Hockney and Eastwood?®, and
then there are two variants, namely the Particle Mesh Ewald (PME) method of Darden et
al?® and an extension of the latter by Essmann et al.>°, which is usually referred to as
Smooth Particle Mesh Ewald (SPME). Deserno ef al. have shown how the three methods
differ in detail, and it was demonstrated that the oldest method, namely the original P*M
algorithm is actually the most accurate one®. Since in addition error estimates exist’, this
mesh method should be the preferred method of choice, and will be introduced here.

3.1 P3M in a Nutshell

The P3M method maps the system onto a mesh, such that the necessary Fourier transforma-
tions can be accomplished by Fast Fourier routines. At the same time the simple Coulomb
Green function 47 /k? is adjusted to make the result of the mesh calculation most closely
resemble the continuum solution.
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Figure 2: Sketch of the first 7 cardinal-B-splines M (F) (z), parameterized by P. Note that the charge assignment
functions W (P) (z) for the P>M algorithm are just the “centered” B-splines.

The first step, i.e., generating the mesh based charge density py; (defined at the mesh
points r, € M), is carried out with the help of a charge assignment function W':

N
1
palry) = 75D aiW(ry —1i). @7
i=1

Here h is the mesh spacing, and the number of mesh points Ny = L/h along each di-
rection should preferably be a power of two, since in this case the FFT is most efficient.
The charge assignment function is classified according to its order P, i.e. between how
many grid points — per coordinate direction — each charge is distributed. For W a cardinal
B-spline?! is chosen, which is a piecewise polynomial function of weight one. The order
P gives the number of sections in the function. The first 7 cardinal-B-splines are sketched
in Fig. 2. Their Fourier transforms are

sin(3k,h) sin(

Tkoh

W(k) = h? ( (28)

The second and third step, i. e. solving Poisson’s equation and deriving the mesh-
based electric field E(r,) from it, happen simultaneously. There exist several alternatives
for implementing the differentiation on a lattice®; here we will restrict ourselves to the case
of ik-differentiation, that is, multiplying the Fourier transformed potential with ik. In this
case E(r,) can be written as

E(r,) = FFT [—ik % Clopt X FFT [pM]] (rp). (29)

In words, E(rp) is the backward finite Fourier transform of the product of —ik, the forward
finite Fourier transform of the mesh based charge density py and the so-called optimal
influence function Gpy, given by

. k-3 o U2k + 2Zm)R(k + 2m
Gl = & Zmep 20+ ) Bk + 57m)
K2 [Cnezs 02+ 2m)|

; (30)
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where the true, analytic reference force from (6) is

- LY o?
R(k) := ﬂkﬁe k*/4 (31)
and the dimensionless Fourier transform of the B-spline
U(k) := W(k)/h>. (32)

The last step of P3M, the back-interpolation of the forces onto the particles, is performed
again using the B-splines. The force on particle 7 is determined as

Fi=q Y B(r,)W(r;—rp). (33)
r, €M

The sum extends over the complete mesh M; however, since the B-splines have compact
support, the sum in fact only extends over a small vicinity of r;.

Although the presented formulas (27-33) look somewhat complicated, they are rather
easy to implement step by step. If the real space cutoff 7.« is chosen small enough, so
that the real space contribution (15) can be calculated in order O(N), the complete algo-
rithm is of order O(N log N), for details see e. g. the article by Petersen?’. Note that the
mesh-based calculation of the Fourier part does influence other parts of the Ewald sum-
mation. This means, that one still has the same dipole term U(® as before, and can study
non-neutral systems only by including the additional contribution from the neutralizing
background U (™).

3.2 The error measure of Hockney and Eastwood

While the real space error estimate of Kolafa and Perram?® of course also applies to the
P3M real space sum, the four steps involved in any particle mesh calculation introduce
completely different errors than the simple k-space truncation of the standard Ewald sum.
In fact, being a discrete Fourier transform, the P3M k-space sum is not truncated at all.
However, there are new sources of errors, originating, e. g., from discretization, interpo-
lation or aliasing? problems. Since these contributions are not independent of each other
(reducing one might enhance another), the only reasonable demand is the minimization of
the total error at given computational effort.

The most interesting ingredient of the P3M method is the optimal influence function
from Eqn. (30). It is constructed such that the result of the mesh calculation is as close
as possible to the solution of the original continuum problem. More precisely, the P2M
method is derived from the requirement that the resulting Fourier space contribution to the
force minimizes the the following error measure Q):

Q= % /h3 d3ry /V d3r[F(r;r1) - R(r)]2 (34)

F(r;r;) is the Fourier space contribution of the force between two unit charges at posi-
tions r; and r; + r as calculated by the P2M method (note that due to broken rotational
and translational symmetry this does in fact depend on the coordinates of both particles),

4A finite grid cannot represent arbitrarily large k-vectors. Instead, they are folded back into the first “Brillouin
zone” and distort there the true spectrum. This effect is usually referred to as “aliasing”.

48



and R(r) is the corresponding exact reference force (whose Fourier transform is just Eqn.
(31)). The inner integral over r scans all particle separations, whereas the outer integral
over r; averages over all possible locations of the first particle within a mesh cell. Obvi-
ously, up to a factor L2 this expression is just the mean square etror in the force for two
unit charges, in other words, the quantity 2 from Eqn. (21). Inserting into Eqn. (22), the
RMS force error of an N particle system is given by

AR~ Y5 (35)

It is important to realize that Hockney and Eastwood not only provide a closed expression
for the optimal influence function G, but also a closed expression for the corresponding

“optimal error” Qopt = Q[Gopt):

1 ~ 27
Qopt :ﬁ Z { Z ‘R(k—f— Wm)

keM \ meZ3

‘ 2

: 72 21 9% 2 2 (36)
ik -3 s U2(k + 2ZZm) R (k + Tm)‘ }

~ 2
K12 [Smezs U2k + Z7m)]

where the asterisk denotes the complex conjugate. Admittedly, Eqn. (36) looks rather
complicated. Still, in combination with Eqn. (35) it gives the RMS force error of the
Fourier contribution of the PM method. After all, the computation of Qopt and that of
Gopt are quite similar. It should be emphasized that the formula (36) for the optimal Q-
value and the optimal influence function (30) are of a very general nature, and can be
applied to different charge assignment functions, reference forces or other differentiation
schemes®.

With the real space error estimate by Kolafa and Perram and the k-space error estimate
by Hockney and Eastwood at hand, it is easy to determine the optimal value of the split-
ting parameter o a priori just from the system parameters N, > g2 and L and the tuning
parameters of the algorithm ry,,x, Ny, P. Just like for the standard Ewald method, a good
approximation to the optimal « can be obtained by requiring the real and k-space RMS
force errors to be equal, and a similar tuning routine can be applied, although now the two

parameters Ny and P both need to be tried out.

3.3 Improving the performance

Although the P>M in its oldest variant dates back to the early seventies, recent develop-
ments allow to improve the accuracy of the mesh based methods, and or to improve the
execution speed at fixed accuracy (by reducing the used FFT mesh, for example). Most
notably is the technique called interlacing, a technique developed by Hockney and East-
wood?® and then virtually forgotten until very recently when it was applied to the SPME
algorithm®2. Interlacing has also been applied to the P>M algorithm with the modern differ-
entiation schemes, yielding an accuracy much higher than that of any other particle-mesh

algorithm with the same parameters™.
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28,32

Interlacing consists of replacing the long-range P>M force (33) by the average of

two terms:
Fim — 5 (Fi +FP). (37)

Here, F; is the original P3M force, and the second term Ff is the P®M force calculated
for the particles shifted by the vector p = (h/2)e, i. e. by half of the diagonal of the
grid cell. If some particles find themselves outside of the primary box after the shift, their
coordinates are wrapped around periodically.

Interlacing involves doubling the amount of computation for the reciprocal part of a
particle-mesh algorithm. However, it gives a large increase in the accuracy of the forces
that can be converted into a speedup if one changes the parameters of the algorithm?3.
For example, interlacing allows one to double the grid spacing while keeping the same
accuracy, and this means reducing the number of flops for the computation of the long-
range Ewald forces by the factor of 8/2=4.

It is very important that adding interlacing to an existing particle-mesh implementation
only involves a relatively minor modification. As a quick check of the validity of the algo-
rithm, one can just make two copies of the particle data, compute two forces and average.
At a later stage one can improve performance by merging the two computations. The two
real-to-complex FFTs necessary for the two calculations of the Fourier transformed charge
density can be performed simultaneously in a single complex-to-complex FFT, which is
typically faster than two real-to-complex FFTs. Alternatively, the two real-to-complex
FFTs of the interlaced algorithm can be done in parallel. Note, however, that the optimal
influence function of the conventional P3M is no longer optimal in case of the interlaced
P3M and needs to be adjusted. The optimized influence function for the interlaced P3M
can be found in Ref. 33.

Interlacing was originally developed in Ref. 28 for the P?M with finite differences.
However, when applying interlacing to a finite difference scheme, one does not get an in-
crease in accuracy comparable with those for other differentiation schemes. The reason for
this is probably that a finite difference approximation of not very high order is a significant
source of error by itself®?® that dominates once the other error sources are suppressed by
interlacing. When applied with the correct influence function to P3M, interlacing can give
an increase in accuracy of the forces by up to two orders of magnitude.

Most notable is, that the interlaced P3M algorithms have more than an order of mag-
nitude higher accuracy than the interlaced SPME for the same execution speed. A typical
simulation package computes the Coulombic forces via a conventional analytically differ-
entiated SPME. Converting it to the interlaced P>M with analytic differentiation involves
making a relatively minor change of the code, and will give a large increase in accuracy.
Typically, one can double the mesh spacing, that is, the same accuracy can be reached in
less than a quarter of the computation time.

3.4 Parallelization

Being an order O(N log N)-method, P®M and other mesh-based Ewald methods are well
suited to study even large systems with many thousands of particles. This quickly raises
the question of parallelization, i. e. employing Np processors to compute the electrostatic
energy simultaneously. Just as with the charge interpolation and differentiation, there are
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several ways of parallelization; we briefly present here one that we found to scale rather
well even on large computers with hundreds of processors.

The real space part of the Ewald sum is a short-ranged potential, for which several good
parallelization strategies exist. In fact, every parallel Molecular Dynamics code has such
a strategy built in, or rather, is built around such a strategy. And to be able to scale up to
hundreds of processors, almost all codes use a domain decomposition and cell lists, often
combined with Verlet lists. These methods reach the ideal N/Np scaling with modern
fast networks, at least in weak scaling, i. e. constant number of particles per processor.
Moreover, communication only occurs between neighboring processors in a 3D toroidal
structure, which is efficiently handled by most hardware.

The domain decomposition strategy also allows to conveniently split up the work load
of charge assignment and force interpolation, by using the same domain decomposition
also for the k-space mesh. What remains, is computing the 3D Fourier transform. The
Fourier transforms are typically performed by highly efficient libraries, e. g. the excellent
FFTW?34, However, this library at present does not scale very well when it comes to parallel
3D Fourier transforms — and the parallelization of the 3D Fourier transform is in fact the
major bottle neck. To understand this, one has to see that a 3D Fourier transform of a
mesh of Ny? total points consists of three times performing Ny? 1D Fourier transforms
of length Ny;. To perform the latter, all data should be available on one processor. This
means, that to perform the 1D Fourier transforms along the different axes, one has to
completely exchange the data between all the processors, requiring a lot of communication.
However, by assigning the processors by a two dimensional domain decomposition to the
plane perpendicular to which the FFTs are performed, the communication overhead can
be minimized. When changing the direction of the FFT, each processor still has to send
all its data, however, only to /P others, if the number processors is P. Moreover, the
communication happens in v/P independent planes, that is, processor groups.

To our knowledge the most efficient way to implement the 3D Fourier transform is as
follows:

1. redistribute the 3D domain-decomposed mesh such that the processors form a 2D
mesh in the x, y-plane, and each processor obtains all data of its domain, in partic-
ulary always has one or more full columns along the z-axis. Calculate the Fourier
transforms along the z-axis.

2. redistribute such that the processors form a 2D mesh in the x, z-plane and have full
columns along the y-axis. Calculate the Fourier transforms along the y-axis.

3. redistribute such that the processors form a 2D mesh in the y, z-plane and have full
columns along the y-axis. Calculate the Fourier transforms along the x-axis.

After applying the optimal influence function and the difference operator,

4 distribute the data back into the original, 3D domain-decomposed mesh.

4 Electrostatic Layer Correction (ELC)

With the classical Ewald method for small systems with only a few particles, and P>M
or other mesh-accelerated Ewald algorithms for large systems, we can efficiently simulate
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Figure 3: Schematic representation of a fully periodically replicated slab system. h is the range in which particles
are located, the space between h and L is empty.

all system sizes with fully periodic boundary conditions. However, not all systems can be
studied with fully periodic boundary conditions, for example surfaces or thin films. For
these systems, we need a slab geometry with only two periodic dimensions, and one non-
periodic of finite extension. In this geometry, the Ewald formula is only of order O(N?),
and no simple mesh-based acceleration possible. Therefore, there have been soon attempts
to use a 3D Ewald sum for these slab problems. The main idea is to fill only parts of the
simulation box with charges and to leave some space empty, in an attempt to decouple the
interactions in the third dimension®!' (compare also Fig. 3).

However, in a naive implementation, one finds systematic errors!!. This is due to
the order of summation for the three dimensional Coulomb sum, which is spherical by
convention. This order implies that with increasing shell cutoff S, the number of image
shells grows faster than the number of shells of the primary layer, namely O(S?) versus
O(S?) (see Fig. 1). In other words, we include the unwanted terms faster than the actually
wanted terms. Yeh and Berkowitz!! already suggested that this problem can be solved by
changing the order of summation to planewise summation.

The situation can be improved further by removing numerically the contribution of the
artificial images. This contribution is called the electrostatic layer correction (ELC) term
and can be calculated in linear computation time'? '3, In addition, rigorous error estimates
for this term exist, from which one can also estimate the error produced by the method
proposed by Yeh er al. Because of its linear scaling, the ELC term can be combined with
P3M or any other mesh-based Ewald method to an overall O(N log IV)-method for slab
systems. Typically, a ELC+P3M calculation is at least a factor of two faster than using the
approach of Yeh and Berkowitz.

We consider a system where the non-periodic dimension is z without loss of generality.
We require that all particles stay in a slab of dimension 0 < z; < h for some height h, and
otherwise assume as before a periodic cell of size L x L in the x, y-plane. We artificially
replicate the system, that is, we introduce copies of the primary layer such that all charges
also appear at position r; 4+ m, where m € 0 x 0 x L.Z; this includes also the periodic
images in the x, y-plane. The artificial periodicity L, should be larger than h, so that we
leave a gap of size L, — h.

Since we assume a charge neutral system, the additional image layers (those layers
above or below the original slab system) are charge neutral, too. Now let us consider the
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m™" image layer, which has an offset of m L, to the original layer. If L. is large enough,

each particle in the m™ layer and its replicas in the x, y-plane can be viewed as constituting
a homogeneous charged sheet of charge density o; = % The potential of such a charged
sheet at distance z is 270 ;| z; the interaction of a pair of image layers located at z; =mL,,
with a charge ¢; in the primary layer is therefore approximately

N N

2mq; Zaj(|zj —zi+mL,| + |z; —z; —mL,|) = 4mg; nL, Zoj =0. (38)
j=1 j=1

The only errors occurring are those coming from the approximation of assuming homo-
geneously charged, infinite sheets instead of discrete charges, which should reduce with
increasing distance |m|L, from the central layer. Naturally, this argument only holds when
using planewise summation. Yeh and Berkowitz stated that a gap size of at least A is nor-
mally sufficient to obtain an moderately accurate result. However, no theoretical estimates
exist for the error introduced by the image layers, which could justify this statement; we
will see that it is in fact not true. Therefore one might be forced to use even larger gaps
to assure that no artifacts are produced by the image layers. One simple deducible artifact
is that the pairwise error will be position dependant. Particles in the middle of the slab
will see no effect of the image layers due to symmetry, and particles near the surface will
encounter for the same reason the largest errors, which is definitely an unwanted feature
for studying surface effects.

The ELC term is the energy contribution of the artificially introduced image layers, that
is

1 al qiq;
U = D) Z Z Z m, (39)

m>0 meZ2x{+mL,./L} i,j=1

Since we assume that the image layers all are separated from the main layer by at least the
gap size L, — h, we can use a convergence factor approach to calculate the interaction of
the primary layer with the image layer m. More precisely, we use a screened Coulomb

e Pr
r

potential in the limit of infinite screening length 3~!. The screened potential can

be conveniently Fourier transformed along each of the two periodic coordinates, and one

obtaing33-36-12

N
1 27 e~ [Kllzij—mL:| 2T
- _z 0.2 Wkewij+hyyis) _ 20, 0
Ulc(m) ~ Z qi4; 12 Z |k| € Y 72 |sz mLZ|.
i,j=1 ke2z7?
k*>0
(40)
The sum over m to obtain Uj. can be performed analytically by a geometric series. The

terms i—’; |zi; — mL.| are exactly the homogeneous sheet potential, which we have seen to
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cancel out for charge neutral systems (see Eqn. (38)). We obtain the ELC term

k|z; k|z;
el ‘ ]_|_e | ‘ J l(kai]‘+k‘yy7’,]‘)
QzQJ f ’
(efral- — 1)
keszQ i,j=1
k2>0
|k|z; pi(koxi + kyy:)
E E ¢ ¢ ¢ ! E qie ‘k‘z./e i(kaz; — kyy;)
‘ elk\L 7 41
k€27r22 i=1
k2>0

—|k|z; pi(kexi + kyyi)
Z Zq € € Zq olklzj g =i(kow; —kyy;)
— .= " k|(efkIEs — —
ke 2m72 i=
k2>0

The forces can be obtained by simple differentiation since the sums are absolutely conver-
gent. Although Eqn.(41) has a much better convergence than the original form in Eqn.(39),
its main advantage is a linear computation time with respect to the number of particles IV,
since the two sums over IV can be evaluated independently. Just as for the classical Ewald
method, parallelization is trivial, since we only need to calculate simple sums over all
compute nodes, for which efficient reduce operations exist in the MPI standard.

To complete the calculation, one of course still needs the forces and energies of the
fully periodic system, for example calculated by the P2M method. However, it is vital to
use the correct summation order, that is, dipole term. Since we performed the summation
over the image layers explicitely layer by layer, also the 3D summation has to be performed
in the same order. This means, that one has to use the dipole term according to Eqn. (10),
just as in the method proposed by Yeh and Berkowitz.

Similar to P>M it is possible to consider non-neutral systems®’. To this aim, one first
neutralizes the system using a homogeneous background for the calculation using the 3D
method, e.g. P3M . This homogeneous background gives rise to an unwanted force that
drives the particles towards the boundaries of the system. However, one can calculate this
force analytically, and subtract it again. Note that the background also contributes to the
dipole term for slabwise summation. It should now read:

oS

where the shift accounts for the neutralizing background, which in the slab system is a
homogeneous charge in the range from 0 to L. For an Ewald-type method, the neutralizing
background term U™ according to Eqn. (11) is required in addition. The interaction
energy of the background with the slab system and itself is finally

® o N N 1 N 2
U=+ doaiy a5z (L —2) - 3 doai) | (43)
i=1  j=1 i=1

which we need to subtract together with the ELC correction.
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Figure 4: Absolute RMS force error A F), as a function of the particle’s z—coordinate for a homogeneous random
system of 1000 particles in a box of size 10 x 10 x h with a system height h = 9 (left graph) and 5 (right
graph). The curves are from top to bottom: results for cutoff R = 0, i. e. the Yeh and Berkowitz approach, for
R = 1and R = 1.8 in the left graph with » = 9. In the right graph with h = 5, we also use R = 0, but then
R = 0.1 and R = 0.3. These cutoffs correspond to similar boundary errors for both heights, showing that one
needs larger cutoffs with decreasing gap size. We used P3M as the underlying 3D method, tuned for a RMS force
error of 104, The overall accuracy is limited by this P3M error, the accuracy of ELC in the center of the system
is much better.

4.1 Error estimates

Like before, we want to estimate the error that we introduce by the necessary truncation
of the Fourier sum. While for the standard Ewald sum, this was only used to tune the
algorithm, the error estimates for ELC can also be used to estimate the error that one
introduces by not taking into account the ELC term at all, that is, using the slab-wise
method of Yeh and Berkowitz!!. Our error estimates can be used to determine “a priori” the
necessary gap size to reach a preset precision without calculating the ELC term. Therefore
we also have to deal with small cutoffs, especially the case when no terms of E. are added.

We assume that the Fourier sum is truncated at a cutoff of k., that is, the summation

is performed only over all (p, ¢) € (2rLZ)?, where 0 < p? + ¢* < k2,,.. An upper bound
for the absolute value of the summands is
Qj cosh(|k]|z;) ikowij gikyyis | < Eefzﬂ\sz cosh(|k]|z;) . (44)
L2 | |k|(elkl L= — 1) L? [k|(1 — e~ [kIL:)

The sum over all these upperbounds can then be performed by an careful approximation of
the sum by an integral, which will give an upper bound for the algorithm dependent factor
x of Eqn. (22). From that, we obtain a limit for the RMS force error:

> a7 ( 4 1 ) ghmaxh
AF < z Kkmax + = + +
2V (ks — 1) Eofemh/ Bt
"L T Lo4+h) (L. +h)
2
D 3/ (o

2\/N(Lz - h)
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Figure 5: A schematic view of image charges. The dielectric interfaces are characterized by the €1 —&, and £y, —
€p boundaries, which give rise to an infinite number of image charges along the z-direction due to polarization
and multiple reflection under two parallel dielectrics. In the z, y-direction the image charges due to periodic
boundaries are shown. The dotted lines are only provided to visualize the positioning of the image charges.

where the latter simplification is only valid for large k,.x. The total error of the combina-
tion of ELC and any 3D method can be obtained again by summing up the error contribu-
tions according to Eqn. (23).

Our error estimates show that the error drops exponential both with k. and L. This
means that it is easy to achieve increase the accuracy with our layer correction formula,
either by increasing the k-space cutoff or the gap size. An upper bound for the error
produced by the method of Yeh and Berkowitz can be obtained by inserting by ax = 27?%.
In this case, the error formula shows that the error decays with the ratio kmax (L. — h) ~
(L, — h)/L and not L, /h, as was claimed by Yeh and BerkowitzP.

Note that Eqn. (44) shows that the error in the potential or the force for a single particle
will be largest if it is located near the gap, since there |z;;| will be maximal. This effect will
increase with increasing R, therefore, it is important to tune ELC (and with that, also the
method of Yeh and Berkowitz) to errors small enough to be negligible even at the system
boundaries. Just measuring the overall RMS force error might be misleading, especially,
since for thin films or surfaces, mostly the particles at the surfaces are of interest. This is
demonstrated in Fig 4.

If one assumes an mesh-based Ewald method to be used for the 3D periodic system,
one can estimate the optimal L, as follows. The computation time of the mesh method is
proportional to V' = L2?L,. For ELC, ky,a is proportional to 1/(L, — h), therefore the
computation time spent with ELC is proportional to L? /(L. — h)?2. The total computation
time is therefore minimized by a constant gap size independent of the box dimensions.

4.2 Varying dielectric constants

In the three dimensional Ewald sum, the dielectric constant at infinity, ¢/, plays an impor-
tant role through the dipole term (9). This is of physical origin, as can be seen from the
fact that the dipole term is not algorithm dependent. For systems with only two periodic
dimensions, the dielectric constant at infinity does not play a role; however, it may be nec-
essary to include dielectric contrasts in the non-periodic coordinate. For example, a thin

bIn fact, already the extreme case of h = 0 immediately shows that this cannot be true, as a conventional method
for three dimensional periodicity will not deliver exact results for a purely planar system.
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water film in vacuum has a dielectric constant of € ~ 80, while the surrounding vacuum
has € = 1. The dielectric contrasts at the film boundaries give rise to an infinite series of
image charges, which can be taken into account by the ELC method?’.

We assume that the charges are all contained in a medium of height L, and a dielectric
constant €,,,, which is sandwiched from above by a medium of dielectric constant ; and
from below by a medium of dielectric constant €, (compare Fig. 5 left). We define the
dielectric contrasts
— &

Em — €b €
A== and A, =1

) ) 47)
Em + €p Em + &t

and the double reflection factor A = A,A;. Then the potential of each charge including
its polarization images is represented by the following four series of charges:

e charges ¢; A™ at positions z; — 2L_n, n > 0 (this series also includes the real charge)

charges ¢; A, A™ at positions —z; — 2L.n,n >0

charges ¢; A™ at positions z; + 2L,n,n > 1

charges ¢; A;A™ at positions —z; + 2L, (n+ 1),n > 0.

What we are interested in is the electrostatic energy, that is, the energy of the real charges
due to the potential generated by (a) the real particles, (b) the image charges due to the
dielectric boundaries and (c) the periodic images of both.

Even though the task looks daunting, the solution turns out to be simple. Basically, the
sum of the potential generated by each of the charge series is again a geometric series in
the image layer count, which once more can be calculated by Eqn. (40) and summed up
analytically. One just has to be careful with the images that are close to the primary layer;
here, a direct summation, that is, the application of for example ELC+P3M is required. For
further details, see Ref. 37.

5 Dipolar Ewald Summation in 3D

In the previous section we treated methods to deal with the Coulomb interaction, or more
generally, interactions which vary with 1/r. In this section, we turn towards another elec-
trostatic interaction, namely the dipolar interaction. For (fully) periodic geometries again
the Ewald method can be used, with the same computation time scale as for the Coulomb
interaction, that is at best O(N?/2), if the cutoff is optimally varied with the splitting pa-
rameter’. For MC simulations, knowing the energy formulas is sufficient, whereas for MD
simulations, we need to know forces and torques. In this section we show how the Ewald
sum can be used also for dipolar interactions, and give a reliable error estimate for the
forces and the torques'>.

