001     16171
005     20210129210642.0
024 7 _ |2 pmid
|a pmid:21875673
024 7 _ |2 DOI
|a 10.1016/j.neuroimage.2011.08.030
024 7 _ |2 WOS
|a WOS:000298210600054
024 7 _ |2 altmetric
|a altmetric:396783
037 _ _ |a PreJuSER-16171
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |0 P:(DE-Juel1)VDB261
|a Dammers, J.
|b 0
|u FZJ
245 _ _ |a Automatic identification of gray and white matter components in polarized light imaging
260 _ _ |a Orlando, Fla.
|b Academic Press
|c 2012
300 _ _ |a 1338–1347
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 0
|2 EndNote
|a Journal Article
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |2 DRIVER
|a article
440 _ 0 |0 4545
|a NeuroImage
|v 59
|x 1053-8119
|y 1338 - 1347
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a Polarized light imaging (PLI) enables the visualization of fiber tracts with high spatial resolution in microtome sections of postmortem brains. Vectors of the fiber orientation defined by inclination and direction angles can directly be derived from the optical signals employed by PLI analysis. The polarization state of light propagating through a rotating polarimeter is varied in such a way that the detected signal of each spatial unit describes a sinusoidal signal. Noise, light scatter and filter inhomogeneities, however, interfere with the original sinusoidal PLI signals, which in turn have direct impact on the accuracy of subsequent fiber tracking. Recently we showed that the primary sinusoidal signals can effectively be restored after noise and artifact rejection utilizing independent component analysis (ICA). In particular, regions with weak intensities are greatly enhanced after ICA based artifact rejection and signal restoration. Here, we propose a user independent way of identifying the components of interest after decomposition; i.e., components that are related to gray and white matter. Depending on the size of the postmortem brain and the section thickness, the number of independent component maps can easily be in the range of a few ten thousand components for one brain. Therefore, we developed an automatic and, more importantly, user independent way of extracting the signal of interest. The automatic identification of gray and white matter components is based on the evaluation of the statistical properties of the so-called feature vectors of each individual component map, which, in the ideal case, shows a sinusoidal waveform. Our method enables large-scale analysis (i.e., the analysis of thousands of whole brain sections) of nerve fiber orientations in the human brain using polarized light imaging.
536 _ _ |0 G:(DE-Juel1)FUEK409
|2 G:(DE-HGF)
|x 0
|c FUEK409
|a Funktion und Dysfunktion des Nervensystems (FUEK409)
536 _ _ |0 G:(DE-HGF)POF2-89574
|a 89574 - Theory, modelling and simulation (POF2-89574)
|c POF2-89574
|f POF II T
|x 1
588 _ _ |a Dataset connected to Pubmed
650 _ 2 |2 MeSH
|a Algorithms
650 _ 2 |2 MeSH
|a Artificial Intelligence
650 _ 2 |2 MeSH
|a Brain: cytology
650 _ 2 |2 MeSH
|a Humans
650 _ 2 |2 MeSH
|a Image Enhancement: methods
650 _ 2 |2 MeSH
|a Image Interpretation, Computer-Assisted: methods
650 _ 2 |2 MeSH
|a Lighting: methods
650 _ 2 |2 MeSH
|a Microscopy, Polarization: methods
650 _ 2 |2 MeSH
|a Nerve Fibers, Myelinated: ultrastructure
650 _ 2 |2 MeSH
|a Neurons: cytology
650 _ 2 |2 MeSH
|a Pattern Recognition, Automated: methods
650 _ 2 |2 MeSH
|a Reproducibility of Results
650 _ 2 |2 MeSH
|a Sensitivity and Specificity
700 1 _ |0 P:(DE-Juel1)131637
|a Breuer, L.
|b 1
|u FZJ
700 1 _ |0 P:(DE-Juel1)VDB67318
|a Axer, M.
|b 2
|u FZJ
700 1 _ |0 P:(DE-Juel1)VDB100171
|a Kleiner, M.
|b 3
|u FZJ
700 1 _ |0 P:(DE-Juel1)VDB62239
|a Eiben, B.
|b 4
|u FZJ
700 1 _ |0 P:(DE-Juel1)131642
|a Gräßel, D.
|b 5
|u FZJ
700 1 _ |0 P:(DE-Juel1)165746
|a Dickscheid, T.
|b 6
|u FZJ
700 1 _ |0 P:(DE-Juel1)131714
|a Zilles, K.
|b 7
|u FZJ
700 1 _ |0 P:(DE-Juel1)131631
|a Amunts, K.
|b 8
|u FZJ
700 1 _ |0 P:(DE-Juel1)131794
|a Shah, N.J.
|b 9
|u FZJ
700 1 _ |0 P:(DE-Juel1)VDB2211
|a Pietrzyk, U.
|b 10
|u FZJ
773 _ _ |0 PERI:(DE-600)1471418-8
|a 10.1016/j.neuroimage.2011.08.030
|g Vol. 59
|n 2
|p 1338–1347
|q 59
|t NeuroImage
|v 59
|x 1053-8119
|y 2012
856 7 _ |u http://dx.doi.org/10.1016/j.neuroimage.2011.08.030
909 C O |o oai:juser.fz-juelich.de:16171
|p VDB
913 2 _ |0 G:(DE-HGF)POF3-574
|1 G:(DE-HGF)POF3-570
|2 G:(DE-HGF)POF3-500
|a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|v Theory, modelling and simulation
|x 0
913 1 _ |0 G:(DE-HGF)POF2-89574
|a DE-HGF
|v Theory, modelling and simulation
|x 1
|4 G:(DE-HGF)POF
|1 G:(DE-HGF)POF3-890
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-800
|b Programmungebundene Forschung
|l ohne Programm
914 1 _ |y 2012
915 _ _ |0 StatID:(DE-HGF)0010
|2 StatID
|a JCR/ISI refereed
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0310
|2 StatID
|a DBCoverage
|b NCBI Molecular Biology Database
915 _ _ |0 StatID:(DE-HGF)0420
|2 StatID
|a Nationallizenz
915 _ _ |0 StatID:(DE-HGF)1030
|2 StatID
|a DBCoverage
|b Current Contents - Life Sciences
915 _ _ |0 StatID:(DE-HGF)1050
|2 StatID
|a DBCoverage
|b BIOSIS Previews
920 1 _ |0 I:(DE-Juel1)INM-1-20090406
|g INM
|k INM-1
|l Strukturelle und funktionelle Organisation des Gehirns
|x 1
920 1 _ |0 I:(DE-Juel1)INM-2-20090406
|g INM
|k INM-2
|l Molekulare Organisation des Gehirns
|x 0
920 1 _ |0 I:(DE-Juel1)INM-4-20090406
|g INM
|k INM-4
|l Physik der Medizinischen Bildgebung
|x 2
970 _ _ |a VDB:(DE-Juel1)129901
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)INM-1-20090406
980 _ _ |a I:(DE-Juel1)INM-2-20090406
980 _ _ |a I:(DE-Juel1)INM-4-20090406
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)INM-2-20090406
981 _ _ |a I:(DE-Juel1)INM-4-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21