Consider a system of IV particles with a point-dipole p; at their center position r; in
a cubic simulation box of length L. If periodic boundary conditions are applied, the total
electrostatic energy of the box is given by

N
U— % Z Z’ { i 3[p; - (rij + mL)][p; - (rij + mL)] }, (48)

|rij + IIIL|3 ‘rij + IIIL|5

meZ3i,j=1
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where the prime indicates that the ¢ = j term must be omitted for m = 0. The slowly
decaying long range part of the dipolar potential makes the straightforward summation of
Eqn. (48) too time consuming. The Ewald trick splits the problem again into two rapidly
convergent parts, one in real space and one in reciprocal space. The details of the method
are discussed in Refs.!> 13, here we only give the final expressions. The energy is

U=U"+0® 4+Uy® 4y, (49)

where the real-space U("), the k-space (reciprocal space) U*), the self U(*) and the dipole
(surface) U® contributions are respectively given by:

v =13 5 { s+ 1) By + mL)

mEZ3z,j 1

(50)
— i (e5y + ML), - (v + mL)C(Irsy +mL|)},
k) _ 1L AT _(rkjaL)? X omikeri; /L
UN =3 2 32© D (i W)y - Kyetriera/t, G
k40 ij=1
U =~ E:m7 (52)
N
g 2m DNTE (53)
T2+ 1)L & Mt

The k-sum is again over reciprocal vectors k & %’TZ?’, the sums over ¢ and j are for the
particles in the central box and

B(r) = [erfc(ar) + (2ar /v/T) exp(—a’r?)] /r3, (54)
C(r) = [3erfc(ar) + (2ar//T)(3 4 2a*r?) exp(—a’r?)] /r°. (55)

The inverse length « is the splitting parameter of the Ewald summation which should
be chosen so as to optimize the performance. The form Eqn. (53) for the surface term
again assumes spherical summation and that the medium outside the growing sphere is an
uniform dielectric with dielectric constant €.

In practical calculations, the infinite sums in Eqns. (50) and (51) are truncated by only
taking into account distances which are smaller than some real space cutoff r,,x and wave
vectors with a modulus smaller than some reciprocal space cutoff kpax. If rpax < L/2,
the sum in real space [Eqn. (50)] reduces to the normal minimum image convention. The
double sum over particles in U(*) can be replaced by a product of two single sums which
is more suitable for numerical calculations.

The force F; acting on particle 7 is obtained by differentiating the non-constant contri-
butions to the potential energy U with respect to r;, i.e.,

0

5 U=F" +F", (56)

F,=—

58



with the real-space and k—space contributions given by:

F(T) Z Z {[ r +l’l’z< TR Z‘)-}(ui-r?)uj}C(?‘;}l)

mez3 j=1 (57)
— (py i) (g i) D(r7) r?}‘},
(k) 2T N 47k 2
FY =253 =5 [ W) - W) expl—(wk/aL)?]
=1 k20 (58)

-sin(27k - rij/L)],

where rg»‘ =r;; + mL and

D(r) = [15erfc(ar) + (2ar/+/T) (15 + 10 %2 + 4 a*r?) exp(—a?r?)]/r7.  (59)

Since the self and surface energy terms [Eqns. (52), (53)] are independent of the particle
positions, they have no contributions to the force, unlike the Ewald sum for Coulomb
systems where the surface term contributes. The torque 7, acting on particle ¢ is related to
the electrostatic field E; at the location of this particle via

=pu;, xE; = TZ(-T) + Tgk) + ‘1'1(-d)7 (60)
with
0
E; = _TMU’ (61)
3
and thus

) = ZZ{ i X 1) <m)—(uixr;?)(uj-rmc(r;‘)}, (©2)

meZ3 j=1
(k) 1 N 47 —(rk/aL)? 2mik-r;; /L
T = 3 ST S x Ky K)e (/R amer (63)
j=1keZ3 k#£0
() _ il S 64
TS e o
j=1

5.1 Error Formulas

We now give estimates for the RMS error caused by cutting off the Ewald summation in
real-space and k-space for the forces and the torques. There are no errors involved in the
self and surface contributions [Eqns. (52), (53) and (64)], because no cutoff operations are
applied to them. As can be shown similarly to the way as it was presented in Sec. 2.1, the
RMS error for the force can be cast in the following form

2

M N
AF ~ X with M :=>"p2. (65)

59



After some lengthy calculation one obtains for the algorithmic contribution from the
real space'’

. 13 2 13
X2~ L7320 a7 H(Z20% + = D? — 2C,.D.) exp(—2a%r2,.), (66)
) 6 ¢ 15 ° 15
where the terms C, and D, are given by
Ce =40’ + 6072, +3, (67)
D, =8a%8% _+20a*r? +30a%2, +15. (68)

The resulting RMS expectation of the real-space cutoff error in the forces is thus

1 2 1
AF™M) ~ M2(L3a4r?naXN)_1/2(€3C’c2 + BD? - TiCch)l/Q exp(—a?r?,.) (69)
and in the torques
1 1
AT(T) ~ M2(L3a4rr7naxN)_1/2[§Bg + 503]1/2 eXp(_azrfnax)' (70)

Eqns. (69) and (70) both contain the exponential exp(—a?r2,.). For sufficiently low

eIrors, arpax has to be larger than one, for example ary.x =~ = for an error of
exp(—m2) ~ 5 x 1075, If only the highest powers of ar .y are retained, the estimates of
drastically simplify to

AFT = 8M2a (202, JIBNL?)/2 exp(—a®r2,,), (71)
AT 2 AM202 (rax /SN L3)Y 2 exp(—a®r2,..), (72)

The advantage of these simplified formulas is that they reflect the dependence of the RMS
errors on « and 7y, more directly and thus could be used more easily in determining the
optimal values of these parameters.

In deriving the estimates of the reciprocal-space (k-space) cutoff errors, we assume that
the radial distribution function of the particles is approximately unity at all distances. Then
one finds the RMS expectation of the k-space cutoff error in the forces as'>

AF®) =~ 8r M2L 321k J15N) Y2 exp|—(kmax /o L)?], (73)
and in the torques
AT = AMP L2 0(mkmax /5N ) Y2 exp|—(Tkmax /o L)?]. (74)

The total error can be obtained again by taking into account the real and k-space errors
according to Eqn. (23).

5.2 Optimization of Parameters

In this section, we discuss the use of the analytical formulas derived in Sec. III to determine
the optimal values of «, ryax and knyax by which the required accuracy could be satisfied
and the computation time is minimized. The detailed discussions on this subject can also be
found in Refs.>?’. First, we note that the same argumentation as for the Coulombic Ewald
sum holds, namely that the computation time is 7 = O(Na~3) + O(N?a?), which is
minimized by o« ~ N~1/6, Therefore, the optimal computation time of the dipolar Ewald
sum is as well O(N3/2).
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Figure 6: Optimal values of the parameters « (a), kmax (b) and rmax (c) as well as the corresponding minimized
computation time 7 /N (d) as a function of the number of particles.

The numerical investigation of the functional dependence of the optimal parameters on
N and § are performed as follows. For each given N and ¢, we at first choose different
values for r,,x Within the inequality 7. < L/2. For each ry,,x the parameters « and
kmax are calculated by solving Eqns. (71)) and (73). Now, one can perform a trial com-
putation to measure the required computer time for each ry,,x, and by this figure out the
optimal value of 7y, Which gives the minimum computation time. In our calculations the
size of the simulation cell is fixed to a dimensionless length of L = 10. The range of ac-
curacy requirement and number of particles are chosen to be § = 1072 to 10~5 measuring
in P2/L£* and N = 10% to N = 10° which should cover most of the applications. The
particles are supposed to have an uniform dipole moment of P. The results for the optimal
values of the parameters and the corresponding computation time per particle are shown
in Fig. 6 (a-d), respectively. It can be clearly seen that the functional dependence of the
parameters and the overall computation time on NN are just as discussed above. Fig. 6(c)
shows that when a high accuracy is required for a system with a small number of particles,
the predicted real-space cutoff is larger than half of the box length and 7,,x = L/2 must
be used, which prohibits the use of the minimum image convention. The optimal « values
hardly depend on the accuracies. Note that unlike in the discussion above, we assume a
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constant volume and thus the optimal o ~ N 1/6 instead of N—1/6, as can be easily seen;

the overall optimal computation time at constant volume is still O(N?3/2).

Finally we should remark that besides the standard Ewald method, dipolar variants of
basically all Coulomb solvers are possible; a dipolar SPME has been described in Ref. 38,
a dipolar P>M with optimal influence function and known error estimates in Ref. 39, and
the ELC term was derived for dipolar systems in Ref. 40.

6 Concluding Remarks

We have given a review of Fourier transform-based methods to compute the electrostatic
interaction. We have shown that this oldest family of Coulomb solvers is very versatile
and can be applied to systems with any combination of periodic boundary conditions and
also to dipolar interactions. We tried to give reasons why one should worry about errors,
and gave error estimates for all presented algorithms. We also described how these error
estimates can be used to tune the algorithms to perform optimally for speed and accuracy.
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Parallel Tree Codes
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A highly scalable parallel tree code (PEPC) for rapid computation of long-range (1/r) Coulomb
forces is presented. It can be used as a library for applications involving electrostatics or New-
tonian gravity in 3D. The code is based on the Hashed-Oct-Tree algorithm, in which particle
coordinates are encoded on a space-filling curve prior to sorting and allocation to processor do-
mains. An overview is given of the main components of this code: domain decomposition, tree
construction and execution of traversals necessary to perform the force summation. Particular
bottlenecks which can impair parallel performance are the sorting routines and the exchange of
multipole information between processor tasks. These are analysed with a view to scaling the
code on petaflop supercomputer systems.

1 Introduction

Even in the era of exascale computing, the naive approach of solving the N-body problem
directly by an O(N?)-algorithm is still impractical for the vast majority of physical
systems. Despite the high accuracy and scalability of these algorithms they are highly
ineffective for problems where statistically significant results can only be obtained by
simulating the presence of more than a few thousand particles.

In the mid-1980s two techniques — the hierarchical Tree Code' and the Fast Multipole
Method (FMM)?, with respective algorithmic scalings of O(Nlog N) and O(N) —
have revolutionized long-range N-body simulation for scientists across a wide range of
disciplines®. These methods reduce the number of direct particle-particle interactions
through the systematic use of multipole expansions up to a given degree. For many
dynamical systems, there is no need to compute potentials and forces to higher accuracy
than the error incurred by integrating the equations of motion. In such cases tree codes and
the FMM make it possible to perform significantly fast simulations with many millions of
particles (see also*). A further advantage is that these methods are mesh-free: they do not
depend on structured grids for the field solver and are therefore intrinsically adaptive.

Over the past few years at JSC we have developed the parallel tree code PEPC — Pretty
Efficient Parallel Coulomb-solver, demonstrating the performance and scalability on the
former Jiilich IBM p690 and BlueGene/L machines®’. This highly portable code was
initially designed for mesh-free modelling of complex plasma systems®, but has since been
adapted for gravitational problems and vortex fluid methods, the latter utilising potentials
differing from 1 — r. Based on the original Warren-Salmon “hashed oct-tree’ scheme’
with a fixed multipole expansion up to p = 2 (quadrupole), PEPC provides a flexible, high
accuracy and fully parallelized tool for simulations of long-range N-body systems.
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We begin this overview with a general outline of the parallel tree code PEPC, and then
proceed to describe the main steps involved to compute the potentials and/or forces on a set
of particles: the distribution and decomposition of the particles among processor tasks, the
tree construction and multipole definitions, the determination of interaction lists and force
summation, including a recent extension to periodic systems. In Section 3 we present
performance analyses of the code on the Jiilich supercomputers Jugene and Juropa.

2 Parallel Tree Codes: the Basics

Algorithmically speaking, an electrostatic tree code is no different to the various New-
tonian gravity N-body solvers used in astrophysics, which are nearly all based on some
form of the Barnes-Hut hierarchical tree algorithm!. Briefly summarized: the electrostatic
force-sum on each particle is computed by systematically replacing more distant charges
by multipole expansions of charge groups, thus reducing the standard O(N?) direct sum
to an O(N log N) complexity at the price of a small, controllable error®. For many appli-
cations — for example in plasma or astrophysics — there is little to be gained in computing
potentials and forces to higher accuracy than the error incurred by time-integration, which
can be anywhere between 10~ for a high-order Runge-Kutta scheme, to around 1% for
the simple 2nd-order Leap-Frog method.

for all iteration steps do

domain decomposition:
convert local particle coordinates to keys
perform global key-sort

build tree:
construct local nodes
define global branches
fill in top-level nodes
compute multipole properties

define particle chunks
for each chunk do
perform tree traversal
perform force summation
end for

end for

Figure 1: Outline of parallel tree code: for dynamical systems, the tree and interaction lists are built afresh each
timestep.

The price to be paid for the speed-up in the force sum is a considerable increase in pro-
gramming complexity. First, the hierarchical data structure necessary to navigate around
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the tree introduces an unavoidable bookkeeping overhead. Second, accessing multipole
information lying on remote processors results in additional communication, which if not
carefully implemented, can result in poor parallel efficiency. These issues notwithstanding,
each step in the scheme illustrated in Fig.1 can be implemented in parallel with a scaling
like N/P or Nlog N/P.

2.1 Domain decomposition

At first sight, the hierarchical data structure required in a tree code to manage the multi-
pole information would seem to preclude parallelism altogether. In fact, several schemes
for parallel tree codes have been proposed and implemented, including virtual shared-
memory versions'?, and distributed memory schemes using geometrical domain decom-
position methods'!"'2. The scheme adopted here follows the one devised by Salmon and
Warren'®?, who practically reinvented the BH algorithm by scrapping memory pointers for
bookkeeping in favour of a set of universal binary keys to represent particle and tree-node
coordinates alike.

The basic idea is to convert the coordinate triple of each particle into a single, unique
64-bit integer key. The keys do not replace the coordinates, but as we shall see, provide a
natural and rapid means of sorting the particles and building up the tree structure around
them. Given its key and owner, locating any node in the tree is reduced to an O(1) opera-
tion.

In the present code, PEPC, the keys are constructed from the binary interleave opera-
tion:

7
k=p+ Z8j [4 X bit(iz,4,1) +2 X bit(iy,],1) + bit(ig,J,1)] €))
j=0

The function bit (a, j, 1) selects 1 bit of the integer a starting from bit position j. The
normalized integer coordinates are computed from:

iy =x/s
iy =y/s
i, =2/s 2)

where
s = L/2n1evels

and L is the simulation box length; nlevels the maximum refinement level. The latter
obviously depends on the machine precision, and for a 64-bit machine, we can have 21 bits
per coordinate (or nlevels=20) plus a place-holder bit:

p= 263,

The place-holder bit is necessary to distinguish genuine particles on the lowest levels
of the tree from higher level nodes of the internal tree structure. Mapping the coordinates
to keys in this manner yields a space-filling curve, in this case following a pattern known as
Morton- or Z-ordering This is by no means a unique choice: it is straightforward to modify
the mapping to other curves such as the Hilbert (or Peano) ordering!*, yielding somewhat
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improved data locality — Fig. 2. Both of these options are implemented in PEPC: choice of
curve can in principle have an impact on communication effort at for very large processor
numbers.

Figure 2: Domain decomposition of 200 simulation particles, shared equally among 4 tasks, using a space-filling
curves with a) Z- or Morton ordering; b) Hilbert ordering

Domain decomposition can then be accomplished by cutting out equal portions of the
sorted list and allocating these to the processors. A decomposition example for 200 par-
ticles divided among 4 processors is also seen in Fig. 2. Note that with this scheme, load
balancing can be easily introduced by biasing the key-list segments according to the num-
ber of interactions computed for each particle in the force summation during the previous
iteration.

After domain decomposition, the tasks have a set of local particles which are distinct
except for the particles at task boundaries: here we copy the edge particles to the next task
to ensure that we do not prematurely assign particles to leaf nodes when they may actually
be part of shared twig nodes.

2.2 Parallel sorting on space-filling curves

An obvious prerequisite for well-connected task domains is that the particle keys are sorted,
which in turn demands a fully parallel sorting algorithm. The one currently implemented
in PEPC is an adaptation of the PSRS (parallel sorting by regular sampling) scheme'>,
but with an important modification. Whereas the PSRS scheme assumes that the elements
to be sorted are homogeneously spread over the computational domain limits, the particle
key distribution generated by the coordinate interleave function in Eq. 1 is highly clustered,
and in general cannot be sampled accurately without using a sampling frequency O(N) or
greater, defeating the whole purpose of the parallel sort.

For this reason we have implemented a hierarchical version which performs adap-
tive sampling, resolving regions of higher key density with a recursive divide-and-conquer
strategy. This enables the ‘pivots’ for the sort routine to be determined accurately, yielding

68



—— PSRS-sort
| —— PBAL-sort

relative \Lvork load

0 32 61 9% 28
task

Figure 3: Relative work load per task for PSRS and PBAL-sort, applied to a medium size homogeneous example.
PSRS: up to 40% imbalance, PBAL-sort: near-constant work load.

a balanced key distribution. In general, the particle count is weighted by the respective
interaction list lengths from the previous iteration or timestep, thus allowing a form of
downwind load-balancing which ensures roughly equal floating-point operations across
tasks in the force summation step. Figure 3 shows the relative work load per task for PSRS
compared to our adaptive sampling algorithm PBAL-sort, applied to a medium size ho-
mogeneous example. While PSRS already produces up to 40% imbalance across tasks,
the hierarchical version can compensate this imbalance yielding a nearly constant load
distribution.

However, even this improved adaptive sampling algorithm eventually reaches its limit
on very higher core numbers, when the sampling resolution eventually becomes insufficient
without using excessive statistics, and is also handicapped by O(P?) collective operations
during the merge step. For this reason it has been replaced by a more sophisticated parallel
sort library developed at TU Chemnitz'®.

2.3 Construction of local trees

A big advantage of binary coordinate ordering over standard addressing techniques in tree
codes is that the hierarchical structure is recovered automatically. As we will see shortly,
keys of parent and neighbour cells are obtained by simple bit operations, so that the average
access-time for any particle or node in the tree is O(1) instead of the usual O(log N). The
obvious drawback is that the number of possible keys, 263 ~ 10'° on a 64-bit machine,
vastly exceeds the memory available, typically ~ 10° — 10° locations per processor. This
mismatch is resolved by using a hashing function to map the key onto a physical address
in memory, for example:

address = k AND (2" — 1), 3)
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where h is the number of bits available for the address. This address then acts as a pointer
to the particle or multipole properties. In case two or more keys give the same address (a
"collision’), a linked-list is constructed to resolve it. Clearly a high occurrence of collisions
will ultimately degrade performance; however, as Warren & Salmon pointed out’, the dis-
tribution of particles and nodes between many processors with their own address-spaces
helps to reduce their number to a negligible level.

Once a set of particles has been allocated to a particular processor, and their associated
properties (mass, charge, velocity etc.) have been fetched from their original location,
one can immediately begin to construct the local trees. This can be done very efficiently
because the particle keys implicitly contain the necessary information on all their ancestor
nodes up to the root. The parent of a particle or twig-node is simply found by a 3-bit shift
operation:

Eparent = RIGHTSHIFT (k, 3) )

Likewise, if a node’s children are numbered from O to 7 (in a 3D oct-tree), their keys can
be obtained by the inverse operation:

enia = LEFTSHIFT (k, 3) OR child(0-7), 5)

level 0

level 1

get_child get_parent get_child get_parent

level 2

Figure 4: Obtaining parent and child key from node: quadric and binary notation

As an example, the full key for the highlighted cell in Fig. 4 is 131 in quadric, 11101
in binary notation (we have dropped the place-holder bit in the figure for clarity).

The local sorted list of particle keys would thus provide a natural starting point for de-
termining their parent nodes if we knew how they were distributed. In a dynamic applica-
tion we cannot assume anything about their distribution, however, so instead we start from
the highest (coarsest) level and work down to the leaves. As in a sequential algorithm3, all
particles are initially attached to the root, in this case a cube encompassing the whole simu-
lation region. Next, the region is subdivided into 8 sub-boxes, and the particles re-attached
accordingly. A sub-box containing exactly one particle is defined as a leaf; a box with 2 or
more constitutes a twig and empty boxes are discarded. This procedure is continued at the
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next highest level until each particle sits in its own box. For highly clustered distributions,
it may become necessary to relax this requirement, otherwise simulations with more than
a few million particles can (and do!) result in identical key assignments.

Each new leaf or twig node created this way is added to the local hash-table via the
same hash function (3) as the particles. Collisions are again dealt with via a simple linked
list. In principle this function can be refined to improve the distribution of hash-table
addresses in memory space: the sharing of keys across a number of processors keeps the
collision count down to tolerable levels.

2.4 Global branch nodes

At their coarsest level, the local trees will contain ’incomplete’ twig nodes; that is, nodes
which cross domain boundaries. Information from neighbouring domains is therefore
needed to complete them. To facilitate the exchange of information (and later multipole
moments) between processors, a set of local ‘branch’ nodes is defined first, comprising
the minimum number of complete twig and leaf nodes covering the whole local domain—
Fig. 5. This set of branch nodes is then broadcast to all other processors, so that each one

Figure 5: Branch nodes belonging to 4 processor domains.

subsequently knows where to request any missing non-local particle or multipole infor-
mation. For example, a branch’s child nodes can immediately be found from a byte code
stored with the hash-table entry, the first 8 bits of which declare which children exist at the
next refinement level. Applying the operation (5) yields each (still non-local) child key.
A branch’s hash-entry will also contain the total number of particles contained beneath it,
so that the top level nodes above can now be filled in up to the root. At this point the
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local trees comprise 3 types of node: i) twig or leaf nodes covering the local domain, ii)
branch nodes and iii) top level twig nodes, each covering the whole simulation region—
Fig.6. Leaf node entries contain a pointer to the actual particle coordinates, charge and
mass, as well as a globally unique label for tracking purposes. Twig nodes, including the
special branch nodes, contain pointers to the multipole moments of their associated charge
distributions, together with some flags indicating the status of non-local child nodes (in
particular, whether a local copy already exists).

4 H
—

Figure 6: Local tree for processor 1 prior to tree-walk. The shaded boxes represent the branch nodes gathered
from all other processors.

Before we take a closer look on these steps and their implementation we want to il-
lustrate the tree structure with its different node categories. To this end Figure 7 shows a
simplified hierarchical view of the tree data structure.

The top view in this figure shows nodes and particles as they would be organized in
a serial version of the code. Each particle is identified as a leaf L while all other nodes
are fill (global) nodes. A traversal starts from root level checking the multipole acceptance
criterion and processes the whole structure down to the leaves, if necessary. The bottom
view visualizes the parallel version of this structure: leaf nodes are distributed across the
tasks but for the traversal the branch nodes B are necessary, acting as an entrance to non-
local trees during tree traversal. To this end these nodes have to be available on every task
in addition to their local trees (including the leaves) and the global structure from root to
the branches. Furthermore, we have indicated the members of the interaction lists on task
1. Since only these nodes are necessary for the force summation, some parts of the branch
and global structure stored in the tree of task 1 turn out to be redundant. We discuss the
impact of this effect in section 3.
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Figure 7: Hierarchical view of the tree structure. Top: nodes and particles as they would be organized in a serial
version of the code. Bottom: leaf nodes are distributed across the tasks but for a consistent data structure the
branch nodes B are necessary and act as an entrance to non-local trees during tree traversal. Members of the
interaction lists on task 1 are also indicated.

2.5 Construction of multipole moments

Once the basic tree structure is in place, it is a straightforward matter to accumulate multi-
pole moments and attach them to each node from the leaves up, making them accessible by
the node’s key. Once again, this procedure is considerably simplified by sorting the keys
for the twig-nodes contained within the list of local branch nodes. Twig nodes with the
highest keys will, by definition, have the highest refinement levels:

log(key) ©)

1 1=
eve log 8

This means that multipole moments at deeper levels can be successively shifted up to their
parent levels using simple displacement vectors:?
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where 7 is the shift vector from the child nodes to their parent.

This procedure is continued by working through the sorted list of twigs in reverse
order up to the local branch nodes, which then contain the complete multipole information
for the local domain. This information is then broadcast to all other processors, so that
the remaining top-level nodes can be filled in using the shifting rules. At the end of this
procedure, each processor has the complete multipole expansion for the entire simulation
region contained in the root node.

2.6 Tree traversal

By far the most important and algorithmically challenging part of a parallel tree code is the
tree-traversal, which in the present asynchronous implementation requests multipole infor-
mation ‘on the fly’ from non-local processor domains. Rather than performing complete
traversals for one particle at a time, as many ‘simultaneous’ traversals are made as pos-
sible, thus minimizing the duplication incurred when the same non-local multipole node
is requested many times and maximising the communication bandwidth by accumulating
many nodes before shipment. In practice, this means creating interaction lists for batches
of around 1000 particles at a time before actually computing their forces. The routine
tree_walk, which finds the interaction list for each batch has the structure depicted in
Fig. 8 and Fig. 9.

while any particle not finished walk do
find next node on particle’s walk _list
if MAC OK then
put node on interaction_list
walk-key = next-node
else if MAC not OK for local node then
subdivide: walk-key = first-child
else if MAC not OK for non-local node then
walk-key = next-node
put particle on defer_list
put node on request_list
end if
remove finished particles from walk list
end while

Figure 8: Local tree traversal for batch of particles
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gather request lists for non-local nodes from all processors

for all remote processors do
initiate receive buffer for incoming child data
send off requests for remote child data

end for

for all remote processors do

test for incoming request

package and ship back child multipole data to processor that requested it
end for

for all requests do
if data has arrived for requested node then
create new hash-table entries for each child
end if
end for

copy particle defer_lists to new walk _lists for next pass through tree

Figure 9: Parallel tree traversal with multipole exchange

In the first, local part of this procedure, traversals are made through the local tree
using the familiar divide-and-conquer strategy common to sequential tree codes!”. The
multipole acceptance criterion (MAC) determines whether to accept or subdivide local
nodes as usual, but also provides for a third possibility: the subdivision of a non-local node
for which child data is not yet available. This is then placed on a special ‘request list’ to be
processed in the 2nd half of the routine when all particles have completed their traversals
as far as they can with the available local node data. Each processor then compiles a list of
nodes it needs child data from, and sends them to the owners of the parent nodes. In the first
pass, these will just be the branch nodes. On receipt of a request list, a processor packages
and ships back the multipole data for the children. The use of non-blocking SENDS and
RECEIVES for the multipole information allows some overlap of communication with the
creation of new hash-table entries locally. At the end of all the traversals, each processor’s
local tree contains all the nodes required to compute the forces on its own particles. The
nodes fetched during the traversals can eventually take up most of the space in the local
hash-table, as Fig. 10 illustrates.

2.7 Force summation

Once an interaction list has been found for a particle, it is a straightforward task to com-
pute its force and potential. Separation of the actual force sum from the tree traversal has
the advantage that this floating-point-intensive routine can be hardware-optimised. Also,
the physics and algorithm are kept naturally apart, so that additional forces, for example,
short-range components or magnetic fields and/or corrections due to periodic boundary
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Figure 10: Tree for processor 1, the domain in bottom right quadrant: a) before and b) after traversals for all
locally held particles.

conditions (see next section) can be added with relative ease. In the present implemen-
tation, forces are computed for each batch of interaction lists returned from the tree-walk
routine. One subtlety which arises here is that even if overall load-balancing has been ar-
ranged during the domain decomposition, it is not necessarily guaranteed for each batch
of particles (which may comprise only 1/100 of the total number on each processor). To
redress this problem, the batch size IV, for each processor is determined individually, so
that the integral

> Nint(p) (7)

p=1

with N, (p) being the number of interactions of particle p in the previous timestep, is the
same and each processor computes the same number of interaction pairs during each pass.

2.8 Extension to periodic systems

The parallel tree code is capable of simulating systems with large particle numbers. How-
ever, for bulk simulations, it is necessary to eliminate surface effects resulting from the
simulation region’s boundaries. This is done by periodic extension of the system to vir-
tually infinite size using mirror images of the original simulation box, resulting in two
modifications of the algorithm itself, as denoted in Fig. 11: i) particles leaving the original
simulation box have to be reinserted on the opposite side, and ii) additional contributions
to the formal force sum for each mirror box at position 7 have to be considered:

. L d L =
Fi(Th...ﬂ“N;t) = E E Th?'(b(rij+n'L)+Fext(ri§t) . ®)
RE? ji !
if 7=0
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Figure 11: Modification of the algorithm for simulating periodically extended systems: the force acting on a
particle (red) from another one (blue) results from all of its mirror images.

Due to the long-range character of the Coulomb interaction, the box sum cannot be
truncated arbitrarily, since it is only conditionally convergent. Additionally, in Eq. 8, the
effective number of interactions grows linearly with the number of mirror boxes and hence
cubic with the effective simulation region size. Consequently, a direct summation is com-
putationally much too expensive and fast summation schemes are necessary.

The standard Ewald method'®!%, i.e. splitting the box sum into a real and a Fourier
space part is not used for periodic extension in PEPC, since its convergence and accuracy
are rather difficult to control and it would have to be applied to each particle separately.

Instead, an elegant approach borrowed from the fast multipole method>?° is adopted
here. It is based on the bipolar expansion of the inverse distance in terms of Legendre
polynomials:

e =2 2 2 o (1 O (@) M) Of @) ©)



with the multipole coefficients

l

= r —im
O{n(a = [T', 0, 90]) = mle(Cos 0)6‘ ¥ (10)
and the Taylor(like) coefficients
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This expression allows for the precalculation of geometry-dependent lattice coeffi-
cients?"-?2. These can be utilized to formulate the lattice contribution to the force for each
particle in an O(1) step, which results in an additional O(NN) overhead for the periodic
extension. Additionally, in contrast to the Ewald summation scheme, treating non-cubic
simulation regions and systems with periodicity in less than three spatial directions is pos-
sible with only small and straightforward modifications.

e overall force per particle

- analytic: |F| =0

- PEPC: |F|~2.79-1074
e total energy

— analytic: E ~ —13.980517
1.0 - PEPC: FE =~ —13.980618

Figure 12: The 3D-Madelung system for computation precision verification is a cubic system with alternat-
ing charges in the cube‘s corners. Red points denote positively charged particles, blue particles are negatively
charged. The PEPC results coincide very well with the analytically derived numbers.

The accuracy of this approach is illustrated with a simple Madelung lattice, an infinitely
large cubic system with alternating charges on the lattice nodes, as depicted in Fig. 12. Due
to symmetry, the overall force onto each particle has to vanish. On the other hand, the total
energy in one cubic cell is

3D _
EMadelung =38 E
©,5,kEZL

(_1)i+j+k-

— & 13.9805 (12)
@+ + 8

in normalized units. The results calculated by PEPC are given in Fig. 12 and comply
satisfactorily.
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3 Algorithm Scaling and Performance

The adaption of an algorithm to massively parallel systems (thousands of tasks) creates a
multitude of challenges. In general, these differ from those which arise at scales of only a
few tasks. E.g. in the case of strong scaling at large scales, all components which have a
constant or even a P dependent complexity must be avoided. However, some algorithms
might depend on non-scaling actions, like collective communication in PEPC, and will
have to be optimized.

Initialise particle properties r;, v;, q;, m; N/P

Key construction: (x;,y;, 2;) — k; N/P

Sort keys: k1, ks, ...kn N/Plog N
Domain decomp.: k1, ..kp; kn+1, --k2n; s kN—n...kn  N/P
Construct branch nodes Plog N/P
Fill in top level local tree nodes log P
Build multipole moments log N/ P
Construct interaction lists (tree traversal) N/Plog N
Compute forces and potential N/Plog N
Update particle velocities and positions N/P

Table 1: Algorithmic scaling of major routines in PEPC. The symbols N and P represent the total number of
particles and processors respectively, and n = N/P.

The overall algorithm is depicted together with the theoretical scaling of each major
routine in Table 1. We see that in principle, all of the above routines can be performed in
parallel, and thus require a computational effort O(N/P), give or take a slowly varying
logarithmic factor. Single-timestep benchmarks with this new code broadly confirm the
theoretical scalings indicated in Table 1. As expected, most of the time is spent in the tree-
traversal and force-summation routines: the total overhead incurred by the tree construction
(which includes the steps 2.3, 2.3 and 2.4 described previously) is around 3%, although this
figure excludes tree-nodes copied locally during the traversal—Table 2.

Routine/ No. CPUs 8 16 64

Domain decomposition 0.2 0.24 0.33

Tree building 23 23 2.7
Tree traversal 329 36.1 408
Force summation 64.4 612 557

Table 2: Breakdown of relative computational effort (percentage of wall-clock time spent in each routine) in the
parallel tree code for a test case with 100k particles and 8, 16 and 64 processors respectively on a PC cluster
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The first part of this section demonstrates PEPC’s scaling on a massive parallel system,
IBM Blue Gene/P Jugene at the Jiilich Supercomputing Centre. To our knowledge, the
achieved scaling is exceptional among the currently available tree codes?*?*. For strong
scaling, there is unavoidably a maximal number of tasks up to which a speedup can be
gained, due to essential non-scaling elements: sorting of particles and global information
exchange. Even if unconditional strong scaling is currently not possible, it is important to
ensure optimal efficiency of all application’s parts to be able to reach the highest scales.
Therefore, the following sections give an insight in the efficiency of the communication
strategy and the parallel sorting routine, as well as the identification of one of the current
bottle necks: the P-dependency of the number of branch nodes.

The PEPC code is written in a generic fashion without the usage of external libraries.
This results in excellent portability. In the PRACE benchmarking framework. PEPC was
run on four different computer architectures, namely: IBM Blue Gene/P (jugene), IBM
Power6 (huygens), Cray XT5 (louhi), Intel Nehalem (juropa).

Figure 13 shows strong scaling results from 1 to 8192 mpi tasks on Jugene. We have
used four different datasets since the number of particles per task for PEPC is bound by 10°
on Jugene. To this end we used 1 x 10°, 1.6 x 105, 2.56 x 107 and finally 1 x 10® particles to
demonstrate PEPC’s capabilities. As these runs show our implementation is able to use up
to 8192 mpi tasks very efficiently with adequate datasets. The scaling behavior is very good
for 1 to 4096 mpi tasks yielding more than 3 orders of magnitudes of speedup. Especially
for a high number of particles per task the code scales nearly perfectly. However, lowering
this ratio detaches the scaling from the ideal linear speedup. Furthermore, the appearance
of this phenomenon is not only coupled to the ratio of particles per tasks but also on the
number of tasks itself: the scaling behaviour is much better for small than for large datasets.

—0— 1-10° particles
—a— 1-10° particles
—O0— 3- 107 particles
1024 —0— 1 10® particles

4096

o
ot
=

relative speedup
i

,_A

1 2 4 8§ 16 32 064 128 256 512 1024 2048 4096 8102
tasks

Figure 13: Hybrid scaling for various homogeneous datasets on IBM Jugene, strong scaling for each dataset.
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To analyse this behavior, Figure 14 shows the detailed timings on the large dataset
for each of the four major steps involved in the one iteration of the algorithm illustrated
in Fig.1. It becomes clear that these steps behave very differently for larger number of
tasks. While the time-consuming tree traversal and force calculation steps show perfect
strong scaling the domain decomposition and tree construction are clearly responsible for
its saturation at this level. Since steps 1 and 2 do not scale at all, they start to dominate the
calculation time at 8192 tasks in this case.

102} - total
—0— step 1
—&— step 2
—O— step 3
—0— step4
— 10'F
)
Q
g
-5
10(),
256 512 1024 2048 4096 8192

tasks

Figure 14: Detailed timings on IBM Jugene for 2.56 x 107 particles in a cube, split into the four main steps
of PEPC: domain decomposition (step 1), tree construction (step 2), tree traversal (step 3) and force calculation
(step 4)

Both steps 1 and 2 include collective operations: the domain decomposition during
parallel sorting, the tree construction for the branch exchange process. Furthermore, the
amount of data exchanged during these operations increases with the number of tasks. The
branch structure becomes a particular problem at high task numbers. Each task defines
at least one branch — but typically up to 30 — for its local particles, which have to be
propagated to all other tasks — see Fig. 5. Moreover, the branch level inside the tree — and
thereby the total number of branches — increases during a strong-scaling scenario, i.e. for
a fixed problem size with variable number of tasks. In addition, the underlying structure of
global fill nodes (see Fig. 7) increases as well, so that this step takes more time, too. The
consequences and costs arising from the branch structure therefore are responsible for the
lack of scaling of step 2.

While parallel sorting and reordering of the particles during step 1 is a necessary and
inevitable part of tree codes and is already implemented very efficiently, it is interesting to
ask how the branch- and fill-node structure affect the interaction list generation and force
calculation. Detailed analyses? reveal that nearly all of the local and fetched nodes appear
at least once on an interaction list, but with increasing number of tasks the proportion
of used remote branches and even used fill nodes tends to zero. While the first result
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demonstrates the efficiency of the implemented traversal strategy in PEPC — since nearly no
node is fetched but unused, the second result indicates that branch and top level fill nodes
themselves are generally redundant with respect to force calculation. On the one hand
the tree construction step suffers from branch exchange and global node creation process
consuming a significant amount of memory and communication-time, while on the other
hand theses structures have virtually no impact on the force calculation. Further analysis
shows that these results do not depend significantly on the particle distribution. Even for
Plummer-like distributions?® the role of the global tree structures is negligible with respect
to the interaction lists. But in the same way the traversal efficiency remains very close to
100%, which is a very good result. Therefore, a starting-point for future optimization of
efficiency, memory consumption and scaling would be to optimise the branch structure.
Moreover, an important further issue which must be addressed at such high concur-
rency levels before the code can be usefully applied to real physics problems is parallel
I/O. The main output from PEPC takes the form of regular particle dumps containing their
properties (coordinates, velocities, keys, labels and possibly local field information). These
are used both for checkpointing (restarting the code mid-simulation) and for postprocess-
ing purposes. Like any other particle code, a bottleneck is created if this data first has to
be gathered or distributed among a few thousand tasks. Rather than relying on parallel
versions of standard portable data formats (HDFS5, netcdf, MPI-1/O), we have deployed a
new scalable 1/0 library for writing code data — SIONIib — developed at JSC?’. Using this
format, particle data is written to and read from a single ‘task-local’ binary file at each
checkpoint. Postprocessers equipped with SIONIib are also speeded up considerably.

4 Summary and Outlook

In this paper we have described our parallel tree code PEPC and demonstrated its capa-
bilities on an IBM Blue Gene/P system, simulating many-million particle systems. With
its highly optimized traversal routine this code scales exceptionally well up to 4096 tasks
providing library users with a very flexible, portable and mesh-free algorithm for plasma
physics, Newtonian gravity and vortex methods. However, as our benchmarks have shown,
the collective operations during domain decomposition and the tree construction process
induce a significant overhead. While parallel sorting is an inevitable part of a tree code a
detailed analysis of the tree data structure proved the efficiency of the traversal, but also
indicated a massive redundancy of branch and global nodes.

As a consequence, our current focus is on a interaction list prediction method to avoid
the explicit storage of unused nodes during tree construction. By abstracting the branch
concept we hope to optimize PEPC’s memory footprint significantly, clearing the way for
even larger datasets beyond 10? particles and scaling well beyond 10* tasks.
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The simulation of pairwise interactions in huge particle ensembles is a vital issue in scientific
research. The calculation of long-range interactions poses limitations to the system size, since
the number of these interactions scales quadratically with the number of particles. Fast sum-
mation techniques like the Fast Multipole Method (FMM) can help to reduce the complexity
to O(N). In this article we describe the basic ideas behind the FMM for open boundary con-
ditions, as well as the extension of the FMM to (mixed) periodic boundaries. Together with a
tight error control, this scheme enables the simulation of particle systems for different applica-
tions without the need to know and tune the FMM specific parameters. The implemented error
control scheme automatically optimizes the parameters to obtain a minimal calculation time for
a given energy error bound AE.

1 Introduction

The main idea behind fast summation methods, especially the FMM, is to give an ap-
proximate solution within a given precision goal € of a certain quantity (energy, forces,
potentials). However, this precision goal € could be machine precision in which case the
approximate solution does not differ from the “exact solution” when computed numeri-
cally.

The presented approximation will benefit from the following observation. Assume a
system of several clustered particles. The contribution on the force or energy, respectively
from nearby particles on a test particle within a cluster will be dominant compared to the
contribution from remote particles outside the cluster. Admittedly, the remote contribu-
tion is not zero. Neglecting these particles would correspond to a cut-off scheme without
rigorous error control but ideal complexity O(N).

Grouping Source Particles

However, a remote particle from a spatial group will have almost the same influence on
the test particle near the origin as another particle from the same remote group, since
the distance between the test particle at the origin and the remote particles is dominated
by a large cluster—cluster distance. Therefore, all particles in a remote cluster could be
combined together and may be represented by a new single pseudo particle with a new
common center. The influence of several sources is combined into one source, which is
depicted in figure 1b.
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(a) 56 Direct Interactions (b) 8 Interactions: (c) 7 Interactions: (d) 1 Interaction:
Grouped Source Particles  Grouped Target Particles ~ Grouped Source & Target
Particles

Figure 1: The figure depicts the main idea behind fast summation methods with respect to a particle system.
The particles are randomly distributed in space, but show clustering. Chart (a) shows the direct interaction of all
particles in one cluster with all particles in the other cluster. Inter-Cluster interactions are not shown. Chart (b)
shows the interaction via a source pseudo particle. Chart (c) shows the interaction via a target pseudo particle.
Chart (d) shows the interaction with both, source and target pseudo particles.

Grouping Target Particles

The grouping scheme can also be used in reverse. Considering a remote particle and a
group of particles clustered together near the origin, the remote particle has almost the
same influence on any source particle in the spatial group. Therefore, the interaction of
this remote particle can be reduced to the interaction with a pseudo particle containing the
clustered source particles (see figure 1c).

Grouping Both Source and Target Particles

Finally, the last two schemes can be combined together, allowing interactions of two
pseudo particles, one at source and one at target particles. This scheme is depicted in
figure 1d. Interaction takes place only via pseudo particles and not particles itself. This
is advantageous since all particles in a simulation are sources and targets at the same time
due to the mutual interaction. Hereby the number of interactions between the particles is
reduced even more compared to asymmetric clustering of either source or target points.

Defining Groups of Different Size

To define near and remote particles, a space decomposition scheme is used. For reason
of simplicity we assume a recursive decomposition in cubic boxes. The different sized
boxes are stored in a tree-like (oct-tree) data structure providing efficient construction of
interaction sets, since source and target sets can be increased in size the more distant they
are.

To generate the source and target sets from the given particle distribution, two operators
are necessary. We distinguish between operators working vertically and horizontally inside
the tree. First, the vertical operators shift expansions of source or target sets up and down
the tree. Second, the horizontal operator translates source sets into target sets on each tree
level.
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(a) Interaction Matrix (b) FMM Interaction Matrix (c) Direct and Clustered Interac-
tions

Figure 2: Figure (a) depicts the interaction matrix of the direct interaction. Figure (b) depicts the interaction
matrix via the FMM. Each square represents a certain particle-particle or multipole-multipole interaction.Figure
(c) depicts the direct interaction (first line) of a 1D system with 16 elements (black circles) and the interaction via
the FMM scheme.

However, it is possible that a limited number of nearby particles is not able to interact
via pseudo particles. Therefore, these particles interact directly with each other. This
restriction can be avoided by very deep trees, hence a very fine spatial decomposition
where each particle has its own box. But this is not necessary, since the number of nearby
particles is limited and thus does neither impair the overall complexity nor the computation
time.

Interaction Sets

Figure 2a shows the interaction matrix of 16 particles. Every cell represents a single in-
teraction pair. The crossed out cells represent interactions from particles with themselves
which must not be calculated (singularity) and are dropped eventually. The first interaction
matrix in figure 2a represents all N (N — 1) interactions. Due to symmetry, the lower left
half contains the exact same elements of the upper half. Thus, the overall interactions re-
duce to %N (N — 1). The second interaction matrix in figure 2b represents the interaction
of the same particles via an FMM computation. Again, the crossed out cells are omitted.
The dark-grayed cells represent direct neighbors, which have to be calculated directly. The
remaining cells represent interactions via pseudo particles. The streaked cells are shown
separately with their interaction sets in figure 2c. One can easily see, that with increasing
distance more and more source and target particles are grouped together which reduces the
number of interactions dramatically. Again, the lower triangle is symmetric to the upper
triangle similar to the direct summation. To establish an accurate algorithm, providing the
mentioned features, we need to introduce additional mathematical tools. In the next section
we will derive the necessary theorems.
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2 Fast Multipole Method for Open Boundaries

2.1 Mathematical Preliminaries

In three dimensions, functions which satisfy the Laplace equation
. 62<I>+82<I>+82<I> —0
022 Oy 022
are referred to as harmonic functions. The theory of such functions is called potential
theory. A description of the theory can be found in'. A solution satisfying the Laplace
equationise.g. ® = 1/d withd = /(z — 20)2 + (y — y0)% + (2 — 20)%.

If a point particle of unit strength is fixed at A = (x0, Yo, 20) then the potential due to
this charge at an arbitrary but distinct point R = (x, y, ) is given by

Avedi

®(R) = -

with d representing the distance between point R and A. The electrostatic field is given by

T
rT—To Yy—Yo % — 20
a7 odd 7 d3

E(R)=-V® = — <
Next we want to derive a series expansion for the potential at R in terms of the distance
from the origin r.
2.2 Expansion of the Inverse Distance

Given two points A(a,a, 3) and R(r, 6, ¢) with a,a, 3 and 7,0, ¢ being the spherical
coordinates, we define the distance d as

d:=|r—a|=+/r2+a?—2racos~.

Thus,

I 1 B 1

d 7\/1—2%00574—%2 Ty 1= 2up+ p?
having set

a
pw=— and u=cosvy.
T

For 1 < 1, the inverse square root can be expanded in powers of y, resulting in the follow-
ing series

1 oo
——— =) P(u),
V1= 2up+ pu? ;
where
3, 1
Py(u)=1, Pi(u)=u, P(u)= i(u — 5),
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Figure 3: Expansion of the inverse distance 1/d into the radial parts a and r and the subtended angle -y between
OA and OR.

In general, the P;(u) are the Legendre polynomials® of degree [ and are defined by

l
Pila) = g [~ 1)

Finally the expression for the inverse distance 1/d yields

1 1 =
g:;ZﬁB(u):Z%PZ(COSw. (1)

The radial parts a and r of the two coordinates a and r are now factorized.

2.3 Spherical Harmonic Addition Theorem

Unfortunately, P;(cos~y) does still depend on both coordinates A and R via cos+y and
cannot be used to derive a fast summation scheme. A useful representation requires the
introduction of spherical harmonics, allowing to factorize both source and target locations.
By transforming the Laplace equation in spherical coordinates (see figure 4a), we get

ig 74287@ + 1 3 Singag +#82£_0
r2 Or or r2sin 0 00 00 r2sin2@ 02

The solution of the equation can be found by assuming a separable solution of the form

®(r,0,0) = R(r)T(0)P(¢)

leading to an expression including spherical harmonics Y, and coefficients M, and L;,,

oo l
O(r,0,6) => > LimYim (6, ¢)r' + %’W

=0 m=—1

Remark 2.1. Tt should be noted that for a potential & (r, 8, ¢) with r > a, the coefficients
L;,, have to be zero to satisfy the decay at infinity for the potential & as shown in figure
4b. For the potential ®;(r, 0, ¢) with r < a inside the sphere with radius a the elements
M;,,, must be zero. (see figure 4c).
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<I)O(r’ 9’ ¢)

(a) Spherical coordinate system (b) Analytic domain of a multi- (c) Analytic domain of a local ex-
pole expansion of the potential pansion of the potential ®; with
P withr > a r<a

Figure 4: The solution for the potential ®(r, 6, ¢) consists of two separate solutions. The domain can be split
into two distinct parts. First, the local part inside the sphere. Second, the external part outside the sphere.

2.4 Expansion of Particle-Particle Interactions

Following the notation of Head-Gordon? and the derived formulas from the last sections,
we can expand the coordinates of a particle-particle interaction as follows

l

0 l
Il—m)! a im(B—
= Z Z El-’—’,’n;!rl“rlﬂm(cos O()P[m(COS 0)6 (B=9) .

We define the scaled associated Legendre polynomials P, and 15’lm to ensure numerical
stability and to simplify the FMM operators with

~ 1 -
P, = +——PFPmn d Pyp=({—m)FPy,.
! (Ut m) lm an l (I =m)'P,
Now, we define the multipole moments wljm(qj, a;) for a particle at a; with strength g;

about the origin (0,0, 0). The chargeless version of the multipole is defined by O}, (a;)
with

wljm(qj,aj) = quljm(aj) = qjaél—:’lm(cos aj)e M
Multipole moments of multiple particles j € {1,...,k} about a common origin can be
summed, yielding
k k k
wim(g,a) = Zwljm(q]" aj) = Z%Ofm(ag‘) = Z%aé‘ﬁlm(cos Oéj)e_imﬁ" .
j=1 j=1 j=1

We can also establish the coefficients of a local Taylor-like expansion of the potential at
the origin due to a distant particle at r;. The chargeless version of the local Taylor-like
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expansion is defined by M7 (r;) as

, , 1 ‘
w (q;,r5) = q; M (r;) =g; TlHle(CObG )eimei
J
Again, coefficients with a common origin can be summed

pam (g, Z'u’lm (gj,75) qu im (T5) qu 111 Py (cos 0;)e™ 7 .
j=1 J

We denote chargeless multipole expansions Oy, and chargeless Taylor-like expansions
M, for k = 1 without the superscript j, subsequently. The corresponding potential ®(P)
due to a set of particles can be defined via the following two theorems.

Theorem 2.2. Multipole expansion Suppose that k particles of strengths ¢;,j = 1,...,k
are located at the points a; = (a;,a;,5;), j = 1,...,k with |a;| < G inside a sphere.
Then for any P = (1,0, $) € R3 with r > a, the potential ®(P) is given by

Z Z wlm q,a l+1 le(cosa) e

=0 m=—1

o l
= Z Z Wi (g, &) My (r) .

=0 m=—1
Theorem 2.3. Local expansion (Taylor-like) Suppose that k particles of strengths q;,j =
., k are located at the points R; = (r;,0;,¢;), j = 1,...,k outside the sphere with
radius a with @ < rj. Then for any P = (a,«, 8) € R® with a < a, the potential ®(P) is
given by

o l
®(P) = Z Z ttim (g, 1)a' Py (cos a)e =P

ee] l
=33 fum(@.1)Om(a).

2.5 Mathematical Operators

In this section we describe the FMM operators, which can be derived from the preliminaries
of the last section to obtain a fast summation scheme. We need three different operators to
establish the FMM scheme. Two operators for the vertical up- and down-shifts between the
different tree levels and one operator for the conversion of remote multipole expansions at
each tree level.

2.5.1 Translation of a Multipole Expansion (M2M)

With help of an addition theorem* we are able to shift the coefficients of a multipole ex-

pansion around a point located at a to a point located at a + b (Fig 5) yielding

l J

Olm a+b Z Z Ojk Ol j,m— k(b)

Jj=0k=—j
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Figure 5: M2M operator for a two dimensional system. M2M is a vertical operator, exchanging information
between levels.

The addition theorem allows us to factorize the potential 1/|r — (a + b)| into a sum of
triple products depending separately on r, a and b as follows

oo l
T~ L OmlatbIMi)

=0 m=—1

e} l l i
=> 3> Ol(a)Mip ()01 j.m ().

1=0 m=—1j=0 k=—j

The derivation for the multipole expansions wy,, is straightforward

L J
wim(a+b) = Z Z wjk(@)O1—jm—x(b) .

We identify operator A with
Al (b) = Oy m—r(b). )

This operator is also called Multipole2Multipole operator or M2M. Operator A is free of
errors. Independent of the length of the multipole expansion, all shifted moments are exact
since the operator only includes elements up to the order of the shifted ones. The M2M
operator is a vertical operator acting on boxes of different tree levels.

2.5.2 Conversion of a Multipole Expansion into a Local Expansion (M2L)
With help of another addition theorem* we are able to transform an external multipole

expansion into a local Taylor-like expansion. The chargeless version of the operator yields

Mim(b —a) = i > Ojr(@) M1 4m(b).

j=0 k=—j

Similarly to the first FMM operator we can substitute the terms Oy,,, and M, to obtain the
charged version of this operator. Now, we are able to transform coefficients of an external
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(a) Analytic Domain (b) Tree View

Figure 6: M2L Operator for a two dimensional system. M2L is a horizontal operator, exchanging information
between boxes of the same level.

multipole expansion around a to local Taylor-like coefficients around (b — a) as shown in
figure 6. The transformed Taylor-like expansion can be represented as

o0 J

tim (b Z Z My k4m(b)wjr(a)

Jj=0k=—j
with Multipole2Local (M2L) operator
Bjii'(b) = M1 1,4m(b). &)

Besides errors arising from the truncation of the expansion wj;, with j < p, additional
operator errors are introduced, because only 2p terms are considered in the sum for the
elements M, r+m With 7 + 1 < 2p. Since the operator itself is expanded up to 2p
it allows to transform all available elements in w;;. The M2L operator is a horizontal
operator acting on boxes of the same tree level.

2.5.3 Translation of a Local Expansion (L.2L)

The last operator can be obtained by using the first addition theorem again. With the help
of the factorized potential, given by

m = Z Z Oim(a+b) M, (r)

=0 m=-1
0o l l J

:Z Z Z Z jk Mlm( )Ol jm— k(b)
1=0 m=—1 j=0 k=—j

and the manipulation scheme for a double summation from reference® with elements

l J

A]l a, b I' Z Z Ojk Mlm )Ol—j,m—k(b)

m=—l k=—j
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Figure 7: L2L Operator for a two dimensional system. L2L is a vertical operator, exchanging information between
levels.

we can change the order of the summation

oo 1 oo o0
1
@) =2 2 Anebr) =0 ) Aulabr).
1=0 j=0 §=0 I=j
Relabeling the indices [ <+ j, m <> k of the last equation and resubstituting the original
multipole and Taylor-like expansion yields

0o oo l i
i o X 3 Ouml@ M0, k().

1=0 j=l m=—1k=—j

Separating the terms O;_; p—n, and My results in the operator C, which allows us to
translate a Taylor-like expansion located around r to its center at (r — b) as shown in
figure 7 with

Mim(r=b) =Y "> " Oj_14—m(b)M;p(r).

=1 k=—j

This operator is also called Local2Local (L2L) operator. Compared to operator .4, this op-
erator introduces errors due to the finite representation of the multipole expansion. How-
ever, compared to operator B no additional operator errors arise. For a finite Taylor-like
expansion with a truncation at p poles the operator is exact with respect of the length of the
Taylor-like expansion. The operator L2L is used to shift finite Taylor-like moments from a
parent box to its children boxes’ centers. The charged version of the operator is given by

P J
pum(® =0) =" 3" 01 k—m(b)pjk(r)
=1 k=—j
with L2L operator
Cl'(b) = Oj_1k—m(b). “4)

The L2L operator is a vertical operator acting on boxes of different tree levels.
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Operator Purpose Truncation Error ~ Additional Operator Error

A Multipole to Multipole — —
B Multipole to Local o .
C Local to Local ° —

Table 1: The three FMM operators have different sources of error. The most error-prone operator is operator
B. To derive valid error estimation schemes, the influence of operator B must be considered additionally to the
truncation errors introduced by the finite expansion.

Remark 2.4. Omitting operator M2M and L2L increases the complexity to O(N log V).
Such a scheme would behave like a Barnes-Hut treecode®, but with improved prefactor.

Obviously all operators induce a complexity of O(p*). Especially high precision cal-
culations are slowed down. To overcome this problem, improvements to the operators have
been proposed.

2.5.4 Rotation-Based Operators

To circumvent the O(p*) operator scaling, White and Head-Gordon’ proposed a different
scheme improving the operator scaling to O(p®). The improved scheme is easy to im-
plement with the proposed standard FMM operators and only needs minor modifications.
The increased memory usage is negligible and no additional approximations are induced.
The original error bounds are retained. The rotation based operators are predicated on the
observation that the three dimensional problem is reduced to a one dimensional problem if
the translation or shift is carried out along the quantization axis (z-axis). Wigner rotation
matrices are applied to rotate the multipole moments. A shift along the quantization axis
with @ = 0 and ¢ = 0 yields a simplified form for the representation of the chargeless
multipole moments with

1
Oim(a) = mﬂl&no
| 1
Mlm(r) = (l — m).ﬁ&no.

Simple rotations preserve the total angular momentum. Therefore, any rotated spherical
harmonic will be given as a linear combination of other spherical harmonics having the
same order p. The implementation of the FMM presented here is based on these rotation-
based operators.

2.6 O(N log N) Algorithm

In this section we describe the details of the simpler algorithm not using any translation
operators which yields an overall complexity of O(N log N). However the final FMM
scheme can be based on this approach. We start to enclose our given particles inside a cube
and call this box simulation box. Next, we introduce a hierarchy of boxes by subdividing
this simulation box at half along each axis. The refinement level of the entire simulation
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(a) Level 1 — Depth 0 (b) Level 2 — Depth 1 (c) Level 3 — Depth 2 (d) Level 4 — Depth 3

Figure 8: The FMM tree is subdivided until a certain number of particles on the lowest level is reached. Level
L = 1 corresponds to the highest level, level Lmax corresponds to the lowest level. The subdivision shown, adds
four times the number of boxes to the tree for each level. In three dimensions, the number of boxes increases by
a factor of 8.

box is named level one (L = 1). An arbitrary level of refinement L + 1 can be obtained by
subdividing each box at level L into eight equal subboxes. The 8~ subboxes at level L + 1
are called child boxes of their parent box at refinement level L. The scheme corresponds
to the construction of an oct-tree depicted in figure 8.

Now we can derive subsets of boxes via the following definitions.

Definition 2.1. Two boxes A and B are called next neighbors if they are at the same tree
level and box B is enclosed by a box of size (2ws + 1)3 around the center of A with a box
edge length of one. Next neighbors interact in the near field (NF).

The former definition allows us to increase the range for the near field part to the full
simulation box (ws — 00) yielding a direct interaction scheme with O(N?) complexity.
A definition for a minimal ws = 1 criterion can be written as follows:

Definition 2.2. Two boxes are called next neighbors if they are at the same tree level and
share a boundary point (see figure 9b). Next neighbors interact in the near field (NF).

After defining the near field, the far field has to be defined accordingly.

Definition 2.3. Two boxes A and B are called well separated if they are at the same tree
level and are not next neighbors (see figure 9c). Well separated boxes interact in the far
field (FF).

The last definition does not limit the number of interactions in the far field, therefore
we have to set up a confined interaction list.

Definition 2.4. An interaction list ¢ is associated with each box A, consisting only of chil-
dren of the next ws neighbors of A’s parent which are well separated from box A (see figure
9d). The interaction list limits the number of far field (FF) interaction for each box.

These definitions allow us to compute interactions between a constant number of boxes
on each level. The spatial refinement enables us to cluster together particles from one and
the same box into multipole moments. The expansion of the particles is performed around
the box center. With the help of definition 2.4 it is possible to define interaction sets for
multipole expansions of these boxes.

Definitions 2.3 and figure 8 show clearly that there are no interactions on level 1 and
level 2 since these levels do not contain two separated boxes, hence all boxes are nearest
neighbors.

Starting on level 3 with its 64 boxes we can use multipole expansions to compute
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(a) Box — Near field (b) Nearest Neighbors inter- (c) Full far field interaction (d) Far field interaction set
action set

Figure 9: Different interaction sets. (a) All particles within one box (on the lowest level) interact directly. (b)
Next neighbor boxes (on the lowest level) interact directly, since the convergence of the expansions can not be
guaranteed or may converge slowly. (c) Boxes within the interaction list (on each level) interact via multipoles.

interactions between particles of a source box with a multipole expansion of particles in
a remote box. The error bound connected to these interactions will be discussed in more
detail in reference!®. After calculating the interactions on level 3, we can use a recursion
scheme to include boxes on the next refinement level (level 4). After subdividing all boxes
on level 3, we again identify the interaction set for each box. Since we already accounted
for all interactions of boxes outside the parent boxes’ next neighbors we must ignore these
interactions. The scheme is repeated for every tree level until we reach the lowest level. On
the lowest level we calculate the missing interactions for the neighboring boxes via a direct
calculation. In the original work of Rokhlin and Greengard the recursive process of refining
is halted roughly after logg IV levels assuming a homogeneous particle distribution.

2.7 O(N) Algorithm

With the help of the introduced operators M2M, M2L and L2L it is possible to derive
a scheme with overall complexity O(N). A multipole expansion of a source box does
not have to be evaluated for any particle in the target box. Instead we transform all far
field multipole expansions into a single local expansion in the target box. Then, the local
expansion is evaluated at each individual target particle position.

General Workflow

The original FMM proposed by Greengard and Rokhlin®° can be sectioned into five main
steps. The determination of the FMM parameter set is influenced only by a worst-case
error scheme, the actual positions of the particles are not taken into account. We briefly
want to outline the single steps, also depicted in figure 11:
e Preprocessing steps

— Define the separation criterion ws

— Define the order of multipoles p for a given precision AE

— Define the depth of the FMM tree d

— Expand particles into multipole moments w,,, on the lowest level
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(a) Particles inside a box A (b) Particles inside A’s neighbor boxes

Figure 10: In general it is not possible to set ws to zero, since neighboring boxes may have particles overlap-
ping with the multipole expansion of a considered box. However, the convergence of the expansion demands
separation. Therefore, next neighbors must not interact via a multipole expansion.

Pass 1 > Translate multipole moments wy,,, up the tree
Pass 2 > Transform multipole moments wy,,, into Taylor moments (i,
Pass 3 > Translate Taylor moments (i, down the tree
Pass 4 > Compute the far field contributions of the system

— Compute potentials ®pp(x, y, z), forces Fge(z, y, 2) and energy Frg

e Pass 5 > Compute the near field contributions of the system

— Compute potentials Pnp(z, y, z), forces Fnr(z, v, 2) and energy Eng

The outlined workflow is now described in detail in the following sections.

Preliminary Steps

The coordinates are scaled into a [0, 1] x [0,1] x [0, 1] unit simulation box to guarantee
numerical stability of the computations and to simplify the involved FMM operators. Since
the FMM allows a priori error bounds the order of poles p can be set-up for a given sep-
aration criterion. Let us assume for the moment a separation criterion ws = 1. A higher
value of ws would yield a faster convergence of the expansion (less multipole terms are
needed) but higher costs in the near field computations. Since this part scales quadratically
in N, we want to eliminate as many direct interactions as possible, therefore ws has to be
set to one; it’s minimal value. The reason for this minimum ws is shown in figure 10.

After defining the order of poles p, we are able to set up the FMM tree. The refinement
of the tree stops, once a certain number of particles in the lowest level is reached (e.g. k
particles per box, k < N). The particles are sorted via a radix sort'! into the lowest level
boxes. Now we expand all particles in each lowest level box into multipole moments about
the center of the same box.

Pass 1

Assuming we have more than 3 levels (for ws = 1) in the oct-tree, we now shift the
multipole coefficients at the lowest level to the center of the parent box via the M2M
operator. Since each parent box consists of 8 child boxes (in 3D) the moments of the
expansion can be summed up at the new center and are stored as moments of the parent
box. The scheme is repeated until level 3 is reached. Now we have a multipole expansion
for each box on every level (starting at level 3).
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Each child expansion at the center of the box at a; is shifted to the center of the common
parent box at a-+b and then summed up with the shifted expansion of the other seven child
boxes.

wl'm a+b Z Z 'A Jk al)

j=0k=—j

wim(a+b) = Zwlma—i—b

Pass 2

In the second pass we apply a modification of the already known scheme from the described
O(N log N) scheme. Instead of bringing every particle in a given target box to interaction
with all multipoles in the interaction set, we transform (at most) 189 source multipole
moments within each interaction set into local Taylor-like moments for each target box on
each level.

:ulm( Z Z jk at)

J=0k=—j

ilist

pum (b — a) Zuzm

Pass 3

The third pass shifts the Taylor-like moments starting from level 3 to the lowest level via
the L2L operator. On the way downwards, the Taylor-like moments of the actual level are
summed up with the shifted interactions from a higher level. The following equations show
a shift of a Taylor-like expansion /1, at level L to expansions . atlevel L + 1.

/4 J

Mlm _ Z Z lm /'I’jk )

j=0k=—j

Pass 4

The fourth pass finally computes the interactions between the Taylor-like moments rep-
resenting all effects of all well separated particles and the particles at positions a; =
(a;, @, B;) inside the actual target box. For the far field part of the potential & we ob-
tain

P l

(I)FF az Z Z ,Ufhn CL P)lm (COSO[ ) —imbi .

=0 m=—1
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Pass 5

The fifth pass calculates the neglected interactions, hence all interactions which cannot be
evaluated via far field expansions because of the chosen separation criterion ws. Since
we ensured that the number of particles M on the lowest level is independent of the total
number of particles N the costs of this pass is O(M N) with M < N. Pass 5 contains all
interactions from particles within one box Mj,x and particles from 2ws neighbor boxes
Mipox in each dimension. For the near field part of the potential ¢ we obtain

Mipox ibox jbox Mipox jbox
3 3
Onelr;) = D =+ D
i=1 i im1 i
i#j

2.8 Enhanced Workflow

The original scheme was modified to allow for an error estimation scheme. Details can be

found in figure 11 and reference!®.

ws E
Stage I Pass 5 Stage 11 Pass 1| Pass 2| Pass 3 | Pass 4

Figure 11: FMM workflow with automatic parameter estimation.
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Figure 12: Comparison of the complexity of three different methods. Direct Interaction, Barnes-Hut treecodes and
the FMM. The black lines represent steps in the algorithm where particles or particle collections are transformed
into expansions. The gray lines represent the actual interaction.

3 Fast Multipole Method for Periodic Boundaries

The presented fast multipole scheme in section 2 for open boundaries can be extended
to periodic boundary conditions (PBC) as well. The periodic boundaries allow to derive

100



macroscopic bulk properties of the simulated particle system. A huge (even infinite) en-
semble of particles is reduced to a smaller (finite) ensemble inside a finite-sized simulation
box. This simulation box then is replicated in all spatial directions. Hence, the influence
of the boundary on the particles enclosed in the finite simulation box vanishes and only the
influence of the bulk properties remains. As a particle moves through a boundary into a
neighboring image box, it will enter on the opposite site of the central simulation box, thus
the number density is conserved.

To fill the entire 3D space, several different shapes of the central simulation box may
be considered'?. However, we only derive the algorithm for the most common shape, i.e.
the cubic box. The presented scheme may also be applied together with other shapes like
parallelepipeds, hexagonal prisms, octahedrons or dodecahedrons.

Some simulations even demand a mixed boundary condition with periodic boundaries
in only one or two dimensions, such as electrolyte solutions, membranes, nanopores or
nanotubes'. The presented FMM scheme can also be applied to such mixed boundary
systems. However, the derivation of the algorithm in this section is performed for three
dimensional periodicity if not stated otherwise.

3.1 Definition of the Boundary Condition

The definition of the boundary conditions can be performed in a general manner. We only
assume that the simulation cell must be translationally symmetric in order to fill the entire
R™ space. No additional assumptions on the basis vectors forming the periodic lattice are
necessary.

3.2 Three Dimensional Periodicity

We define a simulation cell I'(0) in three dimensions and the basis vectors aj, ag, ag with
['0) = {r =x1a; + 208y + w3a3 : —1/2 < x; <1/2, fori=1,2,3}.

Additionally, we chose a; in such a way that the volume V), of the simulation cell is defined
by Vi = a; - (ag X ag) > 0. Now, we set up a lattice A of translationally symmetric copies
I'(n) with n = nja; + ngas + ngas and n; € Z of the original central simulation cell
I'(0) by
'n)={r:r—neT(0)}.

Each replica cell I'(n) contains the exact same numbers of particles as the simulation cell
T'(0). A particle with position r; in the central simulation cell I'(0) has a replica particle
at r; + n in the lattice cell I'(n).

For the periodicity in two dimensions and one dimension, we follow the derivation of
the three dimensional case.

3.3 Convergence of Lattice Sums

Since the potential ®(R) does not satisfy

[@(R)] < AJr| (5)
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Figure 13: (left) The simulation box and its replicas fill the entire space. The space is divided in two regions, a
near field region (light gray) and a lattice region (dark gray).

with d being the periodicity and A, e > 0 for an arbitrary set of point particles with non-
zero monopole, dipole- or quadrupole moments, we have to add additional constraints. The
following interactions do not obey the inequality in (5):

e Charge—Charge Interactions (1D, 2D, 3D)|r|~!

e Charge-Dipole Interactions (2D, 3D) |r|~2

e Dipole-Dipole Interactions (3D) |r|~3

e Charge—Quadrupole Interactions (3D)  |r|~3
Therefore, we add the additional constraint for all particles in the simulation cell

N
QZZQiZO-
i=1

Hence, with box net charge ( = 0 only the dipole terms do not converge absolutely. We
neglect the dipole-dipole contributions temporarily, but will get back to them later.

3.4 Parameter-Free Renormalization Approach

We follow the approach proposed by Kudin and Scuseria'# and incorporate the algorithm
later on into our error control scheme.

The idea for the evaluation of lattice sums with a renormalization approach was first
proposed by Berman and Greengard'>. The scheme reduces the infinite summation of
lattice sites to a rapidly converging finite summation yielding the lattice operator £. The
potential ®(0) at the center of the central box (0,0,0) can be computed by adding up
contributions from lattice supercells of size (2ws + 1) x (2ws + 1) x (2ws + 1)’ with
j € N going to infinity. Since we want to translate the multipoles from lattice cells into
Taylor-like (local) expansions around the common center (0,0, 0) of the central box, we
can add up all contributions into a single translation operator £. We do not add up an
infinite number of lattice sites, however the fast convergence allows to precompute the
lattice operator in machine precision. Since the available number of digits is fixed, we
can call a result below machine precision numerically exact and therefore no additional
runtime parameter is introduced.
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3.4.1 Mathematical Operators

Since this approach is based on the original multipole scheme, we can reuse all introduced
FMM translation and conversion operators from section 2. The FMM operators are valid on
multipole moments wy,,, and Taylor-like expansions (., and their chargeless counterparts
Oy, and My,,. For simplicity we only use the chargeless multipole moments Oy, and
chargeless Taylor-like coefficients M, in this section.

3.4.2 Translation of a Multipole Expansion

Let us recall the translation of a multipole expansion Oj;(a) at a to a multipole expansion
around a new center a + b with

l J
Olm (a + b) = Z Z Aé’};(b)O]k(a) .

=0 k=—j

We are dropping the indices and abbreviate the operator for the following lattice sum algo-
rithm via < into the form

O(a+b) = A(b) < O(a).

3.4.3 Conversion of a Multipole Expansion into a Local Expansion

A multipole expansion at a transforms into a Taylor-like local expansion at b — a via

o0

My(b—a) =" " Bi(b)Oji(a).

=0 k=—j
Again, we abbreviate the operator into the form

M —a)=B(b)®0(a).

3.4.4 Rescaling of a Multipole Expansion

Since we need a hierarchy of boxes and do not want to recompute multipole moments for
each hierarchy level we introduce a scaling operator for a multipole expansion with

So(Om(a)) = 3" Om(a) .

3.4.5 Rescaling of a Local Expansion

For similar reasons, the rescaling has to be performed for the local expansion Mj,,, as well.
Therefore, we introduce a scaling operator for a Taylor-like expansion by

§1(Min () = MmP).

We limit ourselves to the case where ws = 1. For a larger separation criterion ws, we have
to substitute 3! and 3!*1 with (2ws + 1)! and (2ws + 1)!*! accordingly.
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3.4.6 Operator Properties

The operators derived in section 2 and the additionally introduced operators Sy, and Sp are
linear operators. Therefore, the following properties apply for infinite expansions

M®[01<902] =[M ® 01] ® O
01 <4[02<03] =01 902]< 03
SL(M)®So(0) =8L(M @ 0) (6)
where M represents any Taylor-like local expansion and O represents a certain multipole
expansion which still gives a convergent expansion when shifted or transformed. The

hierarchy of lattice boxes introduced in the next section guarantees that the speed of con-
vergence and precision is not degraded by the use of the operator properties.

3.5 Lattice Sum Algorithm

Let us derive the local moment in the central cell I'(0) at the center (0,0, 0) due to an
arbitrary lattice cell I'(n) with n # 0 and n = ja; + kas + las, j, k,l € Z. We define the
contribution with the help of the 3 operator as

LUkD = B(n) @ w
with w being the total multipole moment of the lattice cell. Since all boxes are images

of the original simulation box at the center, the multipole expansion of each image box is
given by

w(n) = w(0).
The contribution from all lattice cells for 1D-, 2D- and 3D-periodic systems reads
ID: L*= Y B((0,0,])) ®w(a)
| max(0,0,0)]>1
2D: L>® = > B((j,k,0) @ w(a)
| max(j,k,0)|>1
3D: L*= > B((j.k1)@w().

| max(j,k,0)|>1

All nearest neighbors for the central box, i.e. the first layer are excluded to guarantee
convergence of the expansions. Since the 3 operator is a linear operator, it allows us to
precalculate B for the entire lattice before applying the unique multipole expansion w.
However, applying a direct space summation like in the last set of equations is difficult,
because the convergence of the lattice sum is very slow. But, the evaluation of the lattice
sum can be rapidly achieved by introducing a hierarchy of supercells with variable size
(2ws + 1)7 x (2ws + 1)7 x (2ws + 1)7. Since we are only interested in the case where
ws = 1, we use a hierarchy of size 37 x 37 x 37. We define an interaction set as follows. For
the first interaction set Ag we include all lattice cells in the far field of the central (0,0,0)
cell but ignore all cells in the near field of the supercell 3! x 3! x 3. This rule is equivalent
to the partitioning rule in section 2.7 for open boundaries. We write

L.=> B((j,k1)).
Ao
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The far field contribution from region Ay is then
L’=L.ow.

We proceed on the next supercell level for j = 1 with cell size 3! x 3 x 31, Again we only
add cells which are in the near field of the 32 x 32 x 32 supercell. The total contribution
to the lattice operator L after this step reads

L'=L.®w+SL(L) ® [0, auw].

The second contribution demands scaled local moments L.. At the same time we combine
multipole moments from a 3% x 3% x 3% supercell into multipoles of a 3! x 3! x 3! supercell.
O, is defined for each periodic boundary condition by

ID: O.= > A((0,0,1))
Q=—1<i<1

D: 0.= Y A(,k0)

O =—1<5,k<1

3D: O, = > A((, k1))

Q1=—1<j,k,1<1
Now, we move on to the next level of supercells given by
L’ =L, ®w
+ SL(L*) ® [O* <]w]
+ SL(SL(LY)) ® [So(0:) 2 [0, aw]] .

Applying the operator properties from (6) yield expressions of the form £ = L™ @ w. We
identify the following partial sums

L =1L,

LY=L, +S8(L.)® O,

L% =L+ SL(Ly) ® Oy + SL(SL(Ly)) ® [So(04) 104]
=L, 4+ Sp(Ly +SL(Ly) ® 0,) ® O,
=L, +S8.(L£1) ®O0..

Again, the operator properties allow us to establish an infinite recursion scheme to set up
the lattice sum L™ for increasing n with

£'=1L,
L =S (L") ® O, + L. .
The full infinite lattice is defined via the lattice operator
L=L".

Since we want to use the result on a limited precision machine, we halt the recursion after
a certain precision € has been reached. The convergence of the lattice sum L increases
with increasing multipole order. Therefore, we have to perform the precision check for the
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set 1 near field set 1
(b) Define first interaction set (light gray) and drop near field

| | | H |

.
combine expansions

(c) Combine multipole expansions

| | H | |

set 2 set 2

(d) Define second interaction set (light gray)

‘ set 3

set 4

(e) Size of interaction sets

Figure 14: 1D representation for the computation of the lattice sum. Figure (a) shows the expansion of the
(grayed) central simulation box to infinity. Figure (b) shows the dropped nearest neighbors of the simulation box
and the first interaction set. The second interaction set (c)—(d) is generated by combining multipole expansions.
Figure (e) shows the increasing size of the interaction sets used with increasing distance to the central simulation
cell.

low-order elements. Since, by definition, the monopole element Ly does not converge and
due to symmetry not all elements L, are non-zero, we halt the recursive scheme when

ID: [L55 =Lyl <e
2D : |£Z:‘61 - Z’0| <e€
3D: |LyE - Lhgl <e.

The precision goal we used to obtain the unique lattice operator was set to ¢ = 10754, To
obtain this precision only 64 iterations are necessary. The lattice constants are independent
of the particle distribution and can therefore be precomputed. Since these constants only
depend on the lattice structure, they have to be recomputed for additional lattice shapes.
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3.6 Implementation Details

To establish an FMM with periodic boundary conditions we have to add and modify certain
parts of the implementation in section 2.7. The error-controlled FMM for open boundaries
can be described by the following flow chart:

xyz
Stage 1 Pass 5 Stage 11 Pass 1 | Pass 2 | Pass 3 | Pass 4
P e

The periodic FMM needs changes to the scheme. In addition to the original approach we
have to add contributions from the lattice and the first layer around the central box. The
changes occur in the first stage of the error control, pass 5, the second stage of the error
control and pass 2.

Xyz Stage I Pass 2 @
Lattice Pass 1 |Lattice | Pass 3 | Pass 4
Layer 1 Layer 1

3.7 Additional FMM Pass for the Lattice Operator

Our current implementation uses precomputed values for the lattice operator £ in pass
2. Since the implementation is based on cubic boxes, currently no other cell shapes are
available. The extension to different lattice cell shapes demands extra effort for the lattice
operator L. It is possible to precompute £ for all required lattices or compute £ directly in
the simulation. Therefore, an additional pass has to be added prior to the error control to
compute the missing £ terms. The workload of the additional pass is independent of the
number of particles. It has a complexity of O(p*) with respect to the order of poles p.

3.8 Modifications of FMM Pass 1-5

Pass 1: All multipole expansions have to be shifted to the highest level [ = 1. The total
charge @ of the simulation cell (wyg) has to be zero in order to guarantee convergence.

Pass 2: In addition to the interactions inside the simulation box, far field contributions from
image boxes have to be taken into account. These interactions will occur on all tree levels.
Furthermore, interactions from the lattice with the multipole expansion of the simulation
box have to be calculated.

Pass 3: The computed Taylor-like expansions in pass 2 have to be shifted into the lowest
level boxes. Since these expansions were generated on all levels, pass 3 translates expan-

sions starting at level [ = 1.

Pass 4: No changes occur in pass 4. All computed and shifted local moments are combined
with the multipole moments to yield the far field energy, forces and potentials of the system.

Pass 5: Similarly to pass 2, the near field computation has to take into account interactions
from replica particles in image boxes.
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3.9 Dipole Correction

Until now we neglected the conditionally convergent dipole-dipole interactions. However,
since we added the lattice in a spherical manner the element Lo vanishes. A slabwise
summation would yield a different result with Lo # 0. Unfortunately, the results of such
a periodic FMM computation are still not comparable with a standard Ewald summation
scheme at this stage. To compare results we have to transform the obtained extrinsic energy
into an intrinsic energy obtained by an Ewald summation via

2
By =FEo— 2d-d

3
with d = )", g;a; being the dipole moment of the simulation cell. The same correction
has to be applied for the potential

47 27

-5 (R-Ro)-d+3Q
with Q = ). ¢;a; - a; being the trace of the Cartesian quadrupole tensor and R being the
origin of the coordinate system.

P;,(R) = P (R)

4 Error Control

The implemented Fast Multipole method allows to tune the algorithm specific parameter
set on the fly to obtain the optimal computation time for a user-given energy error bound.
The corresponding error estimation scheme is very complex and therefore cannot be dis-
cussed in the scope of this article. More details on the scheme for open boundaries can be
found in reference'” and in an upcoming article for the periodic case.

5 Benchmark

In the following section, we present the scaling of the derived algorithm with respect to
the number of particles N. We use five homogeneously distributed simulation sets. The
smallest set contains only 4096 particles. Since the computation time for this configuration
is around 0.1 seconds, an even smaller test case will not give any additional information
concerning the scaling. The largest configuration contains about 16 million particles. All
five sets are used in a computation with mixed or full boundary conditions. The results are
illustrated in figure 15. All results were determined on the IBM Power6 JUMP'® cluster at
JSC if not stated otherwise.

5.1 Crossover Point with Direct Summation

The crossover point between an FMM and a direct summation can only be specified for
open boundaries, since a direct summation is not possible for the periodic case due to
the infinite number of particles in such systems. For open systems, the crossover point is
determined at around 500 particles for low precision, i.e. AE = 1072, and 4000 particles
for high precision calculations, i.e. AE = 107'2. The computation time of the error
control scheme is included therein.
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Figure 15: Scaling of the FMM with open, 1D, 2D and 3D periodic boundary conditions. The solid black lines
represent the actual periodicity. The remaining shaded lines show, that the impact of the periodic boundary is
limited to a factor of two, independent of the number of particles. All results show the optimal O(N) scaling
compared to the reference scaling denoted by a dashed line. When increasing the number of particles for each
plotted point by a factor of eight, the computation time increases roughly by a factor of eight. The difference in
the runtime between open, 1D, 2D and 3D periodic systems originates from the increasing number of boxes at
the boundary of the central box.

5.2 Multi-Billion Particle Testcase

Especially simulations in the field of astrophysics demand huge particle numbers. There-
fore, we performed a computation with more than 22 billion particles to check whether the
implementation is capable of dealing with such an amount of data. The test set contained
more than twice the number of particles used in the Millennium simulation'”. The com-
putation of the energy and forces took 2 days and 16 hours for one time step on a 1.6 GHz
Itanium CPU with 1 TB of main memory. The precision was set to AE = 1072, which
is sufficient for most astrophysical calculations. This test example shows that this FMM
implementation is capable of computing even very large particle ensembles with limited
resources.
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Figure 16: Precision of FMM calculations with periodic boundary conditions. The requested energy error bounds,
pictured as dashed lines in a double precision (a) and quadruple precision (b) computation are never exceeded.
The tuning of the optimal parameter set is done automatically. Due to symmetry the achieved energy error bound
for 3D periodic systems is slightly higher compared to 2D or 1D systems.

5.3 Precision Verification

The precision of calculations with periodic boundaries can be verified directly against an-
alytically known or rapidly converging solutions. That is, a Madelung particle system!'®
serves as reference system. The Madelung constant characterizes the potential ® at the
origin due to the periodic lattice. The reference energy is determined by adding up all
contributions % Zi\; ¢;®(r;) inside the simulation box. The size of the simulation box
for any periodicity can be increased by adding more and more particles from replica boxes.
Thereby, it is possible to verify the precision of the algorithm even for millions of particles.
All precision checks are performed for several simulation box sizes up to approximately
16 million particles. The results do not show any additional errors with increasing system
size, except for minor fluctuations at machine precision for 8% particles. The data plotted
in figure 16 is taken from test runs with the smallest possible Madelung particle sets.

5.4 Precision Scaling

The FMM allows optimal computation time for low as well as high precision simulations.
Depending on the user-requested energy error bound the computation time will increase
or decrease. As depicted in figure 17a the FMM computes a system with an error bound
of 10~! nine times faster compared to a high precision error bound of 10715, Since the
error estimation scheme can be regarded as a FMM itself the computation time for low
precision 10~ includes a large amount of tuning time contributing 49.9%. Since this
tuning overhead is almost constant for a given particle system, hence independent of the
requested precision, the percentage will decrease with increasing precision. To obtain an
even faster computation for low precision simulations, the error estimation can be disabled
for several time steps.
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Figure 17: The computation time for 2097152 particles (including the time to tune the FMM parameter) is
depicted in (a). The graph can be divided in three sections. A low precision section (10~ ... 10~%), where the
computation time is constant (Ag). A section (10~%...1079) where the computation time increases linearly
(A1). And a high precision section (Ag) where the computation time follows a power law. The percentage of
computation time of the error estimation scheme is shown in (b). The tuning can be disabled for several time steps
during a simulation, since a (small) number of time steps most likely won’t change the optimal FMM parameter
set.

Parallel Scaling And Efficiency

The FMM shows almost ideal scaling for homogeneously distributed particle systems. For
a system consisting of 2097152 particles and open boundary conditions a strong scaling
test (see figure 18a) was performed up to 64 processors. The computation time with 64
processors was 0.24 seconds. The parallel efficiency at 64 processors achieved 95.6%. A
second example with one billion particles is shown in figure 18b. The parallel efficiency at
256 processors is 95.2% and the runtime 34.5 seconds. The improvement at 16 processors
was due to memory consumption. Using less than 16 processors resulted in non-local
memory access across a SMP node and therefore slowed down the computation.

6 Main Features

The main features of the current FMM implementation can be summarized as follows
e allows the computation of energy, potential and forces,

comes with full energy error control,

includes a on-the-fly runtime minimization,

can handle open, 1D, 2D and 3D periodic boundary conditions,

computes 50k — 150k particles per second and core,

has a small memory footprint,

is available in single/double/quadruple precision,

allows exchangeable cusp potential in the near field,

can handle homogeneous and clustered particle systems,

is available on Intel/Linux, IBM Power6/AIX, BlueGeneP, HP/Linux machines.
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Figure 18: Strong scaling for two homogeneously distributed particles systems on JUMP!.

7 Summary

We described an O(N) implementation of the Fast Multipole Method for open and peri-
odic boundary conditions in one, two and three dimensions. The attached error estimation
scheme was verified for several precisions with one-, two- and three-dimensional period-
icity and revealed tight error bounds never exceeding the requested threshold.

Finally, we can conclude that the presented FMM implementation provides an ideal
Coulomb solver for open and periodic boundary conditions. The scientific community
may benefit from this implementation, since algorithmic details, like tuning the FMM pa-
rameters are hidden from the user and will be adjusted automatically without affecting
the computation time. Even high precision calculations up to machine precision can be
performed without degrading the runtime. Furthermore, the developed FMM library is
independent of third-party libraries and has a small memory footprint.

The developed code provides a firm framework for simulations in the field of molecular
dynamics and astrophysics. It is well tested with real world examples and is used in a
production environment at Max Planck Institute for the Physics of Complex Systems in
Dresden'®-22.
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Multigrid methods are optimal methods for the solution of certain PDEs and therefore widely
used in different simulation codes in science and engineering. Starting from the formula for
calculating the electrostatic potential we derive a formulation of this and related problems that
allows for the application of multigrid methods in the calculation of these long-range interac-
tions. The resulting methods are optimal, if the particles are almost evenly distributed and can
be parallelized in a very efficient way.

1 Introduction

Electrostatic and gravitational interactions are long-ranged interactions that are important
for many applications in e.g. biophysics or astrophysics. Due to their close relation to the
Poisson equation

—Au(z) = f(z), forz € Q,

for a suitable domain €) and appropriate boundary conditions, these interactions can be
equivalently treated by the solution of this elliptic partial differential equation (PDE) with
a certain right hand side. Under the assumption that the particles are evenly distributed or
at least only mildly clustered, numerical methods can be designed that are optimal, if the
solution of the partial differential equation is available.

The numerical solution of the Poisson equation is well studied as it is the prototype
of an elliptic PDE, in fact it serves as a model problem in most textbooks on numerical
solution of PDEs, and it is needed in different fields. As a consequence fast numerical
methods have been developed, fast Poisson solvers include specialized direct methods like
the cyclic reduction method or FFT-based techniques, as well as iterative methods like
SOR, the CG method or multigrid methods. While the first are specifically tailored to the
matrices arising while using a special discretization, the latter often suffer from the fact
that the number of iterations necessary to solve the system up to a given accuracy grows
with the system size. This is not the case for multigrid methods, which yield a solution up
to discretization accuracy in optimal, i.e. O(N), complexity.

The combination of the approach using the solution of the Poisson equation outlined
above combined with an efficient multigrid method yields an optimal method for the com-
putation of energies and forces due to electrostatic and gravitational interactions.

In the following, we will first introduce multigrid methods in general in Section 2.
In Section 3 the application of multigrid methods in methods involving electrostatic and
gravitational interactions is discussed in detail. For that purpose the relation between 1/7-
potentials and the Poisson equation is presented in Section 3.1, then the basic numerical
method is derived in Section 3.2 and finally the relevant boundary conditions are treated
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in Section 3.4 and Section 3.3. The parallelization of the method is described in Section 4
and a conclusion is drawn in Section 5.

2  Multigrid Methods

The development of multigrid methods goes back at least to the works of Fedorenko' and
Bakhvalov?. Later the work of Brandt® unleashed the full potential of multigrid methods.
The following introduction is very brief, so we omit proofs, and focussed onto the case of
the Poisson equation. An introduction that goes beyond the following can be found in the
work of Briggs et al.*, the book of Trottenberg et al.> contains the theoretical foundation
of multigrid methods as well as descriptions of advanced multigrid techniques.

2.1 Motivation

As motivation we consider the following Poisson equation

—Au(z) = f(z), forz € Q and
u(z) = 0 for x € 99,

where 2 = [0, 1]2. This can be discretized on a rectangular grid with N = (n+1)-(n+1)
grid points using the standard 5-point scheme, yielding the linear system of equations of
the form
1 .
ﬁ(‘lum‘ = Ui1,j — Uigly — Wij—1 — Uij1) = fij, ford, j=1,... ny,
where h = 1/nand u;; = 0 for¢ € {0,n+ 1} or j € {0,n + 1}. For the sake of
simplicity, in the following we write the vectors u, f etc. with two indices, where necessary,
to emphasize that they represent quantities on the grid. An actual implementation also often
uses a two-dimensional field for each of these vectors.
The resulting linear system is denoted by

Lu=f, 6]

where L € RY*N and u, f € RM. One easily verifies that the eigenvalues )\ ,,, and
eigenvectors ¢ ., of the system matrix L are given by

Ai,m =4 — 2cos(Irh) — 2 cos(mmh), 2)
(¢1,m)i,; = sin(lmih) sin(mmjh), 3)
for [, m = 1,...,n. The system can be solved using a simple iterative method, e.g. with

the Jacobi method.
Definition 2.1 (Jacobi method). Let A € RV*N let b € RY and let the solution x € R of
the linear system

Ax =D

be sought for. Let D € RN*N be a diagonal matrix containing the main diagonal of A.
Then the Jacobi method is defined as

¢Jacobi : RN X RN — RN

(x(k)7 b) — ¢.Iacabi(x(k)7 b) = x(k+1)7
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where
gD = k) _ Dfl(A:r(k) +b),k=12,...,

and x(O) is an initial guess. The iteration matrix is given by Mcopi = —D71(D — A).
The following theorem states a sufficient condition for the convergence Jacobi method:
Theorem 2.2. Let both A be symmetric positive definite and let the relation

2D >A>0
hold. Then the Jacobi method converges and its convergence rate is given by
p(MJacobi) = ||MJaL'obiHA = ||MJawbi||D <1

With the help of this theorem and the observation that the smallest of the eigenvalues
of L given by (2) is

Amin = 4(1 — cos(wh))
we obtain that
p(MJacobi) = COS(Wh)7

so the Jacobi method converges slowly for larger systems, i.e. smaller h. Examination of
the error

o®) — oy — )

)

where u* = L', With the help of the iteration matrix Mj,c.p; We obtain that the eigenvec-
tor ¢y, is damped by a factor of |5 (cos(lmh) cos(mmh))], so error components co-linear
to eigenvectors with indices [, m in the middle of 1,...,n are damped efficiently, while
components co-linear to eigenvectors with large or small indices are not damped efficiently.
By introducing a relaxation parameter w we obtain the JOR method given by the following
definition:

Definition 2.3 (Jacobi method). Under the same assumptions as in Definition 2.1 the JOR
method is defined as

djor : RV x RN — RV
(@™, b) = ¢ror(z™),b) = 2+,
where
2D = 2 — D (AP b)) k=1,2,...,

and 2\0) is an initial guess. The iteration matrix is given by Myop., = —wD~1(D — A).
Similar to Theorem 2.2 one obtains:
Theorem 2.4. Let A € RN*N be symmetric and and positive definite and let w fulfill

0<w<2/p(D7tA).
Then the JOR method converges, and its convergence rate is given by

p(Mjor,w) = | Mjorwlla = [|Mjorw||p < 1.
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Figure 1: Error of an arbitrarily chosen initial approximation and right hand side of the Laplacian discretized on
the unit square using 152 grid points before and after application of one and three iterations of a damped Jacobi
method with w = 4/5.

So we obtain that error components co-linear to the eigenvector (; ,,, are damped by a
factor of |1 — % (2 — cos(Imhy) — cos(mmhy))|. Now, by choosing w appropriately, error
components that are co-linear to A; ,,, with [ and m close to n can also be reduced, but the
behavior for components corresponding to [, m almost 0 is not changed. This behavior can
be observed in Figure 1: Obviously, the error components that belong to highly oscillating
parts of the error are reduced efficiently, while components that vary slowly are merely
affected at all. This is one important observation for the derivation of multigrid methods.
The other observation is that a slowly varying error can be represented on a coarser grid.

2.2 Two-grid methods

Guided by the ideas of the previous section, we will now derive two-grid methods. For that
purpose, we assume that the system to solve is such that n = n, = 2¢ — 1 for some ¢ € N.
Consequently we denote the associated system matrix by L, and the grid spacing by hy.
The right hand side, current approximation to the solution etc. also are added an ¢ to denote
that they belong to this level. Next, another, coarser level £ — 1 with ny_; = 2t-1 _ 1 g
introduced. To define a two-grid method we now need three ingredients:

1. smoother
2. grid-transfer operators

3. coarse-grid correction operator

2.2.1 Smoother

Due to the above observation, iterative methods like the Jacobi method are called smoothers
in the multigrid setting. For the analysis of the smoother we first define low and high
frequencies:
Definition 2.5. Let L be given by (1). The eigenvector @y, as given by (3) is called

low frequency, if max(l,m) < (ng+1)/2,

high frequency, if (ng +1)/2 < max(l,m).

Now, the smoothing factor of the JOR method is defined as the worst factor by which

a high frequency is damped:
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Figure 2: Damping factors x; ., for h — 0 of the JOR method for the 1D analogon to our model problem for
different relaxation parameters w. The choice w = 2/3 is optimal and all high frequency components are damped
by a factor of at least 1/3.

Definition 2.6. Let L be given by (1) and let
Xemw) :=1— g(Q — cos(lmhy) — cos(mmhy))

be the factor by which the eigenvector @y, is damped by the JOR method. Then the
smoothing factor yw) of the JOR method is defined as

pre(w) = max{|xs1,m(W)] : (ne +1)/2 < max(l,m) < ne},

Further:

p(w) = sup pe(w).
¢€N
Thus the relaxation parameter is optimal if w as the minimizer of u(w). In the 2D case
w = 4/5 is optimal. For the 1D analogon of our problem the choice w = 2/3 is optimal,
as depicted in Figure 2.

2.2.2 Grid-transfer operators

For the transfer from the fine level ¢ to the coarse level £ — 1 and vice versa restriction and
prolongation operators are needed. An example for a restriction operator, that is widely
used and that is used in our examples is the full-weighting operator. This operator just
does an averaging over neighboring components on the grid.

Definition 2.7. The full-weighting operator I, ffl transfers a quantity vy from level { to
level { — 1 by

(ve—1)iy; =1, "oy

1
= T6(4(U£)2i,2j + 2(ve)2i-1,25 + 2(ve)2i41,25 + 2(ve)2i,2j—1 + 2(ve)2i,254+1+

(ve)2i—1,2j—1 + (Ve)2i—1,2j4+1 + (Ve)2i4+1,2j—1(Ve)2i41,2j+1)5
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fori,j =1,...,n9_1. An alternative description is the stencil

12177
1
— 242
121],

As we deal with zero Dirichlet boundary conditions in our model problem, the values
on the boundaries of the grid are always defined to vanish. For prolongation, bilinear
interpolation is widely used.

Definition 2.8. The bilinear interpolation operator transfers a quantity ve_1 from level
¢ —1tolevel ¢ by

(ve)ij = Tf_1vea

4(ve-1)is2,i/2, for i even and j even,
1 2((ve—1)(i—1)/2,5/2 + (Ve—1)(i41)/2.5/2) fori odd and j even,
=1 2((ve—1)is2,(j—1)/2 + (Ve—1)i/2,G+1)/2)5 for i even and j odd,

(ve—1)(i-1)/2,5-1)/2 T (Ve=1)(+1)/2,GG+1) /2
(Ve—1)(i—1)/2,Gi—1)/2 + (Ve—1)((i+1)/2,(j+1) /2, fori odd and j odd,

fori,37 =1,... ny. Alternatively, it is described by the stencil

121[°

-1242

121, ,

Note that the brackets around the stencil of prolongation operator are interchanged to
represent that using this stencil means giving values to another quantity. The extension of
these operators to 3D is straightforward.

2.2.3 Coarse grid correction operator

Using the restriction and prolongation operators, as well as a discretization of the problem
on level ¢ — 1, the coarse grid operator can be defined. For that purpose, we examine the
residual

Ték) = fg - Lgugk)

for some approximative solution xék). The residual is the solution of the system
Lerf = ek,
where eék) =L, fo— xék) is the error. If the error consists is dominated by low-frequency

modes, it is well approximated on the coarser grid, i.e. by eEk) ~ 1 f_legi)l. Similarly, for

the residual we have ré]i)l ~ I f_lrék), combining this with the operator on the coarser
level yields

ey) ~ IgAL_lIfilrék),
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so, given that the actual error is governed by low modes, a better approximation is given
by

) = I e o),
Given that the solution of the coarse grid system is cheaper than that of the fine grid system,
this saves computational time.
2.2.4 Two-grid cycle

Given a smoothing method ¢s., that is applied v, times before and v times after the
coarse grid correction, the complete two-grid cycle is performed by Algorithm 2.1. For

Algorithm 2.1 Two-grid cycle uy < ¢drome(ue, fo)
up < gy (ue, fo)
To < fe — Louyg
Ty_q Ifilrg
1
€p_1 < Leil’l“gfl
€y < Ig_16[,1
Up <— Uy + €y
up < g% (e, fo)

the convergence proof basically two properties are needed:
Definition 2.9 (Smoothing property). An iterative method ¢s.¢ with iteration matrix Sy
fulfills the smoothing property, if there exists a function n(v), such that

1LeSY |2 < n(@)||Lell2 for all 0 < v < oo with £ > 0,
VILH;O n(v) = 0.

It can be shown that for our model problem the damped JOR method® satisfies the
smoothing property with n(v) = ¢/(v + 3).

Since the inverse of the operator is approximated on the coarse level, the approximation
property is defined as a measure for the quality of this approximation.
Definition 2.10 (Approximation property). Let I 571 and If_l be the interpolation and
restriction operators and let Ly be the discretization of the underlying partial differential
equation as defined above. The twogrid method using these operators is said to fulfill the
approximation property, if there exists a constant ¢, such that for all £ € N we have

_ _ _ C
ILyt = I L Iy e < T
[ Lell2

Various problems arising from the discretization of partial differential equations fulfill
the approximation property, for details we refer to the work of Hackbusch®'2.

Given the smoothing and the approximation property the twogrid method converges,
as stated by the following theorem:
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Theorem 2.11. Let the twogrid method ¢rgy.e with v presmoothing iterations and no
postsmoothing iterations of the iterative method ¢s.o fulfill the smoothing and the approxi-
mation property and by Ty denote the iteration matrix of the two-grid method, i.e.

To=1—1If_ L 17 L,

Then for all 0 < ( < 1 there exists a lower bound U, such that for all v > U and for all
h < hyae we have

1TeS¢ 2 < en(v) < ¢

2.3 Multigrid methods

Inside the two-grid method still a linear system has to be solved that, while it is much
smaller than the original, could be expensive to solve. An obvious idea is to use another
two-grid method again, to solve the smaller linear system. This is the key idea of multigrid:
A hierarchy of grids is introduced to approximate the error by solving for the residual on
the next coarser grid. On each of the levels, v steps of the method are performed to approx-
imate the solution to this system, only on the coarsest level of the hierarchy a direct solve
is performed. In the following, we assume that we go down to level £ = 1, so the “system”
to solve on the coarsest level consists of one variable, only. The result is Algorithm 2.2.
Often v = 1 is chose, in that case the multigrid cycle is called a “V-cycle” for obvious

Algorithm 2.2 Multigrid cycle ug < dmom:e(ue, f7)
ug < ogly(ue, fr)
To < fe — Louyg
Te_1 .[5717”5
if / — 1 = 0 then
ep < Lal’l“o
else
€p—1 < 0
for i =1to~ydo
er—1 < dmame — 1(€r—1,7¢-1)
end for
end if
erm1 + Lt res

€p < [f_lez,1
Up <— Uyp + €y
up < g% (e, fo)

reasons. In the case v = 2 the cycle is known as W — cycle, these two choices of y are
most common. In two dimensions the amount of work needed for one multigrid cycle is
linear in the number of unknowns on the finest level for v = 1, 2, 3, starting with v = 4
the amount of work grows faster than that. As the correction is only an approximation, the
convergence of the multigrid method has to be analyzed. The convergence of multigrid
cycles with v > 2 is straightforward to show and stated by the following theorem:
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Theorem 2.12. With the same notation as above let
1572 TeS) ||« < o, 157210y el L Iy LS | < e

hold uniformly for all levels ¢ for some norm || - ||«. Then the x-norm of the iteration matrix
My, is bounded by 1’, where 1° is defined recursively as

Mo = 0, m=oc+cen _, (k=1,2,...),
where ¢, > 0. For v = 2 and
4eo <1

the x-norm of the iteration matrix My is bounded from above by
1
M) <n = (1~ VT = Ter) < 20
c

so for o < % the method converges with a uniformly bounded convergence rate.

As a consequence, multigrid methods are optimal methods in the sense that the conver-
gence rate is bounded independently of the level and that one iteration of the method has
linear computational cost.

2.4 Advanced multigrid techniques

While this brief introduction is relatively easily extendible to other elliptic PDEs, other do-
mains, including more complex ones, and other boundary conditions, e.g. periodic bound-
ary conditions, the development of multigrid methods goes much further than that. Multi-
grid methods have been developed for non-elliptic problems and for non-linear problems.
Further on algebraic multigrid methods (AMG) allow the use of this idea without the ex-
plicit generation of the grid hierarchy, this is important e.g. when multigrid has to be used
as a black box solver in a mature code. These developments go far beyond the scope of
our introduction, a good overview and introduction into more advanced multigrid methods
is given in the book of Trottenberg et al.”.

3 Multigrid Methods for Long-Range Interactions

As just shown multigrid methods are optimal solvers for the Poisson equation. In the intro-
duction we noted that the use of an optimal Poisson solver leads to an optimal method for
1/r-potentials. In the following, we will derive the numerical method. The idea is related
to that of the P3M method that is described e.g. in the book of Hockney and Eastwood'?.
In contrast to the P3M we start deriving the method for the open space problem.

3.1 Electrostatic interactions and the Poisson equation

Assume that the electrostatic energy of a system of IV particles? with charges g; at positions
x;, 1 =1,..., N has to be calculated, i.e. the sum

1 1 q;
E=2 ; — Y
QZq' Z 47‘(‘80 ||xi_-er2

i=1 j=1ji

@Note that this N is different from the one in the previous chapter.
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Obviously, the electrostatic potential U; of particle  is given by the part inside of the outer
sum, so
N 1 "
Ui=q Z —_
T 47‘(’80 sz - .Z‘j”g
As the Green function of the 3D Laplace operator is G(z) = 1/(4w||z||2) this is equivalent
to the solution ¢ of the Poisson equation

N
1
—AP(z) = — > gz — ajl2)
0 j=1jzi

evaluated at the position x;. As the right hand side consists of a superposition of 4-
distributions, this equation cannot be solved numerically. To make it accessible by nu-
merical methods, we replace the J-distributions on the right hand side by a function
pg = 9(||z||2). We choose the function g : Rj — R{ such that g is sufficiently smooth,
such that

[ oo =1
R3
and such that the solution ®, of the Poisson equation

—A®y(z) = ;pg (x)

is known analytically. This is similar to the introduction of the error function in the Ewald
summation, in contrast to this additionally we demand that g has limited support R > 0.
So the potential of particle 7 is given as

~ 1 q;
Ui=aqi | Qilzi) = D 4@(ei —2)) =
JEMAL) Ameo flri =l

; “)

where ®; is the solution of the Poisson equation

N
- 1
—A%y(x) = — > aipg(lz = zjl2)
0 j=1j#i

and where M; = {j : ||z; — z;]|]2 < R} denotes the set of all indices j € {1,...,N}
that closer to particle ¢ than the support of g, including ¢. This sum is a simple near-field
correction.

Now, by subtracting the self-energy correction term ¢; $4(0) from (4), we obtain

1 1

Ui =q; | ®ilxi) — Z g (i — ;) — o 21 — 5]l

JEM;

and we can replace the <i>i, i=1,...,Nby &), the solution of the single Poisson equation
1N

—AQ(z) = ;quy‘ﬂg(ﬂx—xﬂb) Q)
j=1
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and the energy is given by

1 N
E:§;Ui.

We like to note that no additional errors have been introduced by this transformation. In
molecular dynamics simulations not the energy, but the forces are of interest. Obviously
the force acting on particle ¢ is given by

F; = ¢;V®(z;) + near-field correction.

A self-energy correction is not necessary, here.

3.2 Basic numerical method

With the previous chapter, a numerical method can be derived easily. For finding the neigh-
bors that are necessary in the near-field correction, the linked-cell algorithm is used, as it
is described in the book of Hockney and Eastwood'®. Here we assume that a cell spacing
h is used. The initialization of the necessary data structures is given by Algorithm 3.1. To
keep the algorithm simpler by bold indices we denote multi-indices.

Algorithm 3.1 Linked-list initialization
foric Gdo
HOC() + 0
end for
fori =1to N do
j < round(x/h)
LL(i) « HOC(j)
HOC(j) + 4
end for

The data structure initialized by this algorithm is used in the basic numerical method.
Further on the method uses the solution of the Poisson equation (5) on a mesh, for ease
of implementation that mesh can coincide with the mesh introduced due to the linked-list
data structure. Finally, the basic method is given by Algorithm 3.2.

At this point, given that the numerical solution of is exactly available on the grid, the
only error in the method is due to the interpolation of the potential surface.

3.3 Open boundary conditions

In the open boundary case the Poisson equation (5) has to be solved with boundary condi-
tions

d(z) — 0, as ||| — oo.

Multigrid methods are well-suited for the numerical solution of this problem. The basic
idea is to extend and coarsen the grid successively and impose Dirichlet boundary condi-
tions with the help of the Green function on the coarsest level. This scheme is depicted in
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Algorithm 3.2 Basic numerical method

forie Gdo
forj € {j: [[i — jllc < R/h} do
k= HOC(j)

while £ £ 0 do
f(xi) = qrpg, (vi — x1)

k= LL(k)
end while
end for
end for
Solve A®, p = f numerically using Poisson solver
E=0

fork=1,...,Ndo
Approximate ®, p(xy) by interpolating the potential surface
E=E+ q(®g,p(zr) — Py, (0))
forj € {j: |round(zr/h) — jlloc < R/h} do
k= HOC(j)
while £ # 0 do
E=F— qké(xl — Z)
k= LL(k)
end while
end for
end for

1 9iqk
+ 471‘60 ”:E,Lfibk H2

Figure 3: Coarsened grid in 2D.

2D in Figure 3. It can be shown that the error of the numerical method is of the required
order and that the numerical complexity stays linear. The details are beyond the scope of
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Figure 4: Domain splitting in the 2D case. Highlighted is the part of the domain for which processor P; ; is
responsible, the part that is highlighted lighter is the ghost area.

this introduction, for details we refer to the work of the author'* 1.

3.4 Periodic boundary conditions

For periodic boundary conditions (5) has to be solved on the torus R?/Z?3, so the setting
of explicit boundary conditions is not necessary. The basic numerical method given by
Algorithm 3.2 needs only slight modifications, namely in the linked list data structure it
has to be taken into account that the periodic images exist.

In contrast to the simple multigrid method described above, to simplify implementation
the grid sizes should be chosen such that on level ¢ the grid has n, = 2¢ grid points. The
full-weighting operator given by Definition 2.7 and the linear operation operator given by
Definition 2.8 are then easily adopted to take into account the grid points in the periodic
images. Not that the linear system is singular with the constant vector, i.e. the vector
consisting of ones, only, in the kernel.

4 Parallelization

The resulting method can be parallelized efficiently with the help of a standard domain
splitting schemeb, i.e. the physical domain is distributed onto the available processors.
This situation is depicted for the 2D case in Figure 4. The physical domain §2 is mapped
onto a threedimensional processor grid, such that processor P; ;; contains subdomain
Qi,j,k, where

U Qije =2, Qi N Qi jr e = Ofori £, j # 'k # K.

i,jk
On each processor the domain is enlarged by a ghost area, such that the necessary data is
available during computation. The ghost area for the multigrid method contains the grid

bThe term domain splitting is used here to distinguish this data distribution scheme from the numerical method
that is called domain decomposition.
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Figure 5: Timings for 2097152 particles on a 128 x 128 x 128 grid on the Blue Gene/P system JUGENE in
Jiilich.

points needed to calculate the local matrix-vector product and to interpolate and restrict the
data. The ghost area for the particle part of the method has to contain the particles located
in the ghost area, the necessary data structures, i.e. the linked list entries, and the meshed
solution of the PDE. These ghost areas do not have to be the same and they are updated
whenever it is needed, i.e. the particles in the ghost area have to be exchanged at the be-
ginning of the computation and the solution of the PDE has to be updated after it has been
computed in the particle part of the method, in the multigrid method an update is neces-
sary after each smoothing step and after applying restriction and interpolation. Using this
parallelization scheme, parallelization of the basic numerical method is straightforward.

The parallelization of multigrid methods needs more attention. As the problem size is
reduced on the coarser grids, at some point there are fewer variables, than processors to
distribute the work to. There are basically two options to deal with this situation. First,
it is possible to let the processors that are not assigned a variable stay idle during the
computation on these coarser levels. The second option is to stop coarsening on this level
and to solve the system directly on this level. The second option needs a parallel direct
solver, while the first introduces a load-imbalance. As in practice the problems on these
levels are relatively small compared to the finer levels, the first option is in many cases a
decent choice. An overview over parallelization approaches for multigrid methods can be
found in the survey paper of Chow et al.'S.

Our implementation of a multigrid-based method for the calculation of electrostatic
interactions is based on the described 3D-domain splitting approach with idle processors
on the coarser grids of the multigrid hierarchy. The timings of the different steps can be
found in Figure 5. The method has been implemented using C99 and FORTRAN and the
timing results are obtained for 2097152 particles on a 128 x 128 x 128 grid on the Blue
Gene/P system JUGENE in Jiilich. The speedup and efficiency plots for this test can be
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Figure 6: Speedup and efficiency for 2097152 particles on a 128 x 128 x 128 grid on the Blue Gene/P system
JUGENE in Jiilich.

found in Figure 6. We like to note that on two racks of Blue Gene/P, i.e. 8192 processors,
each processor is responsible for 256 grid points on the finest grid, only.

5 Conclusion and Outlook

The use of multigrid methods for the calculation of long-ranged interactions due to the
electrostatic or gravitational potential is possible by reformulating the original problem as
a PDE in a consistent way. Using this formulation the actual implementation of such a
method is straightforward. One big advantage of the approach is that it can be parallelized
efficiently. Further on, multigrid easily allows the treatment of more complicated geome-
tries and problems with varying dielectric constants or the implicit simulation of solutes
(see e.g. the article of Holst and Saied'”).

Because the error of the method depends solely on the used discretization of the PDE
and on the interpolation within the basic numerical method, the numerical precision needed
can be enhanced by using e.g. more higher order discretization schemes, e.g. the ones
proposed by Sutmann and Steffen'3.

References

1. R. P. Fedorenko, The speed of convergence of one iterative process, USSR Comp.
Math. Math. Phys., 4, no. 3, 227-235, 1964.

2. N. S. Bakhvalov, On the convergence of a relaxation method with natural constraints
on the elliptic operator, USSR Comp. Math. Math. Phys., 6, 101-135, 1966.

3. A. Brandt, Multi-Level Adaptive Solutions to Boundary-Value Problems, Math.
Comp., 31, no. 138, 333-390, April 1977.

4. W. L. Briggs, V. E. Henson, and S. F. McCormick, A Multigrid Tutorial, SIAM,
Philadelphia, 2000.

5. U. Trottenberg, C. Oosterlee, and A. Schiiller, Multigrid, Academic Press, San Diego,
2001.

6. W. Hackbusch, Multi-grid convergence theory, in: Multigrid methods, W. Hackbusch
and U. Trottenberg, (Eds.), vol. 960 of Lecture Notes in Mathematics, pp. 177-219,
Springer-Verlag, Berlin, 1982.

129



10.

1.
12.

13.

14.

15.

16.

17.

18.

. W. Hackbusch, Ein iteratives Verfahren zur schnellen Auflosung elliptischer Rand-

wertprobleme, Rep. 76-12, Institute for Applied Mathematics, University of Cologne,
West Germany, Cologne, 1976.

. W. Hackbusch, On the convergence of a multi-grid iteration applied to finite element

equations, Rep. 77-8, Institute for Applied Mathematics, University of Cologne, West
Germany, Cologne, 1977.

. W. Hackbusch, Convergence of multi-grid iterations applied to difference equations,

Math. Comp., 34, 425440, 1980.

W. Hackbusch, On the convergence of multi-grid iterations, Beitrige Numer. Math.,
9,213-239, 1981.

W. Hackbusch, Multi-Grid Methods and Applications, Springer-Verlag, Berlin, 1985.
W. Hackbusch, Iterative solution of large sparse systems of equations, Number 95 in
Applied Mathematical Sciences. Springer-Verlag, New York, 1994.

R. W. Hockney and J. W. Eastwood, Computer simulation using particles, Institute of
Physics, Bristol, 1988.

M. Bolten, Hierarchical grid coarsening for the solution of the Poisson equation in
free space, Electron. Trans. Numer. Anal., 29, 70-80, 2008.

M. Bolten, Multigrid methods for structured grids and their application in particle
simulation, PhD thesis, Bergische Universitit Wuppertal, Wuppertal, 2008.

E. Chow, R. D. Falgout, J. J. Hu, R. S. Tuminaro, and U. M. Yang, “A survey of
parallelization techniques for multigrid solvers”, in: Parallel Processing for Scientific
Computing, M. A. Heroux, P. Raghavan, and H. D. Simon, (Eds.), SIAM Series on
Software, Environments, and Tools, chapter 10. SIAM, Philadelphia, 2006.

M. Holst and F. Saied, Multigrid Solution of the Poisson-Boltzmann Equation,
J. Comp. Chem., 14, no. 1, 105-113, 1993.

G. Sutmann and B. Steffen, High-Order Compact Solvers for the Three Dimensional
Poisson Equation, J. Comp. Appl. Math., 187, 142-170, 2006.

130



Particle Simulation Based on
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The fast calculation of long-range interactions is a demanding problem in particle simulation.
The main focus of our approach is the decomposition of the problem in building blocks and
present efficient numerical realizations for these blocks. For that reason we recapitulate the
fast Fourier transform at nonequispaced nodes and the fast summation method. We describe
the application of these algorithms to the evaluation of long-range potentials and compare our
methods with the existing fast multipole method.

Keywords and Phrases. fast discrete summation, fast Fourier transform at nonequispaced
nodes, NFFT, fast multipole method, FMM, Ewald method, FFT-accelerated Ewald sum,
particle-particle particle-mesh (P3M), particle-mesh Ewald (PME), smooth particle-mesh
Ewald (SPME).

1 Introduction

An important concern of applied mathematics is the development of efficient algorithms
for frequently recurring problems. On the other hand one should decompose the practi-
cal problems such that one can use the efficient algorithms and consequently incorporate
advanced implementations.

The aim of this tutorial is to decompose problems from particle simulation into building
blocks. These blocks are the fast Fourier transform (FFT), the fast Fourier transform at
nonequispaced nodes (NFFT) and the fast summation method.

In Section 2 we summarize the main ideas of the NFFT. A severe shortcoming of tradi-
tional Fourier schemes in recent applications is the need for equispaced sampling. During
the last two decades that problem has attracted much attention. The nonequispaced fast
Fourier transform'® overcomes these disadvantages while keeping the number of floating
point operations at N log N. The concept of NFFT is the trade of exactness for efficiency.
Instead of precise computations (up to machine precision for actual implementations), the
proposed methods guarantee a user specified target accuracy. An early review of several
algorithms for nonuniform Fourier transforms>¢ has been given by A. Ware*2. A unified
approach to fast algorithms for the NFFT has been obtained by G. Steidl in*’. The main
idea is the use of a window function which is well localized in space as well as in frequency
domain. Then one is able to use an approximation by translates of the scaled window func-
tion and estimate the approximation error, see the tutorial paper®®. It became clear, that
this approach is related to the gridding algorithm, which was known in image processing
context and astrophysics years ago. Similar methods where used in particle simulation. A
widely used implementation is available as part of the NFFT package'® and is based on the
FFTW'3.
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In Section 3 we summarize the main ideas of the fast summation method based on
NFFT. This method can be interpreted as nonequispaced convolution. For equispaced
nodes the discrete convolution and its fast computation is typically realized by FFT ex-
ploiting the basic property e?™(¥=%) — e27ie=27iz  Following these lines, we propose
to compute the “convolution at nonequispaced nodes” by Fourier methods as well, more
precisely by the NFFT. This new method includes convolutions, e.g., with kernels of the
form 1/]|z||2.

In Section 4 we describe how to use the building blocks from Section 2 and Section
3 for particle simulation. Here we focus on the Coulomb potential for open and periodic
systems. We remark that some FFT-accelerated Ewald'”'> methods contain similar steps
as the fast summation based on NFFT.

Finally Section 5 contains various different numerical examples, where we compare
our methods with the fast multipole method.

2 Nonequispaced Fourier Transforms

This section summarizes the mathematical theory and ideas behind the NFFT based

on? 1921 et the dimension d € N, the torus T¢ := R?/Z4 ~ [—1, 1) and the sam-
pling set X := {x; € T¢: j = 1,..., M} with M € N be given. Furthermore, let the
multi degree N = (N, Ny, ..., J\/'d,l)T € 2N and the index set for possible frequencies
Ivi={-2,.. . B —1}x...x {—N"’Q‘l b N‘;‘l — 1} be given. We define the space
of d-variate trigonometric polynomials 7y of multi degree N by

TN := span {e_%ik‘: k e IN} .

The dimension of this space and hence the total number of Fourier coefficients is N; =
Ny - ... - Ng_1. Note, that we abbreviate the inner product between the frequency k and
the time/spatial node x by kx = k' x = kozg + k12, + ... + kg_124_1. For clarity of
presentation the multi index k addresses elements of vectors and matrices as well.

2.1 Nonequispaced discrete Fourier transform (NDFT)

For a finite number N of given Fourier coefficients fk € C, k € In, one wants to
evaluate the trigonometric polynomial

Fx)= ) fue P e I (1
keln
at given nonequispaced nodes x; € T¢, j = 1,..., M. Thus, our concern is the computa-

tion of the matrix vector product

f=Af 2
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The straightforward algorithm for this matrix vector product, which is called NDFT,
takes O(M N ) arithmetical operations. A related matrix vector product is the adjoint
NDFT

M
'f _ AHf, fk _ ije-l‘Qﬂ'ika ,
=1

-~ . .
where A™ = A . Note furthermore, that the inversion formula F—! = F" for the (equis-
paced and normalized) Fourier matrix F' does not hold in the general situation of arbitrary
sampling nodes for the matrix A.

2.2 Nonequispaced fast Fourier transform (NFFT)

The most successful approach for the fast computation of (2), cf.®33%2%11.14 i5 based on

the usage of an oversampled FFT and a window function ¢ which is simultaneously local-
ized in time/space and frequency. Basically, the scheme utilizes the convolution theorem
in the following three informal steps:

1. deconvolve the trigonometric polynomial f € T in (1) with a window function in
frequency domain,

2. compute an oversampled FFT on the result of step 1.,

3. convolve the result of step 2. with the window function in time/spatial domain, i.e.,
evaluate this convolution at the nodes x;.

Throughout the rest of the paper we denote by ¢ > 1 the oversampling factor and by
n = oN € N the FFT size. Furthermore, ford > 1let ¢ = (o*o,...,crd_l)T € R,

00y..-,04-1 > 1,n=0 N, and n, =ng - ... ng_1 denote the oversampling factor,
the FFT size, and the total FFT size, respectively. For notational convenience we use the
pointwise product o ® N := (69Ng, 01 N1, ..., 04-1Ng—1, )T and the pointwise inverse

1 1 1 1 T
N ZZ(WOWW’K)

The window function

Starting with a window function ¢ € Lo(R), which is well localized in the time/spatial
domain R and in the frequency domain R, respectively, one assumes that its 1-periodic
version ¢, i.e.,

p@):= ¢la+r)
rEZL

has an uniformly convergent Fourier series and is well localized in the time/spatial domain
T and in the frequency domain Z, respectively. Thus, the periodic window function ¢ may
be represented by its Fourier series

B(x) = @ (k)2

k€EZ
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with the Fourier coefficients

@ (k) := /cﬁ (z)et?mike qg = /ga (z)eT2mF dg | ke Z.
T R
We truncate this series at the FFT length n, which causes an aliasing error.

If o is furthermore well localized in time/spatial domain R, it can be truncated with
truncation parameter m € N, m < n and approximated by the function ¢- x[— m m) which

has compact support within the interval [—"*, *]. Furthermore, the periodic window func-
tion can be approximated by the periodic version of the truncated window function. For
d > 1, univariate window functions ¢y, . .., ©4—1, and a node x = (zo, ... ,xd,l)—r the

multivariate window function is simply given by

@ (%) == o (20) ¢1 (1) - . -1 (Tg—1)

and ¢(x) = ) .74 ©(x + 1) again denotes the 1-periodic version; an immediate observa-
tion is

¢ (k) == /go(x) e T2mkx dx = @g (ko) @1 (k1) ... Pa—1 (ka_1) .
Rd

For a single truncation parameter m € N the window function is truncated to the cube
n~! ©[-m,m]e
We follow the general approach o

the trigonometric polynomial (1) by
1
np (k)

30-29 and approximate the complex exponentials in

o 2mikx Z o (x —nle l) e—zm(n—lcal)k 3)
1€ln, m(x)
where the set

Inm (x) ={l€h:nOx—ml1<1<nox+ml}

collects these indices where the window function is mostly concentrated (the inequalities
have to be fulfilled modulo n and for each component). After changing the order of sum-

mation in (1) we obtain for x; € T¢, j =1,..., M, the approximation
f(x;) ~ Z ( Z Jfk - e—27‘ri(n1®1)k> @ (xj —nloe 1) _
11 m(x;) \kEIN nx (k)

This causes a truncation and an aliasing error, see?%-26 for details. As can be readily seen,
after an initial deconvolution step, the expression in brackets can be computed via a d-
variate FFT of total size n,. The final step consists of the evaluation of sums having at
most (2m + 1)¢ terms where the window function is sampled only in the neighborhood of
the node x;.

The algorithm and its matrix notation

The proposed scheme reads in matrix vector notation as
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where B denotes the real M x n, sparse matrix
(5 -1
B:= (80 (Xj -—n 0o 1) * XTnm(x5) <1)>j:1,...,M;leIn ’ @)
where F is the d-variate Fourier matrix of size n, X n,

F— (efzm(nfl ®l)k)

and where D is the real n, x N, ’diagonal’ matrix

d—1 1 T
D= & (0] diag () 0 ©)
g < t NPy (k) ke€ly, ‘

with zero matrices O, of size Ny X % Obviously, the approximate matrix splitting

can be applied to the adjoint matrix as A™ ~ DTF"BT, where the multiplication with
the sparse matrix B is implemented in a ’transposed’ way, summation as outer loop and
only using the index sets I, , (X;).

®)

1€l ke,

Algorithm 2.1 NFFT

Input: d € N dimension,
M € N number of nodes, nodes x; € [—%, )4, j=1,... M,
N € 2N¢ multi degree, Fourier coefficients fk €C, k€ Iy,
o € R? oversampling factor with oy > 1,t =0,...,d — 1,

m € N window size of ¢.

1. For k € Iy compute
hom —IE_
nxp(k)
2. Forl € I, withn = o ©® N compute by d-variate (forward) FFT

g = Z i e-2m’k(n*1@1).

keln
3.Forj =1,..., M compute
85 1= Z glgé(xj—n*l@l).
leIn,WL(xj)
Output:  approximate values s; ~ f(x;),j =1,..., M.

Evaluation techniques for window functions

To keep the aliasing error and the truncation error small, several univariate functions ¢
with good localization in time and frequency domain were proposed. For an oversampling
factor 0 > 1, adegree N € 2N, the FFT length n = o N, and a cut-off parameter m € N,
the following window functions are considered:
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Algorithm 2.2 NFFT"

Input: d € N dimension,
M € N number of nodes,

nodes x; € [—1, 1), coefficients f; € C,j = 1,.

N <€ 2N’ multi degree,
o € R? oversampling factor with oy > 1, =0, ...,
m € N window size of ¢.

1. Forl € I, withn = o © N compute

M
q = Z fjgé(xj—n_l(Dl).
1€ln m(x5)
2. For k € I,, compute by d-variate (backward) FFT
. -1
= Zgl e+2mk(n @1).
lel,

3. For k € Iy compute

Output:  approximate values Sy ~ fk, ke ln.

20 m
20—-1 7

(p(m) — (ﬂ'b)_l/2 e—(nm) /b7

1 xk\2
(k) = — ()70
pk) = —e :

1. for a shape parameter b =

the dilated Gaussian window®:-

2. for M, denoting the centered cardinal B-Spline of order 2m the dilated B-Spline

window*30

p(z) = Moy, (nx),

1 for k =0,

Pk = -

3. the dilated Sinc window?*®

p(x) =

B(k) = Mo ( )

with sinc(z) := sin(z) / = for z # 0 and sinc(0
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4. and for a shape parameter b = 7(2 — 1) the dilated Kaiser-Bessel window®’

sinh(bv'm? — n2a2)

for |z| < ™,
1 2 — n2y2
p(z) = = (10)
sin(bv/n2x? — m?) .
otherwise,

i
. lI0<m b2—(27rk/n)2)for k=-n(l-5),...,n(1-5),
oty = 3 nlomy , g g

0 otherwise,

where Iy denotes the modified zero-order Bessel function.

Note, that the latter two have compact support in frequency domain while the second one
has compact support in time domain. Further references on the usage of (generalized)
Kaiser-Bessel window functions include'®?3, where some authors prefer to interchange
the role of time and frequency domain. For these univariate window functions ¢, the
approximation error of Algorithm 2.1 obeys

|f (@) = 851 < ComllElls,

where
4e—mm(1-1/(20-1)) for (7), cf. 0,
2m
4 (ﬁ) for (8), cf.%0,
Co,m = 2m
L (UQ +(25) > for (9), ¢f.26,
4 (Vm +m) {1 — Le 2mmVI=1/7 for (10), cf. 2.

Thus, for fixed o > 1, the approximation error introduced by the NFFT decays exponen-
tially with the number m of terms in sum (3). Using the tensor product approach, the error
estimates above have been generalized for the multivariate setting in’->.

In summary, the whole algorithm for the fast approximate computation of (1) consists
of the computation of N, multiplications, the computation of a d-variate FFT of total size
n. and the sparse summations. Therefore it requires O(n, +ny logn, + (2m+1)4M) =
O(nylogn, +meM) arithmetic operations.

In?' we suggest different methods for the compressed storage and application of ma-
trix B, which are all available within our NFFT library!® by choosing particular flags in
a simple way during the initialization phase. These methods include fully precomputed
window function, tensor product based precomputation, linear interpolation from a lookup
table, fast Gaussian gridding (see also'*) and no precomputation of the window function.
The choice of precomputation does not yield a different asymptotic performance but rather
yields a lower constant in the amount of computation.

Finally we remark, that similar approximations of the exponentials as in (3) are used in
various particle methods, see [4, Formula (24)], [8, Formula (3.5)] or [15, Formula (7.57)].
However, mainly splines are used as window functions. We note that, e.g., Kaiser-Bessel
functions lead to better results, while using the same window size m, see Figure 1 and®,
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Figure 1: Error Eo for increasing cut-off parameter m = 0,...,14 and d = 1, 2, 3. In each case, the degree
N was chosen to be equal along each dimension such that | Ing| = 2'2. We fixed the oversampling factor o = 2
and M = 10000. Shown are results for the Kaiser-Bessel (o), the Sinc (x), the B-spline (+), and the Gaussian
window function (A).

where the accuracy is measured by

Ew = max |f;—s;1/ > |fil-

1<j<M
kEIN

For further NFFT approaches see [20, Appendix D].

3 Fast Summation Algorithms

We are interested in the fast evaluation of sums
L L
h(y) =Y aK(y —x)=>_ aK(|ly —xi2), (11)
=1 =1

at M different target nodes y;, j = 1,..., M, where ||x|[2 := (22 + ... + 22 )'/2
denotes the Euclidean norm. This approach was suggested in>’?%%. The original idea for
our algorithm came from the consideration of (11) for equispaced source nodes x; and
target nodes y ;. In this case we have simply to compute the multiplication of a vector with
a Toeplitz matrix or a block—Toeplitz—Toeplitz—block matrix in the multivariate setting.
The standard algorithm to do this uses the FFT, see [27, Section2]. Here we propose the
summation algorithm based on NFFT for arbitrary distributed source and target nodes.

The kernel function K is in general a non-periodic function, while the use of Fourier
methods requires to replace K by a periodic version. Without loss of generality we may
assume that the source and target nodes are scaled, such that |[x; |2, ly;[l2 < + — €2 and
consequently |ly; — x;[l2 < 2 — ep. The parameter eg > 0, which we specify later,
guarantees that K has to be evaluated only at nodes in the ball with radius % — ep. This
simplifies the later consideration of a 1-periodic version of K.

We deal with kernels K which are C°*° except for the origin, where K or its derivatives
may have singularities. Examples of such kernels are

1
/|3 log [|x[|2, log [|x[l> and [ (6 €N).
2
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For the sake of simplicity we define X(0) = 0 whenever a singularity appears at the
origin. This enables us to evaluate (11) at source nodes which coincide with a target
node. Of course, our algorithm can be modified for other kernels frequently used in the ap-
proximation by radial basis functions, e.g., the Gaussian®? or the (inverse) multiquadric'®
(22 4 ¢2)*1/2, Our algorithm, in particular our regularization procedure, is simply struc-
tured, can easily be adapted to different kernels K and requires O(Llog V/L + M) or
O(M log VM + L) arithmetic operations for uniformly distributed source nodes x; or
target nodes y ;, respectively.

Beyond a special treatment of /K near the boundary, we have to be concerned about the
singularity of K at the origin. We regularize K near 0 and near the boundary {x € T¢ :
[x]l2 = 3} as follows

Ti([lxll2) if  [jx[l2 < er,

o) ) Tolxla) i I —ep < |x]2 < 4, 1)
T )it L < xl

K(||x]|2) otherwise,

where 0 < e1 < 1 — e < 1. The functions 7} and T will be chosen such that K is in
the Sobolev space HP(T?) for an appropriate parameter p € N. Several regularizations of
K are possible, e.g., by algebraic polynomials, splines or trigonometric polynomials, see'?.

Here we focus our attention on two point Taylor interpolation, i.e., we are interested in
the unique polynomial of degree 2p — 1 which satisfies the interpolation conditions

PO (m—r)=a;, PY(m+r)=b;, j=0,...,p—1 (13)

at the endpoints of an interval [m — r,m + 7], > 0.

Lemma 3.1. (see [9, Proposition 2.2]) For given a;,b; (j = 0,...,p — 1) there exists a
unique polynomial P of degree 2p—1 which satisfies (13). Withy := =%

can be written as

1P fp— 14k
r=5 > (M) i

= = (14)
(0 945 = )P0 + (1= P (1 + ) (-1,
Lemma 3.2. The derivative of the polynomial P from (14) is given b
poly g Y
1 p—lp—1—j _ j—1
P(s) == PoThL
2p k j12k
j=0 k=0
J+k#0 (15)

/\

Ly 1=y G+ R = y) = p(1+y)]a;
(L= g 4y [+ R+ ) — p(1— )] (—1)7 ).
We exploit (14) with a; = KW (er),b; = (— )Ja],] =0,....,p—1,m=0,r =2¢

to obtain 7} and with a; = KU (3—ep),b; = 60;K(3),7 =0,...,p—1,m = =8 r =
€p to obtain Tg.

[y
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Next we approximate the smooth function Ky by the Fourier series

Kr =~ ]CRF(X) = Z Bkeizﬂ—ikx, (16)
keln
where
~ 1 Sy —1
b= 3 Kol O ke . a7
N

Then our original kernel splits as
K= (K—-Kr) + (Kr —Krr) + Krr = Kng + Kgr + Krr, (18)

where Kng := K — Kgr and Kggr := Kr — Kgrp. Since g is smooth, the approximation
error Kgg of its Fourier approximation Krr should be small. We neglect this error and
approximate h in (11) by

h(y) ~ h(y) == hxg(y) + her(y),

where
L
he(y) =Y alkne(y —xi), (19)
=1
L
hrr(y) == Z aKrr(y —x1) . (20)
=1

Instead of h we evaluate h at the target nodes y ;. If either the source nodes x;, or the target
nodes y; are “sufficiently uniformly distributed” this can indeed be done in a fast way,
namely:

Near field computation (19)

By definition (12), the function g has a small support contained in the ball of radius
er around O and in the neighborhood of the boundary. The boundary is not interesting for
us since ||y; — x|z < 1/2 — ep. To achieve the desired complexity of our algorithm
we suppose that either the L source nodes x; or the M target nodes y; are “sufficiently
uniformly distributed”, i.e., we suppose that there exists a small constant v € N such that
every ball of radius e1 contains at most v of the nodes x; or of the nodes y;, respectively.
This implies that ¢; depends linearly on 1/ V/L, respectively 1 / V/M. In the following, we
restrict our attention to the case
Jv
Er ~~ L.

Then for fixed y; the sum (19) contains not more than v terms so that its evaluation at M
target nodes y; requires only O(vM) arithmetic operations.

We remark that also O(log v/M), respectively O(log v/L) nodes instead of O(1)
nodes per ball will keep a complexity of O(M log /M + Llog /L) of our whole al-
gorithm.
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Far field summation (20) by NFFT™/NFFT

Substituting (16) for Krr we obtain

L L
hRF(Yj) _ Zal Z Bke—Qﬂik(yJ —-x1) _ Z i)k <Z ale—‘rQﬂ'ikxl) e—27'rikyj.
=1

=1 keln keln

The expression in the inner brackets can be computed by a d-variate NFFT™ of total size
N. This is followed by N multiplications with by and completed by a d-variate NFFT of
total size N, to compute the outer sum with the complex exponentials. If m is the cut-off
parameter and o = (2)¢=0,...,4—1 the oversampling factor of the NFFT™/NFFT, then the
proposed evaluation of hry at the nodes y;, 7 = 1,..., M requires O(m?(L + M) +
07Ny log(o, N )) arithmetic operations. The relation between M, L and N is determined
by the approximation error of the algorithm and is discussed in detail in?"-2%10,

Note, we can avoid the error of gy in the near field in (18) by splitting kernel function
K as

K= (K—-Kgr) + Krr = Kng + Ker + Krr, 21

and setting Kng = (/C — ICRF) X{|I-I<er}> Kgr := K — Krr — Kng. The first splitting
(18) is preferable, if we are able to evaluate the near field regularization 77 in a fast way. If
T can not be computed in a fast way but the Fourier coefficients by are given, the splitting
(21) should be used.

The algorithm and its matrix notation

The proposed scheme reads in matrix vector notation as
Ko ~ B,FDD,D 'F'B]a + Kyga, (22)
where Bx denotes the real L x n, sparse matrix depending on the source nodes x;, [ =
1,..., L as given in (4)
By = (¢(xi—n ' O1) X1, ) (1))l:17.“,L;1€In ,

B, denotes the real M x n, sparse matrix depending on the targetnodesy;,j = 1,..., M
as given in (4)

By = (¢(y; =07 O1) X1 nyy) (1))j:1 ..... M;lel, ’

F is the d-variate Fourier matrix of size n, X n, given in (5), D is the real n, x N ’diag-
onal’ matrix given in (6), which contains the Fourier coefficients of the window function,
Dy = diag(i)k)ke 1 contains the Fourier coefficients of the regularized kernel g given
in (17). Furthermore, Kng contains the near field correction (19). From the representation
(22) we see, that FDF! with a diagonal matrix D is well known as fast realization of a
convolution on a mesh. The matrix B is used to smear the charge density onto a grid,
then one can use a convolution on a mesh and finally a back-interpolation via B.

In summary we obtain Algorithm 3.1 for the fast evaluation of (11).
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Algorithm 3.1 Fast sum

Input: d € N dimension,
p € N smoothness of regularized kernel Ky,
N e 2N multi degree,
e1 > 0 nearfield size,
eg > 0 boundary size,
L € N number of source nodes,
M € N number of target nodes,

source nodes x; € [—5 + £, 1 — ) 1=1,... L,
targetnodes y; € [—1 + B, 1 — ) j=1... M,

coefficients oy € C, I =1,..., L.
Precomputation:
i) Computation of (by)xery by (17) and (12).
ii) Computation of Kng(y; — x;) forall j =1,..., M and | € IN®(j),
where INE(j) :={l e {1,...,L}: |ly; —xill2 <er}

1. For k € Iy compute by Algorithm 2.2 the d-variate NFFT™

L
&k — 2 ale+27r1kxl.
=1

2. For k € Iy compute the products
(ik = CALklA)k.
3.Forj =1,..., M compute by Algorithm 2.1 the d-variate NFFT

hrr(y;) == Z dye ™2k,

keln
4. For j = 1,..., M compute the near field sums
he(y;) = Y, aKae(y; —x).
leIXE(7)
5.Forj =1,..., M compute the near field corrections

h(y;) = hxe(y;) + hrr(y;)-

Output:  approximate values iL(yj) ~h(y;), j=1,...,M.

Generalization to cuboidal domains

Whenever the restrictions ||x;||2,[|y;[l2 < 3 — <& are not fulfilled we must scale the

nodes. We now explain the resulting changes to Algorithm 3.1. In order to handle node
distributions with unequal dimensional extend we introduce s = (sg, S1, - - -, sd,l)T e N
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as a component wise scaling such that [|[s™* © x|, [T O y;l2 < i - %B and therefore
[s7'®(y; —x)| <4 —epforalll=1,...,Landj =1,..., M. By the substitution
z := s~} ® x we obtain X = s ® z and therefore K%(z) := K(s © z) = K(x).
Since K® is not radial symmetric anymore, we define the regularized kernel function

KR in a slightly different way

Ti(ls©zl2) if |s©z]2 <er,

s T5(lzll2)  if 5 —en <zl < 3,
ICR(Z) = z /1 . 1

T5(3) if 5 <=,

K(||s ® z||2) otherwise.
While the definition of 77 remains the same as in the non-scaled case, we again ex-
ploit (14) to obtain T with the altered parameters a; = KU)((1 — ep)1592l2) pp. —

llzll2
60K (35max),j = 0,...,p—1,m = & — B r = cp, where syax 1= max{s;: t =
0,...,d—1}. Note that the interpolation polynomial 7 may change for every node, since

the coefficients a; now depend on z. We only need to evaluate 7% during a precompu-
tation step to obtain the Fourier coefficients Bk of the regularized kernel function Kgrp,
therefore the dependency of the interpolation polynomial on z has no impact on the com-
plexity of our fastsum algorithm. In order to assure differentiability of Kry at the border
{xeT: |x|2 > 1}, we set TE(3) = by constant for all z.

Let s; := s¢-...-54—1. We approximate the smooth function K3, by the Fourier series
7o —2mik
Kp(x) = Y be >,
kelson

where the Fourier coefficients by are given by the d-variate discrete Fourier transform

7 1 S [ — - mi(s™?! -1
SON

The remaining part of the fast summation algorithm can be done analogously to the non-
scaled case with the scaled NFFT size s ® N instead of N.

4 Application to Particle Simulation for the Coulomb Potential

In this part we apply our fast summation algorithm to the long-range potential 1/r. The
fundamental idea is to split the long-range part of the potential into a smooth long-range
part and a singular short range part. We will use our splitting (19) and (20). There ex-
ists a variety of methods which use similar splittings such as the P>M method!”. In the
following we will discuss open and periodic systems.

4.1 Open systems

In this part we apply our fast summation algorithm to a system of M charged particles
located at source nodes x; € R? with charge ¢; € R. We are interested in the evaluation of
the electrostatic potential ¢ at target node y € R?,

M
$(y) ==Y akly —x), (23)
=1

143



and the force F acting at particle y € R? with charge q( ) ER,

F(y) :== —q(y)Vo(y Zqﬂc y —x), (24)

where the kernel functions K and K’ corresponding to the Coulomb potential are given by
_JoO if ||x]2=0 e if ||x]l2 =0,

K(x) = { 1/]|x||2 otherwise, and K'(x) = x/||x||3 otherwise. 25)

For equal sets of source and target nodes the sum (23) turns into

Z ||XJ
l#ﬂ

j=1,...,M,

XZHQ

and (24) becomes
— X .
E =1,..., M.
QJ QI ||Xj _ X || ] Y )
l;éj

Furthermore we are interested in the computation of the total electrostatic potential energy

1 M
§ Z qj(;s(xj)a
j=1

which can be evaluated straightforward after the computation of the potentials ¢(x;), j =

., M. To get the potentials ¢(x;) we apply Algorithm 3.1 on (23) by choosing equal
sets of source and target nodes and oy = ¢;, Il = 1,..., M. For the near field corrections
of this algorithm we require repeated evaluations of the near field interpolation polynomial
T3. Instead of using (14) it is more efficient to calculate the coefficients once explicitly for
smoothness p = 2,...,12 and evaluate the polynomial with a Horner scheme. E.g., for
smoothness p = 5 we get the following explicit representation

315 —105 189 45 35
T _ [ g 2 2 2 2
) = e+ (3o + (s * (o * Tauca12) 113 ) 112 3
For the fast calculation of the forces F(y) we follow the main steps of Algorithm 3.1. First

we observe that Algorithm 3.1 decomposes potential ¢(y) into

o(y) = éxe(Y) + OrF(Y), (26)

where the near field part ¢ng is given by

M

one(y) = > a(Kly—x)—Tily —xill2)

=1
[ly—xi|l2<er

and the far field part ¢ reads as

¢RF Z bk <Z qle+27r1kxl> e—27riky.

keln
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Combination of (24) and (26) yields
F(y) = —a(y)Vo(y) = —a(y)(Vone(y) + Vorr(y))-

Taking into account that

Vorr(y) = —27i Z bk <Z qle+2’“kxl> e~ 2miky

keln

we are able to compute the inner sum of the far field part V¢ry with only one NFFT™ and
the outer vector sum with three NFFTs, one for each component. This is a remarkable im-
provement to the algorithm proposed in?® where four NFFT™s and four NFFTs are needed
to calculate the far field part of the forces. The gradient of the near field part reads as

M

Vone(y) = Y a(K'(y —x) = VTi(ly — x2)).

=1
ly—x:ll2<er

This vector sum can be evaluated straightforward. One way to obtain the gradient of 77 is
to use (15) and the chain rule with z = ||x||2. We obtain for ||x|| # 0

p—1lp—1—j
—1+k

]OkO
Jt+k#0

(4951 = ) [+ R)(1 =) = p(1 + y)] gy

(1= gl PG R+ y) — (L= )] (<17 ),

where y = ”x”2 ™ and VT1(0) = 0. Alternatively we represent the gradient of 711, e.g.,
for smoothness p =5, by

—105 189 —1080 35
T _ g 2 2 2
vridlxle) = (Tar + (1ocp + (Taser + socalixIE) IxIB) Ixl3)

In summary we can apply Algorithm 3.1 with the matrix representation given in (22).

4.2 Periodic systems

In this section we present a straightforward method, that accelerates the traditional Ewald
summation technique by NFFT. This combination was first presented in'® and is very simi-
lar to the FFT-accelerated Ewald sum, namely, the so-called particle-particle particle-mesh
(P3M), particle-mesh Ewald (PME) and smooth particle-mesh Ewald (SPME), see*. Ad-
ditionally we will see, that the accelerated Ewald summation can be reinterpreted into a
method very similar to our fastsum Algorithm 3.1.

We consider a system of charged particles coupled via the Coulomb potential, a cubic
simulation box with edge length B, containing M charged particles, each with a charge
q € R, located at x; € BT?. Periodic boundary conditions in a system without cut-off is
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represented by replicating the simulation box in all directions of space. The electrostatic
potential p aty € B T3, can be written as a lattice sum, see [12, Chapter 12] and?!,

Z aK(y - x), 27)

and the force F at particle y € BT? with charge q(y ) € R is given by

F(y) :== —q(y)Vo(y Z ak'(y — x1), (28)
where the kernel functions
:ZIC(errB) and K'( ZIC (x+rB)
reZzs3 rezs

are periodizations of the kernel functions (25) corresponding to the Coulomb potential. For
equal sets of source and target nodes the evaluation of the potential (27) and the force (28)
reads as

N U T Vs (29)

9% L e

l#j forr=0

and
—x;+rB )
77q ql—7 ]:]‘""7M’

LT et

l#j forr=0

respectively. Furthermore we are interested in the computation of the total electrostatic
potential energy

1 M
U= 3D 40(x)),
j=1

which can be evaluated straightforward after the computation of the potentials ¢(x;),

j =1,..., M like in the non-periodic case. The well-known Ewald formula for the com-
putation of (29) splits the electrostatic potential ¢ into three parts
¢ _ ¢real + ¢reci + d)self? (30)

where the contribution from real space ¢**?!, reciprocal space ¢**°! and the self-energy
¢! are given by

gl = 3 Z erfC (allx; —xi +rB]2)
I —xi+eBl;
l#j7 forr 0
reci 1 771-2”1(” /(B)? =z —27ik(x; —x)
o) = T > ke qu S G
keZ3\ {0} 2
self a
™ (x5) = 205 =
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Thereby, the complementary error function is defined by erfc(z) = % fzoo e~ dt. Choos-

ing optimal parameters, Ewald summation scales as O(M?/2). In order to overcome this
increase in time we apply the NFFT for the calculation of the reciprocal-space potential
(br“i and we obtain a method similar as our fast summation method. To this end, we
compute the Fourier transformed charge density

M
S(k) _ Z qle+27rikx,,
=1
by NFFT™ and after truncation of the sum (31) we obtain by NFFT

reci 1
¢ %))~ —3 >

kelIn\{0}

o2 Kl3/(aB)?

Ikl

k)e—27rikxj )

We now reinterpret the approximation steps of Ewald summation in order to use the
steps of our Algorithm 3.1. Following (12) we define the slightly different regularization
Kr of the kernel function C by

Ti(|[xll2) it [jx[l2 < er,

K (x) = Ty(x]|2) ~
r(x) == T1(||x]|2) {K(Hxllz) otherwise,

where the near field regularization 77 is given by

Tl(z)_{m/ﬁ it z=0,

~ | erf(az)/z otherwise.

Here the error function is defined by erf(z) = % foz e~ dt and the parameter o must

be chosen large enough to ensure T1(x) ~ K(x) for all ||x||2 > €. Since the periodic
regularization INCR(X) = > pezs Kr(x + 1) is smooth at the domain border, we do not
need a regularization Ty. Instead of (30) we use (18) to split the electrostatic potential ¢
from (27) into the two parts

o(y) = onE(y) + OrE(Y),
where the near field part ¢ng is given by
M
oNE(Y) = Z @ <’~C(y—Xl) —TI(||Y—X1||2))
Hy—iill2<81

and the far field part ¢ reads as

M
orr(y) = Z by <Z qle+2”ikxl> o—2miky
1=1

keln

Since the Fourier coefficients by of Kg can be calculated analytically,

k = —m2||k||13/(«B)? .
% otherwise,
2
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we do not need to compute an inverse discrete Fourier transformation of g in the pre-
computation step as in (17). Analogously to Algorithm 3.1 the far field part ¢rp can be
evaluated by one NFFT™ and one NFFT, while the near field part only includes nearest
neighbors of every target node. Therefore we get an algorithm with the same complexity
as our fastsum algorithm for non-periodic systems. For equal sets of source and target
nodes the resulting algorithm coincides with the NFFT-accelerated Ewald summation.

As in the non-periodic case we get

F(y) = —a(y)Vo(y) = —q¢(y)(Vonu(y) + Vere(y)),
where the far field part Vérr(y) can be computed by one NFFT™ and three NFFTs. The
near field part V¢ng(y) reads as
M

Vone)= > a(K'(y —x) - VTillly - xill2)).

=1
ly—x:ll2<er

This vector sum can be evaluated straightforward. Since
d erf(az) 1 <2a 2.2 erf(az))

a”z

NG z

dz =z oz
the gradient of 77 is given by
if ||x]2 =0,

) otherwise.

0
VTI(X|2):{X(2Q
lIxll3 \ v«

For equal sets of source and target nodes we get

e—?lIxl3 _ erf(all\‘xl\z)

[Ix[l2
F(x;) = Fxe(x;) + Frr(x;),

where
Fne(x5) = — ¢;Vone(x))

M
=~ ¢ u Xj =X (erfC(OéHXj —xifl2) | mea2|ijL|§)
T kg - xll3 1% =il VT ’

1]

Frr(xj) = — ¢;Vorr(x;)
24, o2 lKlI3/(aB)?
~ B3 >

5 ks<k)e—27rikxj )
it KB
N

This splitting coincides with the well known results of Ewald summation.
In summary we can apply Algorithm 3.1 with the matrix representation given in (22).

5 Numerical Results

5.1 Generation of pseudo random sampling sets

To guarantee a minimum distance between all nodes we used Hammersley and Halton
pseudo random node distributions*}. Let p € N prime. Every non-negative integer j €
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N U {0} can be uniquely represented as
j=ao+aptawp’+...+ap", a;€{0,....p—1},i=0,...,r, reN.
We define

Qr

N G0 a1 a2

CI)p(]) = ;+F+E+...+pr+l.
For d given primes p; < p2 < ... < pq the d-variate Hammersley distribution is given by
the following M nodes

. T
J . . . .
<M3(I)P1(J)7®P2(j)ﬂ"'ﬂq)1’d1(.7)) 9 ‘7:07"';M71

and the d-variate Halton distribution consists of the M nodes

(@, (1), @y (4)s -5 Bpa () G = 0,0, M — 1

Note that it is possible to increase a given set of Halton distributed nodes, while the number
of Hammersley distributed nodes must be fixed because of the dependency of the first
component of every node on M. Both distributions were implemented in?. The software
package called HAMMERSLEY contains algorithms to generate Hammersley and Halton
distributions on the square [0, 1] and the cube [0,1]%. Furthermore it includes routines
for mapping the square [0, 1]” to the sphere {x € R?: ||x||» = 1} and mapping the cube
[0,1]? to the ball {x € R3: ||x||» < 1}.

5.2 Error definitions

We performed the computations of the total energy U, the potentials ¢(x;) and the forces
F(x;) for different node distributions with the direct algorithm, the fast multipole method
from FCS software library! and the NFFT based algorithms. In this section we use the
names of the applied methods to label numerical results, e.g., Udirect, FMM gpq NFFT
holds the results of the energy computations based on the three algorithms, respectively.
We used the following error measurements to compare the results produced by the three
methods.

The relative errors of the total potential energy with respect to the applied method read

as
PN [7FMM epr | UNFET
U T Udirect’ U T Udirect *
Let ¢ = (¢(x1),...,6(xar))". The relative errors of the potential with respect to the
applied method are given by
EFMM - ||¢direct _ ¢FMMH2 ENFFT o ||¢direct _ ¢NFFT”2
@ T @ T

H(bdirect ||2 ’ ||¢direct ||2

For F(x) = (Fy(x), F1(x), Fo(x)) T, and Fy := (Fy(%q), ..., Fy(xa)) T, t =0,1,2, we
define the average relative errors of the forces with respect to the applied method via

‘FtdirECt _ FE‘MM Hl |F<t:lirect _ F%:\IFFT”1

2 2
EEMM EZ | : ENFFT . _ EZ | ;
F 3 prt HF?lrectul ’ F 3 pr ||F?1re€t||1
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5.3 Test cases

We computed all test cases on the nowadays retired JUMP cluster at Research Center
Jiilich. Each of its 41 nodes got 32 Power4+ processors at 1.7 GHz and 128 GB memory.
Our test runs were performed on one processor of one completely allocated node. The FCS
software library! (timestamp 16.08.2007) and the NFFT library were compiled with IBM’s
xIf and xlc compilers at optimization level -O5 and with the flag -g64 to support the 64 bit
architecture of JUMP.

We performed the NFFT based fastsum algorithm with equal oversampling factors
oy = 2,t = 0,1,2, the truncation parameter m = 2, choose the Kaiser-Bessel window
function, the regularization parameter p = 5 and set the initialization flags PRE_PHI_HUT,
PRE_LIN_PSI, FFT_OUT_OF_PLACE, FFTW_MEASURE and FFTW_DESTROY_INPUT
to obtain the following results.

The upper bound of the relative error of the total energy UMM was set to 0.001 for
the FMM based calculations. For the NFFT based computations we tried to adjust the
parameters to obtain the same upper bound on UNFFT Al measured times include the
computation of the energy, the potentials and the forces.

Hammersley distribution within a cube

For this test case M nodes satisfy a Hammersley distribution with parameters p; = 2, ps =
3 on [0, 1]*. The randomly chosen charges ¢; € {—1, 1} fulfill

M
ZQI S {_170a1}‘
=1

Figure 2: Hammersley distribution within a cube for 500 nodes.

Hammersley distribution within a ball

For this test case a Hammersley distribution with parameters p; = 2,p, = 3 on [0, 1]° is
mapped to the ball

(z —0.5)% + (y — 0.5)* + (2 — 0.5)* < (0.5)%
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M N e =¢p tdirect tFMM tNFFT
500 | (32,32,32)" 3/32 0.01 0.01 | 0.11
5000 | (32,32,32)7 3/32 0.86 0.25 | 0.38
50000 | (64,64,64)7 3/64 87.09*% | 3.00 | 4.63

Table 1: Runtimes ¢ in seconds of direct, FMM and NFFT based computations, respectively. The nodes satisfy a

Hammersley distribution in a cube. Times with * are estimated.

M EFMM ENFFT EgMM qu:IFFT EEMM ENFFT
500 || 1.544e-15 | 3.094e-04 | 1.603e-15 | 8.086e-04 | 1.68%-15 | 1.917e-03
5000 || 1.668e-07 | 9.205e-05 | 2.571e-06 | 5.626e-04 | 7.270e-06 | 9.513e-04
50000 || 2.388e-08 | 3.006e-04 | 3.222e-07 | 5.454e-04 | 8.060e-07 | 1.240e-03

Table 2: Errors Ey of total potential energy, Ey of the potential and Ex of the forces for FMM and NFFT,
respectively. The nodes satisfy a Hammersley distribution in a cube.

The randomly chosen charges ¢, € {—1, 1} fulfill

M
ZQI € {_17011}‘
=1

Figure 3: Hammersley distribution within a ball for 500 nodes.

Cylindrical Halton distribution

For this test case a Halton distribution with parameters p; = 2,ps = 3,p3 = 5 on the

cylinder

0 < z0 < 10,
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M N g1 =¢p tdirect tFMM tNFFT

500 (32,32,32)T 3.5/32 0.01 0.01 0.11
5000 (32,32,32)T 3.5/32 0.86 0.24 0.34
50000 (64,64,64)T 3.5/64 87.06 3.47 4.20
500000 | (128,128,128)" | 3.5/128 || 8903.23 | 46.77 || 59.48

Table 3: Runtimes ¢ in seconds of direct, FMM and NFFT based computations, respectively. The nodes satisfy a
Hammersley distribution in a ball.

500 || 9.677e-16 | 5.584e-05 | 1.751e-15 | 4.189e-04 | 2.328e-15 | 1.092e-03
5000 || 1.339e-06 | 4.903e-05 | 5.471e-06 | 3.190e-04 | 1.454e-05 | 6.404e-04
50000 || 1.113e-07 | 4.087e-04 | 2.579e-07 | 2.507e-04 | 7.650e-07 | 7.416e-04
500000 || 1.075e-09 | 3.726e-04 | 7.366e-08 | 2.962e-04 | 2.195e-07 | 7.613e-04

Table 4: Errors Ey of total potential energy, Ey of the potential and Ex of the forces for FMM and NFFT,
respectively. The nodes satisfy a Hammersley distribution in a ball.

is scaled into the cube [0, 1]3. The randomly chosen charges ¢, € {—1,1} fulfill

M
> ae{-1,0,1}.
=1

Figure 4: Cylindrical Halton distribution for 500 nodes.
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M N er =¢p tdirect tFMM tNFFT
500 | (32,32,32)7 3/32 0.01 0.04 | 0.12
5000 | (32,32,32)" 3/32 0.86 | 0.25 | 0.60
50000 | (256,64,64)" 3.5/64 87.19 | 3.80 | 9.94

Table 5: Runtimes ¢ in seconds of direct, FMM and NFFT based computations, respectively. The nodes satisfy
a Halton distribution in a cylinder.

M EFMM ENFFT EFMM ENFFT EEMM ENFFT
500 || 1.401e-06 | 1.201e-04 | 1.295e-05 | 4.374e-04 | 1.535e-05 | 3.973e-04
5000 || 2.938e-07 | 2.161e-04 | 2.030e-06 | 3.914e-04 | 4.497e-06 | 2.491e-04
50000 || 6.025e-08 | 1.065e-04 | 2.663e-08 | 3.011e-04 | 7.379e-08 | 1.302e-03

Table 6: Errors Ey of total potential energy, Ey of the potential and Ex of the forces for FMM and NFFT,
respectively. The nodes satisfy a Halton distribution in a cylinder.

Spherical Hammersley distribution

For this test case a two-dimensional Hammersley distribution on the square [0, 1]2 with
parameter p; = 2 is mapped to the sphere

(x —0.5)* + (y — 0.5)% + (2 — 0.5)* = (0.5)*

The randomly chosen charges ¢; € {—1, 1} fulfill

M
qu € {71703 1}

=1

Figure 5: Spherical Hammersley distribution for 500 nodes.
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M N €1 =¢€p tdirect tFMM tNFFT
500 | (32,32,32)" 3/32 0.01 0.01 | 0.11
5000 | (32,32,32)7 3/32 0.86 | 0.17 | 0.23
50000 | (64,64,64)7 3/64 87.13 | 2.58 | 3.41

Table 7: Runtimes ¢ in seconds of direct, FMM and NFFT based computations, respectively. The nodes satisfy a
Hammersley distribution on a sphere.

M EEMM E(I}TFFT EFMM ENFFT EEMM EgFFT
500 || 0.000e+00 | 1.338e-04 | 1.740e-15 | 6.655e-04 | 2.983e-15 | 1.697e-03
5000 || 9.167e-08 | 1.957e-04 | 1.202e-06 | 4.101e-04 | 1.478e-06 | 3.644e-04
50000 || 2.460e-08 | 4.866e-04 | 5.522e-08 | 2.422e-04 | 5.200e-08 | 1.545e-04

Table 8: Errors Ey of total potential energy, Ey of the potential and Ex of the forces for FMM and NFFT,
respectively. The nodes satisfy a Hammersley distribution on a sphere.

Two Hammersley distributed balls

For this test case S—ZM Hammersley distributed nodes on the cube [0, 1]3 with parameters
p1 = 2,p2 = 3 are mapped to the ball (z — 0.5)% + (y — 0.5)% + (2 — 0.5)% < (0.5).

A second set of

1
64

M Hammersley distributed nodes on the cube [0, 1]3 with parameters

p1 = 2,pa = 3 is mapped to a smaller ball such that the density of nodes is equal to the
first. We set the distance between the balls to 10. Finally the whole set of nodes is scaled
into the cube [0, 1]°. The random charges ¢; € {—1, 1} fulfill

Figure 6: Hammersley distribution hammersley_two_balls with 500 nodes.

M
qu € {71703 1} .
=1
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M N er=¢p tdirect tFMM tNFFT
500 | (32,32,32)7 2/32 0.01 0.01 0.12
5000 | (32,32,32)" 2/32 0.86 0.26 1.15
50000 | (384,48,48)" 3.2/48 87.21 | 22.44 | 17.01

Table 9: Runtimes ¢ in seconds of direct, FMM and NFFT based computations, respectively. The nodes satisfy
a Hammersley distribution in two balls.

M EFMM ENFFT Eg‘MM EgIFFT EEMM ENFFT
500 || 6.111e-15 | 2.410e-04 | 9.988e-15 | 4.439e-04 | 1.794e-14 | 2.286e-04
5000 || 1.188e-07 | 5.444e-04 | 8.945e-07 | 6.288e-04 | 8.189e-08 | 2.322e-04
50000 || 5.916e-08 | 7.673e-04 | 1.115e-07 | 6.624e-04 | 7.228e-09 | 1.033e-03

Table 10: Errors Ey of total potential energy, Ey of the potential and Ex of the forces for FMM and NFFT,
respectively. The nodes satisfy a Hammersley distribution in two balls.

NaCl grid structure

Let M € N\ {1} be a cubic number of nodes. For u, v, w € {0,..., VM — 1} we set

l= (Wu+v)m+w+1

and the nodes x; and charges g; are given by

X =

1
VM -1

Figure 7: NaCl grid structure for 512 nodes.

T
(U,U,’U}) ’
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M N g1 =¢p tdirect tFMM tNFFT
512 | (32,32,32)" 4/32 0.01 0.01 | 0.12
5832 | (32,32,32)7 2.5/32 1.17 0.13 | 0.33
50653 | (64,64,64)7 2.5/64 106.73* | 2.41 3.21

Table 11: Runtimes ¢ in seconds of direct, FMM and NFFT based computations, respectively. The nodes are
located like a NaCl grid. Times with * are estimated.

M EFMM ENFFT EgMM EgFFT EEMM ENFFT
512 || 1.648e-15 | 2.316e-05 | 1.454e-15 | 2.892e-05 | 8.933e-15 | 2.799¢-03
5832 || 3.132e-07 | 4.491e-05 | 1.406e-05 | 5.430e-05 | 5.102e-04 | 9.325e-04
50653 || 3.094e-07 | 5.422e-05 | 1.054e-05 | 7.071e-05 | 9.372e-04 | 1.451e-03

Table 12: Errors Ey of total potential energy, Iy of the potential and E of the forces for FMM and NFFT,
respectively. The nodes are located like a NaCl grid.

5.4 Conclusions

We computed the total energy, the potentials and the forces for several charged particle dis-
tributions with open boundary conditions. The runtimes of our NFFT based fast summation
showed that it is able to compete with the highly optimized, kernel dependent FMM. We
want to emphasize that the NFFT based algorithm is not restricted to the Coulomb po-
tential since it can be easily adapted to various kernel functions. Testcases with equally
distributed systems are the cubic Hammersley distribution, the Hammersley distribution
within a ball and the NaCl grid structure. Especially for the last one we see in Table 12
that the errors of both algorithms are comparable. As examples for unequally distributed
systems we chose the Halton distribution within a cylinder, the Hammersley distribution
on a sphere and two Hammersley distributed balls. Although we did not optimize our algo-
rithm for such inhomogeneous systems, the runtimes show an remarkable improvement in
comparison to the direct algorithm. The generalization to cuboidal domains of the NFFT
based fast summation was successfully tested for the cylindrical Halton distribution and
the two Hammersley distributed balls, as one can see in Table 5 and Table 9.

6 Summary

We suggested fast summation algorithms of the form
Ka =~ B,FDD,D'F'B]a + Kypa

and applied this method to particle simulation for the Coulomb potential. This decompo-
sition into separate building blocks simplifies the implementation. Note that particle-mesh

methods are based on similar steps, see [15, Chapter 7]
e smear the charge density onto a grid, i.e., multiplication with B

Algorithm 2.2
e Fourier transform the density, see step 2 of Algorithm 2.2 with FFT
e convolution in Fourier space, or solution of a differential equation in Fourier space
e Fourier transform back, see step 2 of Algorithm 2.1 with FFT

T

X

see step 1 of
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e Back-interpolation, or approximation, i.e., multiplication with By, see step 3 of

Algorithm 2.1

e Near field computation, i.e., multiplication with Kng
A parallelization can be done step by step for the modules FFT, NFFT and finally the fast

summation algorithm. A promising highly scalable FFT implementation has been tested
up to 262144 cores of a BlueGene/P at Research Center Jiilich**.
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Simulating Charged Systems with ESPResSo
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We give an introduction to working with the MD simulation package ESPResSo , that al-
lows to perform many-particle simulations of charged systems. The package provides different
methods for the computation of long-range interactions, namely PM, MMM2D, MMMID,
ELC and Maggs method for Coulomb interactions, as well as the dipolar P2M algorithm for the
interaction between point-like dipoles.

1 Introduction

Nowadays computer simulations are a well established tool in theoretical physics. Here,
we want to give an introduction to our simulation package ESPResSo !-3; ESPResSo is
an acronym for Extensible Simulation Package for Research on Soft matter systems.

The term soft matter, or complex fluids, as they are called in the American literature,
describes a large class of materials, such as polymers, colloids, liquid crystals, glasses,
hydrogels and dipolar fluids; familiar examples of such materials are glues, paints, soaps
or baby diapers. Also most biological materials are soft matter — DNA, membranes, fila-
ments and other proteins belong to this class. The research in soft matter science has been
increased in the last decade due to its high potential usefulness in technology, biophysics,
and nanoscience.

Many properties of soft matter emerge on the molecular rather than the atomistic level:
the elasticity of rubber is the result of entropy of the long polymers molecules, and the hy-
groscopic materials used in modern diapers store water inside a polyelectrolyte network.
To reproduce these physical effects in a computer simulation on the atomistic level, one
would have to incorporate many millions of atoms, which is only possible on very small
time scales even with the most powerful modern computers. However, often a much sim-
pler description of the material is sufficient. Polymers such as polyelectrolytes or rubber
often can be modeled by bead-spring models, i.e. (charged) spheres connected by springs,
where each of the spheres represents several atoms, often a complete monomer or even
larger compounds. Although these models hide most of the chemical properties, they are
quite successful in the description of polymers and other soft-matter systems. The process
of removing atomistic details from a system to obtain a simpler model is called coarse-
graining.

Computer simulations of coarse-grained models still incorporate several thousands of
spheres and springs and require an efficient simulation software. Furthermore, the models
often need non-standard algorithms for the simulation that in some cases have been espe-
cially developed for a specific model. Therefore it is necessary that the simulation software
is much more flexible than standard atomistic simulation packages (as for example GRO-
MACS or NAMD).
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ESPResSo was designed and implemented to address the requirements of such
coarse-grained models, and it has a few unique features that distinguish it from any other
simulation package that we know of.

2 Features of ESPResSo

Free and open source ESPResSo is an open-source program that is published under
the GNU public license, and is available through our web page'.

Extensible Users can read and modify the code to meet their own needs. Throughout the
source code of ESPResSo , readability is preferred over code optimizations. This
allows users to extend the code. Furthermore, ESPResSo has defined a number
of interfaces that allow users to implement extensions to the ESPResSo core code
(e.g. new potentials, new thermostats or new analysis routines)

Controlled by Tcl ESPResSo uses the scripting language Tcl* to control the simula-
tions. The simulation control script determines all simulation parameters such as the
number and type of particles, the type of interactions between these particles, and
how the system is propagated; most of the parameters can be changed even during the
simulation.

This flexibility makes it possible to perform highly complex simulation procedures,
such as adapting the interaction parameters to the current configuration during the
simulation, cooling down the system in a simulated annealing process, applying or re-
moving constraints, or even complex schemes like parallel tempering. The flexibility
provided by controlling the simulation via Tcl is unmatched by any other simulation
packages that we know of.

Parallelized ESPResSo is parallelized code, allowing for simulations of millions of
particles on hundreds of CPUs. ESPResSo scales well, it can achieve an efficiency
of about 70% on 512 Powerd+ processors. Since ESPResSo contains some of the
fastest currently available simulation algorithms, it also scales well with the number
of particles, allowing for the simulation of large systems.

Portable The code kernel is written in simple ANSI C, therefore it can be compiled on
a wide variety of hardware platforms like desktop workstations, convenience clus-
ters and high performance supercomputers based on POSIX operating systems (for
example all Unices including GNU/Linux).

Nevertheless, one should be aware that the flexibility of ESPResSo0 also costs some
performance: compared to fast MD programs such as GROMACS, ESPResSo is slower
by a factor of about 2. However, most of the problems that we use ESPResSo for cannot
be treated with these fast codes at all without massive changes to the simulation engine.

ESPResSo is not self-contained, but relies on other open source packages. Most
prominent is the use of the Tcl* script language interpreter for the simulation control.
For the parallelization, standard MPI° routines are used. P>M relies on the FFTW pack-
age®. Besides these libraries, which are required to be able to have a running version of
ESPResSo, the development process is supported heavily by the use of the CVS version
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control system’, which allows several developers to work simultaneously on the code, the
documentation generation tool Doxygen®, ITgXand the GNU Autotools for compilation.

Of course it is also important to have a look at the actual algorithms and methods that
ESPResSo provides.

Integrators and thermostats ESPResSo can perform MD simulations using a
Velocity-Verlet integration scheme. Besides the microcanonical (NVE) ensemble,
it is possible to obtain the canonical (NVT) ensemble via the Langevin thermostat,
one can employ DPD for the NVT ensemble with hydrodynamic interactions, the
NPT (constant pressure) ensemble can be obtained using an algorithm by Diinweg
et al’. Furthermore, a quaternion integrator can be used for non-spherical particles
(e.g. Gay-Berne ellipsoids) or particles that have a dipole moment.

Nonbonded potentials For nonbonded interactions between different particle species,
a number of different potentials are implemented in ESPResSo , for example the
Lennard-Jones, Gay-Berne, Morse and Buckingham potentials. In addition, it is pos-
sible to use tabulated potentials. To avoid overlap problems during equilibration,
ESPResSo allows to cap the nonbonded potentials.

Bonded potentials ESPResSo contains a number of interactions between two or more
specific particles, including the FENE and harmonic bond potentials, bond angle and
dihedral interactions. Again, potentials can also be included as tables.

Long-range interactions ESPResSo has a number of algorithms for long-ranged inter-
actions: for electrostatics, the PM , MMM2D, MMM1D, ELC and Maggs’ method
are implemented, for magnetostatic dipolar interactions, a dipolar P>M version is con-
tained.

Constraints ESPResSo has the ability to fix some or all coordinates of a particle, or to
apply an arbitrary external force on each particle. In addition, spatial constraints such
as spherical or cubic compartments, can be used. These constraints interact by any
nonbonded interaction with the particles.

Analysis All ESPResSo0 analysis routines are available in the simulation engine, al-
lowing for both online analysis (during the simulation) as well as offline analysis.
ESPResSo can of course calculate the energy and (isotropic) pressure, and the forces
acting on particles or spatial constraints can be obtained from the simulation engine.
There are routines to determine particle distributions and structure factors, and some
polymer-specific measures such as the end-to-end distance or the radius of gyration.
For visualization ESPResSo0 can output files that can be read by visualization soft-
ware such as VMD!?,

Lattice-Boltzmann fluid ESPResSo contains an implementation of the Lattice-
Boltzmann fluid that can be coupled to particle-based models. This allows models
to involve hydrodynamic interactions.

AdResS ESPResSo contains an implementation of the AdResS Adaptive Resolution
Scheme that allows to simulate a single simulation that contains two levels of resolu-
fon 11
tion.
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3 Using ESPResSo

In this section we want to construct a simulation script for a simple salt melt, e.g. NaCl
at about 1400 K. The system is to consist out of 100 (+1) ions and 100 (-1) counterions.
Besides the electrostatic interaction, the ions interact via the purely repulsive soft core of
a Lennard-Jones interaction (the so-called Weeks-Chandler-Anderson or WCA potential).
This potential also defines the length scale of the system: the length unit is the Lennard-
Jones parameter ¢ (which roughly corresponds to 0.6nm). We simulate at a density of
0.70~3. The Bjerrum length is set to 100.

We cannot give a full Tcl tutorial here; however, most of the constructs should be
self-explanatory. We also assume that the reader is familiar with the concepts of an MD
simulation. The code snippets can be copied into a file, which then can be run using
Espresso <file> from the ESPResSo0 source directory.

Our script starts with setting up the initial configuration. Most conveniently, one would
like to specify the density and the number of particles of the system as parameters:

set n_part 200; set density 0.7
set box_1 [expr pow ($Sn_part/S$density,1./3.)]

These variables do not change anything in the simulation engine, but are just standard Tcl-
variables; they are used to increase the readability and flexibility of the script. The box
length is not a parameter of this simulation; it is calculated from the number of particles
and the system density. This allows to change the parameters later easily, e.g. to simulate
a bigger system.

The parameters of the simulation engine are modified by the setmd command. For
example

setmd box_1 $box_1 $box_1 Sbox_1
setmd periodic 1 1 1

defines a cubic simulation box of size box_1, and periodic boundary conditions in all
spatial dimensions. We now fill this simulation box with particles

set g 1; set type 0
for {set i 0} { $i < $n_part } {iner i} {
set posx [expr S$box_lx[t_ random] ]
set posy [expr S$box_lx[t_ random] ]
set posz [expr $box_lx[t_ random] ]
set g [expr -$g]; set type [expr 1l-Stype]
part $i pos S$posx $posy S$posz g $q type Stype
}

This loop adds n_part particles at random positions, one by one. In this construct, only
two commands are not standard Tcl-commands: the random number generator t_random
and the part command, which is used to specify particle properties, here the position, the
charge g and the type. In ESPResSo the particle type is just an integer number which
allows to group particles; it does not imply any physical parameters. Here we use it to tag
the charges: positive charges have type 0, negative charges have type 1.
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Now we define the ensemble that we will be simulating. We want to do a canoni-
cal NVT simulation, so we need to use a thermostat, which can be activated using the
thermostat command. We also set some integration parameters:

setmd time_step 0.01; setmd skin 0.4
set temp 1; set gamma 1
thermostat langevin $temp S$gamma

This switches on the Langevin thermostat for the NVT ensemble, with temperature temp
and friction gamma. The skin depth skin is a parameter for the that tunes ESPResSo0 ’s
performance (i.e. it will not influence the results), but cannot be discussed here.

Before we can really start the simulation, we have to specify the interactions between
our particles. We use a simple, purely repulsive Lennard-Jones interaction to model the
hard core repulsion'?, and the charges interact via the Coulomb potential:

set sig 1.0; set cut [expr 1.12246%S$sig]

set eps 1.0; set shift [expr 0.25xS$eps]

set bjerrum 10.0

inter 0 0 lennard-jones $eps $sig $cut S$shift 0

inter 1 0 lennard-jones S$eps $sig S$Scut $shift 0

inter 1 1 lennard-jones S$eps $sig S$Scut $shift 0

inter coulomb $bjerrum p3m tunev2 accuracy le-3 mesh 32

The first three inter commands instruct ESPResSo to use the same purely repulsive
Lennard-Jones potential for the interaction between all combinations of the two particle
types 0 and 1; by using different parameters for different combinations, one could simulate
differently sized particles. The last line sets the Bjerrum length to the value 10, and then
instructs ESPResSo to use P2M for the Coulombic interaction and to try to find suitable
parameters for an rms force error below 10~4, with a fixed mesh size of 32. The mesh is
fixed here to speed up the tuning; for a real simulation, one will also tune this parameter.
Now we would be ready for integration. However, if we would start integating now,
the simulation would crash: ESPResSo would complain about particle coordinates being
out of range. The reason for this is simple: Due to the random setup, some of the particles
are overlapping strongly, which would generate extremely high forces and catapult the par-
ticles out of the system if we would start the integration. To get rid of these extreme forces,
ESPResSo allows to cap the generated forces to a reasonable level during a warming up
phase until all particles in the system have gained a reasonable distance from each other.

set current_dist [analyze mindist]

for { set cap 20 } { S$current_dist < 0.85 } { inecr cap 20 } {
inter 1jforcecap S$cap
integrate 200
set current_dist [analyze mindist]

}

inter ljforcecap 0

This loop integrates the system with an increasing force cap until the minimal distance
between any pair of particles is larger than 0.85, where the forces become reasonable. The
last command switches the force capping off again.
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After warming up, we can start integrating the system. The main integration loop could
look like this:

for {set i1 0} { $i < 100 } { inecr i} {
integrate 200

set t [setmd time]

set e_tot [analyze energy total]

set e_kin [analyze energy kinetic]

set e_ele [analyze energy coulomb]

puts "\tstep=$i,time=S5t,e_tot=S%e_tot,e_kin=$e_kin,e_ele=$e_ele"
}

This code block is the primary simulation loop and runs 20000 MD steps. Every
integ_steps time steps, the different energy components are computed using the com-
mand analyze and printed out.

Of course, it would be nice if the observables would not only be printed to the screen,
but also saved to a file, so that we can plot it later. Also, one would like to store some
of the configurations for later analysis. Finally, it would also be nice to write out the
configurations to a file to be able to visualize the system. Therefore, an expanded version
of the main integration loop might look like this:

set ene_file [open "salt.ene" "w"]
puts Sene_file "\#t\tE_tot\tE_kin\tE_ele"

set vtf _file [open "salt.vtf" "w"]
writevsf Svtf_file
writevecf Svtf_file

for {set i 0} { $i < 100 } { iner i} {
integrate 200

set t [setmd time]

set e_tot [analyze energy total]

set e_kin [analyze energy kinetic]

set e_ele [analyze energy coulomb]

puts "\tstep=$i,time=S$t,e_tot=Se_tot,e_kin=$e_kin,e_ele=$e_ele"
puts Sene_file "[setmd time]\tSe_tot\tSe_kin\tSe_ele"

writevef Svtf_file

analyze push 20

close S$Sene_file
close Svtf_file

The first few lines will open two files for output. salt .ene stores values of the total,
kinetic and coulomb energies in a tabular fashion to be plotted by Gnuplot, XMGrace or
any other plotting tool. Plotting the energies can be useful to check whether a system is
equilibrated.
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salt.vtf is a file in the VIF (VMD Trajectory Format) format. ESPResSo can
write these files via the commands writevsf and writevef, which will output the struc-
ture of the system (i.e. the number and type of atoms, their bonds, etc.) and the current
coordinates of all particles respectively. The file can be easily visualized using VMD!?
(see figure 1).

Figure 1: VMD Snapshot of the salt system

The command analyze push 20 will store up to 20 configurations in memory, so
that they can be analyzed afterwards. With these configurations, we can now investigate
the system. As an example, we will calculate the averaged radial distribution function
g+—(r), using the analyze command:

set rdf _file [open "salt.rdf" "w"]
puts Srdf_file "#r\tg+-"

set rdf0l [lindex [analyze <rdf> 0 1]
foreach v01 $rdf01 {

set x [lindex S$v01 0]

set g0l [lindex S$vO01 1]

puts Srdf_file "S$x\t$gOl"
}
close $rdf file
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The shown analyze <rdf> command returns the radial distribution function of particles
of type 1 around particles of type O (i.e. of opposite charges). Changing the first two
parameters to either “0 0” or “1 1” allows to determine the distribution for equal charges.
Fig. 2 shows the resulting radial distribution functions, averaged over 100 configurations.
In addition, the distribution for a neutral system is given, which can be obtained from our
simulation script by simply not turning on P3M .
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Figure 2: Radial distribution functions g4+ () between equal charges, g+ — () for opposite charges, and goo ()
for an uncharged system.

The code example given before is still quite simple, and the reader is encouraged to try
to extend the example, e.g. by using differently sized particle, or changing the interactions.
If something does not work, ESPResSo will give comprehensive error messages, which
should make it easy to identify mistakes. For real simulations, the simulation scripts can
extend over thousands of lines of code and contain automated adaption of parameters or
online analysis, up to automatic generation of data plots. Parameters can be changed arbi-
trarily during the simulation process, as needed for e.g. simulated annealing. The possibil-
ity to perform non-standard simulations without the need of modifications to the simulation
core was one of the main reasons why we decided to use a script language for controlling
the simulation core.

4 Concluding Remarks

We have given a short introduction into the simulation package ESPResSo . Of course,
our hope is that the some of the readers consider ESPResSo as the simulation code
base for their next projects. Informations regarding the latest version, or informa-
tions on how to participate in the further development of this package can be found on
http://www.espresso.mpg.de/.
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This publication was edited at the Jilich Supercomputing Centre (JSC) which is an integral
part of the Institute for Advanced Simulation (IAS). The IAS combines the Julich simula-
tion sciences and the supercomputer facility in one organizational unit. It includes those
parts of the scientific institutes at Forschungszentrum Jilich which use simulation on
supercomputers as their main research methodology.

IAS Series

Volume 6 ’JJUUCH

ISBN 978-3-89336-714-6 FORSCHUNGSZENTRUM



